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Abstract 23 

Purpose. Cadmium (Cd), lead (Pb), and mercury (Hg) have been shown to exhibit 24 

endocrine disrupting properties. their effects on women’s reproductive health, however, 25 

remain elusive. Here, we investigated associations between blood concentrations of 26 

single of Pb, Cd, Hg, and their mixture and infertility and long-term amenorrhea in 27 

women of reproductive age using the US National Health and Nutrition Examination 28 

Survey (NHANES) 2013-2018 cross-sectional survey. 29 

 30 

Methods. A total of 1,990 women were included for the analysis of infertility and 1,919 31 

women for long-term amenorrhea. The methods of log-transformation and quarterization 32 

were used to analyze blood heavy metal concentrations. Statistical differences in the 33 

covariates between the outcome groups were evaluated using a chi-squared test for 34 

categorical variables and a t-test for continuous variables. Multiple logistic regression 35 

models were used to examine the associations. 36 

 37 

Results. The blood concentrations of Pb and heavy metal mixtures were significantly 38 

higher in ever-infertile women than pregnant women, but the concentrations of Cd and 39 

Hg were comparable. Multiple logistic regression analysis revealed that after the full 40 

adjustment, there was a significant and dose-dependent positive association between 41 

blood Pb concentrations and women’s historical infertility, a negative association 42 

between Cd and women’s long-term amenorrhea, and no associations between Hg and 43 

heavy metal mixture and women’s infertility or long-term amenorrhea.  44 

 45 
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Conclusions. Our study demonstrates that exposure to heavy metals exhibit differential 46 

associations with women’s infertility and long-term amenorrhea. 47 

 48 
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Introduction 69 

The female reproductive system provides hormonal control and anatomical structure to 70 

sustain a woman’s menstrual cycle and fertility. Infertility is the failure of achieving 71 

clinical pregnancy after one year of unprotected intercourse, affecting up to 15% of 72 

couples worldwide.1,2 In the US, the number of women with impaired fertility has been 73 

estimated to increase from 4.5 million in the early 1980s to about 7.7 million by 2025.3 74 

Although women’s infertility can be caused by male factors and unexplained reasons,4 75 

the majority of them have recognized reproductive or neuroendocrine disorders, such as 76 

premature ovarian insufficiency (POI),5 oligomenorrhea or amenorrhea,1 anovulation, 6 77 

poor gamete quality,7 and other reproductive diseases such as polycystic ovarian 78 

syndrome (PCOS),8 endometriosis,9 and hypothalamic dysfunction.10 So far, the 79 

mechanism of women’s infertility remains incompletely understood but has been 80 

attributed to both genetic factors and exposure to reproductive toxicants.11  81 

 82 

Industrial development, agricultural practices, and the production and use of consumer 83 

products have introduced various toxic substances into the environment, including 84 

heavy metals that are naturally occurring metallic elements with high molecular weight 85 

and density.12 Cadmium (Cd), lead (Pb), and mercury (Hg) are three primary heavy 86 

metals listed by the World Health Organization (WHO) under the top 10 toxicants of 87 

major public health concern.13 The environmental contamination of heavy metals 88 

primarily stems from industrial mining, agricultural practice, and fossil fuel and waste 89 

combustion, etc.14-17 Heavy metals persist and bioaccumulate along the food chain and 90 
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in drinking water, soils, and air, making them a major source of environmental toxicants 91 

to humans.18 92 

 93 

Women’s reproductive health is vulnerable to environmental toxins, particularly 94 

endocrine disrupting chemicals (EDCs) that interfere with the body’s normal hormone 95 

synthesis, secretion, and signaling.19,20 Growing epidemiological and experimental 96 

research have revealed that heavy metals exert endocrine disrupting properties,21-25 97 

implicating the possible causative relationship between exposure to heavy metals and 98 

women’s infertility and other reproductive disorders. In a cross-sectional study that 99 

compared 310 women with clinically diagnosed infertility and 57 pregnant women in 100 

Taiwan, the blood concentrations of Pb but not Cd in infertile women were significantly 101 

higher than pregnant women.26 Another study compared 82 infertile and 42 pregnant 102 

women in the US and found that there were positive associations between blood 103 

concentrations of Pb and Cd and women’s infertility.27 Heavy metals have also been 104 

shown to affect reproductive hormone secretion. In premenopausal women, the blood 105 

concentrations of Cd, Pb, and Hg were associated with altered means and amplitudes 106 

of follicle stimulating hormone (FSH) and luteinizing hormone (LH), two gonadotropins 107 

that regulate ovarian follicle maturation, hormone secretion, and ovulation.28 It was also 108 

found in the same study that Pb may increase progesterone levels in the follicular 109 

phase, and both Pb and Hg cause a delay of the progesterone rise in the mid-luteal 110 

phase.28 111 

 112 
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Experimental research has documented that exposure to heavy metals may impact the 113 

female reproductive cycle and fertility. For example, Cd exposure in mice compromised 114 

oocyte meiotic and developmental competence by inducing oocyte oxidative stress, 115 

early apoptosis, and epigenetic modifications, which eventually resulted in decreases in 116 

litter size.29 Pb has been found to delay vaginal opening, decrease estradiol secretion, 117 

and interfere with ovarian cyclicity in rats, suggesting the harmful effects of Pb on the 118 

ovaries or the entire hypothalamic-pituitary-gonadal (HPG) axis.30 Heavy metals may 119 

also act as agonists or antagonists to disrupt hormone receptor-mediated signaling. All 120 

Cd, Pb, and Hg have been reported to exert estrogenic effects by binding to the 121 

estrogen receptor α and/or β, which may disrupt the expression of estrogen target 122 

genes and the proliferation and/or differentiation of estrogen-responsive tissues such as 123 

the endometrium.23,24 Altogether, existing epidemiological and experimental evidence 124 

suggests that exposure to heavy metals may perturb women’s menstrual cycle and 125 

fertility by interfering with the homeostasis of the HPG axis, ovarian steroidogenesis, 126 

hormonal signaling, and other reproductive events. However, the majority of the 127 

epidemiological studies have small sample sizes and do not consider the complexities 128 

of the female reproductive cycle and fertility;26-28,31 moreover, previous studies primarily 129 

focused on a single metal at a time, but women are periodically or even constantly 130 

exposed to mixtures of multiple heavy metals, which may cause cumulative effects.26-
131 

28,31-33  132 

 133 

The objective of this study is to investigate associations between blood concentrations 134 

of single Pb, Cd, Hg and their mixtures and reproductive aged women’s infertility in the 135 
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National Health and Nutrition Examination Survey (NHANES) 2013-2018; moreover, the 136 

associations between heavy metals and women’s long-term amenorrhea, a crucial 137 

contributing factor to women’s infertility, was assessed. We hypothesize that women 138 

with higher blood heavy metal concentrations are more likely to experience infertility and 139 

long-term amenorrhea. We combined our robust understanding of female reproductive 140 

biology and epidemiology to create a comprehensive evaluation of the impacts of 141 

exposure to single heavy metals and their mixtures on women’s reproductive health. 142 

 143 

Materials and Methods 144 

Study population 145 

All data were obtained from NHANES, a nationally representative cross-sectional 146 

survey of the non-institutionalized U.S. population. NHANES is conducted by the US 147 

Centers for Disease Control and Prevention (CDC) and uses a complex multistage, 148 

probability sampling design. Since 1999, the sample design has consisted of multi-year, 149 

stratified, clustered four-stage samples, with data released in 2-year cycles. NHANES 150 

samples are drawn in four stages: (1) Primary sampling units (PSUs) (counties, clusters 151 

of tracts within counties, or combinations of neighboring counties), (2) segments within 152 

PSUs (census blocks or groupings of blocks), (3) dwelling units (DUs) (households) 153 

within segments, and (4) individuals within households. Screening is conducted at the 154 

DU level to identify individuals, based on oversampling criteria. NHANES oversamples 155 

some subgroups to increase the reliability and precision of health status indicator 156 

estimates for these particular subgroups; the population subgroups chosen for 157 

oversampling directly determine the sampling domains used to select the sample at all 158 
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stages.34 In this study, we used data from three continuous NHANES cycles, including 159 

2013-2014, 2015-2016, and 2017-2018, where the reproductive health questionnaire 160 

addressed women’s infertility and menstrual cycle. All data including sociodemographic 161 

questionnaires, physical examinations, and reproductive health questionnaires, were 162 

downloaded directly from the CDC’s website.35  163 

 164 

Study sample, variable descriptions, and inclusion 165 

Among all three NHANES cycles, one-half of participants age 12+ have blood heavy 166 

metal data for the cycles of 2013-2014 and 2015-2016. All participants aged 1+ have 167 

blood heavy metal data available for the cycle of 2017-2018. The total number of 168 

participants in these three NHANES cycles was 20,113. After excluding males 169 

(n=9,934), females younger than 20 years (n=4,589), and females older than 49 years 170 

(n=2,843), there were 2,747 reproductive aged women (20-49 years) who had blood 171 

heavy metal data available. Although post-pubertal women under 20 years are also 172 

considered within reproductive age, they were not included because NHANES survey 173 

was designed to only collect reproductive data from participants 20 years of age and 174 

older. Moreover, women who had a hysterectomy (n=125) and women with missing 175 

data for the heavy metal exposures (n=136) were also excluded. Figures 1 and 2 176 

describe the sample attrition process and amount of missingness. Participants with 177 

missing data for the questions of infertility (n=272), demographic variables (n=197), BMI 178 

(n=14), and information on the use of birth control pill and female hormones (n=4) were 179 

also excluded. Overall, a total of 1,999 women were included for comparing ever-180 

infertile and fertile women (main group), and a total of 297 participants were included for 181 
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comparing ever-infertile and pregnant women (sub-group) (Figure 1). For assessing 182 

long-term amenorrhea, participants with missing data for the questions of long-term 183 

amenorrhea (n=361), demographic variables (n=190), BMI (n=12), and information on 184 

the use of birth control pill and female hormone use (n=4) were also excluded. Overall, 185 

a total of 1,919 women were included for assessing long-term amenorrhea (Figure 2). 186 

 187 

Measurements of blood Pb, Cd, Hg concentrations 188 

The blood concentrations of Pb, Cd, and Hg were measured in the whole blood using 189 

the mass spectrometry after a simple dilution sample preparation step. The full 190 

NHANES laboratory procedures can be found online.36-38  The lower limit of detection 191 

(LLOD) of the three measured metals were: 0.07 μg/dL for Pb, 0.1 μg/dL for Cd, and 192 

0.28 μg/dL for Hg. For analytes with analytic results below the LLOD, an imputed fill 193 

value was placed in the analyte results field. This value is LLOD divided by the square 194 

root of 2 (LLOD/sqrt [2]). 195 

 196 

Creating a metal mixture value 197 

Previous studies have used simple additive methods by summing all metal scores with 198 

equal weight to create a score of the metal mixture.39,40 Here, we aimed to further fine 199 

tune this mixed metal score by using a novel method, toxic equivalency (TEQ) values 200 

that are a weighted quantity measure based on the relative toxicity potency of each 201 

chemical. TEQ values are used for reporting dioxin and dioxin-like compounds.41 We 202 

used a similar methodology to create TEQ values for the mixture of the three heavy 203 

metals. Pb, Cd, and Hg have been shown to exhibit similar toxic mechanisms by 204 
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inducing oxidative stress and endoplasmic reticulum (ER) stress,42,43 which 205 

compromises the reduction-oxidation hemostasis and eventually results in adverse 206 

health outcomes.44-46 ER stress has also been revealed as a key molecular mechanism 207 

in various female reproductive functions and disorders, such as ovarian injury via ER 208 

stress-mediated apoptosis/autophagy, regulation of gestational length by the uterine ER 209 

stress, oocyte maturation, and embryo implantation.47-50 210 

 211 

In the federal Tox21 program, the ER Stress Response Element β-lactamase reporter 212 

gene assay (ESRE-bla) is used to screen potential toxicants, including heavy 213 

metals.51,52 Pb, Cd, and Hg in certain form have been shown to be ‘active’ in 214 

TOX21_ESRE_BLA assay, while other high-throughput assays related to oxidative 215 

stress lack the screening results for all three heavy metals in this study. Data from the 216 

assay component TOX21_ESRE_BLA_ratio were extracted from the CompTox 217 

Chemistry Dashboard for Lead(II) acetate trihydrate, Cadmium acetate dihydrate, and 218 

Mercury(II) acetate.53 The concentration of the half-maximal activity (AC50), a common 219 

potency measure applied in pharmacological research and toxicity testing54 was 220 

identified for each heavy metal: Lead(II) acetate trihydrate AC50 = 0.0586 μM, 221 

Cadmium acetate dihydrate AC50 = 0.0545 μM, and Mercury(II) acetate AC50 = 2.29 222 

μM. The maximal response or efficacy of the three heavy metals are in the same order 223 

of magnitude, with that of Cd and Hg within two-fold of Pb, which is used as the 224 

reference metal to calculate the TEQ values of the other two.55,56 Using AC50, the 225 

adjusted metal weights were 4.831e-2 for Pb, 9.565e-3 for Cd, and 1.276e-4 for Hg. 226 

The final mixed metal score was calculated using the sum of weighted blood metal 227 
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concentrations as follows: Mix Metal Score = [(1*Pb Blood Metal Concentration, 228 

μg/dL*10 / 207 g/mol) + (1.0752*Cd Blood Metal Concentration, μg/L / 112.41 g/mol) + 229 

(0.0256*Hg Blood Metal Concentration, μg/L / 200.59 g/mol)] *100. The simplified 230 

formula is [(4.831e-2*Pb Blood Metal Concentration) + (9.565e-3*Cd Blood Metal 231 

Concentration) + (1.276e-4*Hg Blood Metal Concentration)] *100. Following TEQ 232 

approach, we refer to this as our metal mixture value of exposure throughout the paper. 233 

 234 

Women’s infertility history 235 

The prevalence of infertility among women aged 20-49 was assessed using the 236 

question “Have you ever attempted to become pregnant over a period of at least a year 237 

without becoming pregnant?”.1 Women who responded “Yes” were considered ever-238 

infertile. Fertile women were defined in two distinct ways: (1) fertile women or the main-239 

group were women who answered “No” to the question of "Have you ever attempted to 240 

become pregnant over a period of at least a year without becoming pregnant?", and (2) 241 

pregnant women or the sub-group who answered “Yes” to the question “Are you 242 

pregnant now?”. Infertility defined using this method represents a women’s history of 243 

infertility and may not reflect their current fertility status; hence we also analyzed 244 

women’s recent long-term amenorrhea in this study. 245 

 246 

Women’s recent long-term amenorrhea 247 

Women with long-term amenorrhea were defined by those who answered “no” to the 248 

question “Have you had at least one menstrual period in the past 12 months? (Please 249 

do not include bleedings caused by medical conditions, hormone therapy, or 250 
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surgeries.)” and answered “Other” or “Don’t know” to the question “What is the reason 251 

that you have not had a period in the past 12 months?”. Menstruating women were 252 

defined by women who answered “Yes” to the same question. Participants who 253 

answered “Pregnancy”, “Breast feeding”, and “Menopause/Change of life” to the 254 

question “What is the reason that you have not had a period in the past 12 months?” 255 

were excluded from this study. The outcome variable long-term amenorrhea defined 256 

here reflects the women’s current or recent menstrual cycle status in the past 12 257 

months. Although menopause is defined as amenorrhea for 12 consecutive months,57 258 

these women did not self-report having menopause; thus, our outcome of long-term 259 

amenorrhea may reflect their most recent (last 12 months) or current fertility status.  260 

 261 

Other Covariates 262 

Age was included as a covariate because age is an important factor determining a 263 

woman’s menstrual cycle, menopause, and fertility. Demographic variables including 264 

race/ethnicity, education, family poverty income ratios were all included as covariates. 265 

Because this study assessed women’s reproductive capacity, which closely ties to 266 

sexual relationships, we included marital status as a covariate. We also included health 267 

insurance coverage as a covariate because health care access can impact participants’ 268 

reproductive health and fertility management.58 Smoking status and BMI were included 269 

because they have been shown to impact women’s reproductive health.59,60 BMI was 270 

defined by the CDC as underweight (<18.5), healthy weight (18.5 to <25), overweight 271 

(25 to <30), and obesity (30 or higher).61 Hormonal contraception use was included 272 

because women are often prescribed hormones to regulate menstruation or prevent 273 

All rights reserved. No reuse allowed without permission. 
(which was not certified by peer review) is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity. 

The copyright holder for this preprintthis version posted November 3, 2022. ; https://doi.org/10.1101/2022.10.31.22281773doi: medRxiv preprint 

https://doi.org/10.1101/2022.10.31.22281773


 13

menstruation and unintended pregnancy. Hormonal contraception use included women 274 

who have ever taken birth control pills or used female hormones. Additionally, when 275 

assessing infertility as an outcome, two additional covariates were included: regular 276 

menstruation and if women had seen a doctor because they were unable to be 277 

pregnant. Menstruation directly impacts women’s fertility and women who see a doctor 278 

sooner for their fertility might be more likely to become pregnant in a year through 279 

assisted reproductive technology (ART) such as in vitro fertilization (IVF) and 280 

intrauterine insemination (IUI). We adjusted for the long-term amenorrhea when 281 

assessing for infertility because regular menstruation impacts infertility as well as blood 282 

metal concentrations. For example, the intestinal absorption of Cd, Pb, and Hg 283 

increases when the body iron stores are depleted62 and menstruating women are more 284 

likely to have low iron stores.63 285 

 286 

Statistical Analysis 287 

For NHANES datasets, the use of sampling weights and sample design variables is 288 

recommended for all analyses because the sample design is both a clustered design 289 

and incorporates differential probabilities of selection. Statistical Analysis Software v9.4 290 

(SAS Institute, Cary, NC) was used to perform all statistical analyses, incorporating 291 

sampling weights and non-responses while adjusting for cluster (PSUs) and strata of 292 

the complex sample design in NHANES.64,65 Weighting was calculated using NHANES 293 

sub-sample weights and were calculated according to NHANES protocols and 294 

documentation.66  295 

 296 
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Descriptive statistics were calculated for both outcomes and exposures: Cd, Pb, Hg, 297 

and the mixture (Mix). Statistical differences in the covariates between the outcome 298 

groups were evaluated using a chi-squared test for categorical variables and a t-test for 299 

continuous variables. Because blood concentrations of Pb, Cd, and Hg had skewed 300 

distributions based on normality tests, log transformed metal values were used. In 301 

addition to assessing the blood concentrations continuously, we also categorized the 302 

data into quartiles using the lowest quartile as the reference group. Multiple logistic 303 

regression analysis was used to evaluate the independent association between blood 304 

metal concentrations and metal mixture values and infertility after adjusting for above-305 

mentioned covariates. The same approach was used to evaluate associations between 306 

blood metal concentrations and metal mixture values and long-term amenorrhea. Crude 307 

odds ratios (OR) and adjusted ORs and their corresponding 95% confidence intervals 308 

(CI) were presented. We used three models to examine associations between women’s 309 

blood heavy metal concentrations and historical infertility (Table 3). In model 1, crude 310 

odds ratios (OR) were calculated without adjusting for any covariates. In model 2, an 311 

adjusted model was applied by including all covariates except for the other two metals 312 

not being assessed. In model 3, a fully adjusted model was run, which included all 313 

covariates including the other two metals. 314 

 315 

Several sensitivity analyses were conducted to examine the robustness of our findings. 316 

First, we determined that there was a difference in infertility status among the 80 317 

additional women included in the infertility group (n=1,999) compared to the long-term 318 

amenorrhea group (n=1,919). This helped us determine that there was sufficient reason 319 

All rights reserved. No reuse allowed without permission. 
(which was not certified by peer review) is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity. 

The copyright holder for this preprintthis version posted November 3, 2022. ; https://doi.org/10.1101/2022.10.31.22281773doi: medRxiv preprint 

https://doi.org/10.1101/2022.10.31.22281773


 15

to keep both outcomes (infertility and long-term amenorrhea) as separate population 320 

groups rather than taking the smaller sample size for analysis. Second, using a chai 321 

squared test, we examined the difference in infertility status among women who may 322 

have seen a doctor and received assistance to become pregnant versus those who did 323 

not. The question of “seen a doctor because unable to become pregnant?” helped us 324 

define if an individual received medical assistance to help with her fertility or not. The 325 

purpose of this was to have additional descriptive information regarding the study 326 

population. Third, we examined the relation between long-term amenorrhea and 327 

infertility history using a chi-squared test. 328 

 329 

Results 330 

Exposure to heavy metals and women’s infertility 331 

Study population  332 

As shown in Table 1, a total of 238 or 12.8% of women were considered ever-infertile. 333 

These ever-infertile women were compared to two control groups: the main group of 334 

1,761 women who self-reported being fertile and the sub-group of 59 pregnant women. 335 

Compared to fertile women, women who have been ever-infertile were more likely to be 336 

older, married, obese, smokers, and had seen a doctor because they were unable to 337 

become pregnant (all p-values < 0.05). The race/ethnicity, educational level, poverty 338 

income ratio, hormone-based contraception use, and having a period in the last 12 339 

months were similar between ever-infertile and fertile women. Compared to pregnant 340 

women, ever-infertile women were more likely to be older, covered by health insurance, 341 

and had seen a doctor because they were unable to become pregnant (all p-values < 342 
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0.05). The distributions of race/ethnicity, education level, marital status, poverty income 343 

ratio, BMI, smoking, use of hormonal contraception, and having a period in the last 12 344 

months were similar between ever-infertile and pregnant women. 345 

 346 

The question “seen a DR b/c unable to become pregnant?” enabled us to define if a 347 

woman received medical assistance to achieve pregnancy. In the main group, 166 348 

(8.3%) women reported seeing a doctor of which 136 (6.8%) were ever-infertile 349 

compared to 30 (1.5%) who self-reported to be fertile. In the sub-group, 137 (46.1%) 350 

women reported seeing a doctor of which 136 (45.8%) were ever-infertile compared to 351 

only one woman (0.3%) who was pregnant.  Women who had seen a doctor were 352 

substantially more likely to be ever-infertile in both the main group and sub-group 353 

women (p-value <.001). 354 

 355 

Bivariate results and metal exposures 356 

The median and log transformed means of blood heavy metal concentrations in women 357 

with various fertility status are summarized in Table 2 and illustrated in Figures 3 and 4. 358 

With respect to the main group analysis, there was no significant difference for the 359 

blood concentrations of all three single heavy metals and mixtures between ever-360 

infertile and self-reported fertile women (Figure 3). In the sub-group analysis, women 361 

who have been ever-infertile had significantly higher concentrations of blood Pb and 362 

heavy metal mixture than pregnant women (Table 2 and Figure 4). The blood 363 

concentrations of Cd and Hg, however, were comparable in the main and sub-groups 364 

(Table 2 and Figure 3 and 4). 365 
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 366 

Multiple logistic regression analysis results 367 

Multiple logistic regression analysis showed that after full adjustment including 368 

demographic characteristics, lifestyle factors, and two metals not being assessed 369 

(model 3), there was a positive association between blood Pb concentrations and 370 

women’s ever-infertility. The continuous log transformed data of both the main-group 371 

and sub-group analyses showed that as blood Pb concentrations increased, women 372 

were more likely to be ever-infertile (OR: 1.75, 95% CI: 1.01-3.02; and OR: 3.09, 95% 373 

CI: 1.22-7.85, respectively, Table 3). The results of model 1 with crude OR and model 2 374 

with adjustments of all covariates but not two metals not being assessed showed similar 375 

results, except that the crude OR of the main group analysis is insignificant (Table 3). 376 

 377 

Multiple logistic regression results for the categorical data in model 3 revealed that there 378 

was no association between Pb and infertility for all quartiles of 2, 3 and 4 compared 379 

with the lowest quartile 1 in the main group analysis (ever-infertile vs. fertile). However, 380 

for the sub-group analysis (ever-infertile vs. pregnant), the blood concentrations of Pb in 381 

quartiles 3 and 4 were significantly associated with women’s historical infertility (OR: 382 

3.47, 95% CI: 1.11-10.83; and OR: 5.26, 95% CI: 1.18-23.54, respectively), and the OR 383 

from quartiles 2 to 4 exhibited a dose-dependent relationship (Table 3). The results of 384 

model 1 with crude OR and model 2 with adjustments of all covariates but not two 385 

metals not being assessed showed similar results (Table 3). 386 

 387 
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With respect to Cd and Hg summarized in Table 3, the results of both continuous and 388 

categorical multiple logistic regression analyses in all three models revealed no 389 

significant associations except that the increase of blood concentrations of Hg in the 390 

quartile 3 was significantly associated with women’s infertility in model 2 of the sub-391 

group analysis (OR: 2.53, 95% CI: 0.64-11.78). Regarding the heavy metal mixture, 392 

model 3 showed no significant associations between the metal mixture and women’s 393 

infertility in both the main and sub-group analyses. Contrarily, sub-group analysis in 394 

models 1 and 2 revealed that metal mixtures are positively associated with women’s 395 

ever-infertility; since models 1 and 2 did not adjust for the single metals, this is likely due 396 

to the positive association found between Pb and infertility. Collectively, these results 397 

indicate that after full adjustment, exposure to Pb increases the odds of women’s 398 

historical infertility; further, no associations were found between Cd, Hg, and the mixture 399 

of all three metals and women’s historical infertility. 400 

 401 

Women’s historical infertility is not associated with their recent long-term amenorrhea 402 

We next examined associations between women’s historical infertility and recent long-403 

term amenorrhea. A total of 1,918 women had complete data of both infertility and long-404 

term amenorrhea (Table 4). There was no statistical correlation between women’s long-405 

term amenorrhea and historical infertility (p-value = 0.29), although the percentage of 406 

long-term amenorrhea in women who were ever-infertile (3.9%) was slightly lower than 407 

that in fertile women (5.6%) and the percentage of historical infertility in women with 408 

long-term amenorrhea (8.7%) was lower than that in menstruating women (12.2%). This 409 

negative association suggests that women’s historical infertility does not reflect their 410 
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recent reproductive status. The NHANES survey asked “Have you had at least one 411 

menstrual period in the past 12 months?” Because the absence of a period or 412 

amenorrhea for 12 consecutive months has been suggested as an important indicator of 413 

menopause,57 the long-term amenorrhea may reflect women’s most recent reproductive 414 

and fertility status. Thus, as a secondary outcome, we chose to investigate associations 415 

between heavy metal exposure and women’s recent long-term amenorrhea. 416 

 417 

Exposure to heavy metals and women’s long-term amenorrhea 418 

Study population  419 

As shown in Figure 2, a total of 1,919 participants were included to assess long-term 420 

amenorrhea after further deleting participants with missing data on long-term 421 

amenorrhea (n=361), demographic variables (n=190), BMI (n=12), and information on 422 

the use of birth control pill and female hormone use (n=4). The characteristics of these 423 

women are summarized in Table 5. Compared with menstruating women, women with 424 

long-term amenorrhea were more likely to be Non-Hispanic White and Non-Hispanic 425 

Black (p-value < 0.05) compared to other ethnicities. However, the distributions of age, 426 

educational level, marital status, health insurance coverage, poverty income ratio, BMI, 427 

smoking history, and hormone-based contraception use were largely similar between 428 

menstruating women and women with long-term amenorrhea (all p-values > 0.05). 429 

 430 

Bivariate results and heavy metal exposures  431 

The median and log transformed means of blood heavy metal concentrations are shown 432 

in Table 6 and illustrated in Figure 5. Compared with menstruating women, women with 433 

All rights reserved. No reuse allowed without permission. 
(which was not certified by peer review) is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity. 

The copyright holder for this preprintthis version posted November 3, 2022. ; https://doi.org/10.1101/2022.10.31.22281773doi: medRxiv preprint 

https://doi.org/10.1101/2022.10.31.22281773


 20

long-term amenorrhea had comparable blood concentrations of Pb, Cd, and heavy 434 

metal mixtures but had significantly higher median blood concentrations of Hg (Figure 435 

5). 436 

 437 

Multiple logistic regression model results 438 

Table 7 summarizes associations between blood heavy metal concentrations and 439 

women’s long-term amenorrhea assessed by three models as we described in the 440 

fertility analysis. Multiple logistic regression analysis from continuous and categorical 441 

data showed no significant associations between blood concentrations of Pb or Hg and 442 

women’s long-term amenorrhea in all three models. In the categorical multiple logistic 443 

regression analysis, after the full adjustment in model 3, there was a negative 444 

association between the blood Cd concentrations in quartiles 2 and 3 and women’s 445 

long-term amenorrhea (quartile 2 OR: 0.47, 95% CI: 0.25-0.87; quartile 3 OR: 0.31, 446 

95% CI: 0.13-0.76). Similar to model 3, the results of model 1 and 2 also showed an 447 

inverse association between the blood concentrations of Cd in quartiles 2 and 3 and 448 

long-term amenorrhea. The ORs, although still less than 1, were higher for quartile 4 449 

than those for quartiles 2 and 3 in all three models but were not statically significant 450 

(Table 7). For the mixture of all three heavy metals, all three models showed 451 

insignificant associations between blood metal mixture concentrations and long-term 452 

amenorrhea.  453 

 454 

Discussion 455 
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About 10-15% of women of reproductive age experience infertility.67,68 Accumulating 456 

evidence reveals the endocrine disrupting effects of heavy metals, suggesting their 457 

possible contributions to women’s impaired fertility and other reproductive disorders. 458 

Here, we performed a cross-sectional analysis of NHANES 2013-2018 to investigate 459 

associations between exposure to single Cd, Pb, Hg and mixtures and women’s 460 

infertility and long-term amenorrhea. Our results show that (1) the blood concentrations 461 

of Pb and heavy metal mixtures were significantly higher in ever-infertile women than 462 

pregnant women, but the concentrations of Cd and Hg were comparable; (2) exposure 463 

to Pb is positively associated with women’s historical infertility; and (3) the increase of 464 

blood concentrations of Cd is inversely related to women’s recent long-term 465 

amenorrhea.   466 

 467 

Comparisons of blood heavy metal levels between this study and guidelines from 468 

federal or other organizations. 469 

So far, there are no recognized biological functions of Pb, Cd, and Hg for human health. 470 

The typical blood levels of Pb in adults is less than 1 µg/dL, and 5 µg/dL is designated 471 

as the elevated blood lead level in adults by the US CDC.69 This is also the level for 472 

required medical removal in the workplace if occupational exposures exist for women 473 

who are pregnant or are trying to be pregnant due possible reproductive and 474 

developmental adversities.70 In our study, 81.5% of women had blood Pb levels < 1 475 

µg/dL, 17.9% had levels at 1-5 µg/dL, and 11 women (0.55%) had levels > 5 µg/dL. The 476 

blood levels of Cd are usually < 5 µg/L, with most in the range of 0.5-2 µg/L; Blood Cd 477 

levels of 50 µg/L or more have been shown to cause acute toxicities.71,72 The women’s 478 
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blood concentrations of Cd in our study ranged from 0.07 - 5.14 µg/L, with only one 479 

woman having blood Cd levels > 5 µg/L and 97.2% had levels < 2 µg/L. The blood 480 

concentrations of Hg are usually < 10 µg/L. Significant exposure is defined when the 481 

concentration is > 50 µg/L if exposure is due to alkyl Hg, or > 200 µg/L if exposure is 482 

due to Hg(2+).73 In our study, women’s blood Hg concentrations ranged from 0.2 - 26.87 483 

µg/L, with 99.1% of them having Hg levels <10 µg/L and 18 women (0.9%) having blood 484 

Hg levels >10 µg/L. Altogether, the percentages of women that exceeded typical or 485 

normal levels of blood heavy metals were 18.5% for Pb, 0.05% for Cd, and 0.9% for Hg. 486 

Observed elevated blood heavy metal levels, particularly for Pb, pose a threat to 487 

women’s reproductive health and fertility, highlighting an urgent unmet need to prevent 488 

and reduce heavy metal exposure.  489 

 490 

Impacts of heavy metal exposure and women’s fertility and menstrual cycle 491 

The impacts of heavy metal exposure on women’s fertility and menstrual outcomes 492 

remain elusive. Consistent to our data, a cross-sectional study in Taiwan from Lei et al. 493 

and another cross-sectional analysis by Lee et al. using NHANES 2013-2016 found that 494 

the blood concentrations of Pb in ever-infertile women were significantly higher than 495 

pregnant woman and this association was dose-dependent.26,27 Similar to Lee et al., we 496 

also found a positive association between the log transformed Pb concentrations and 497 

women’s infertility, but we found a negative association between Cd and long-term 498 

amenorrhea  after quarterization. We also discovered similar results to another 499 

NHANES 2013-2016 analysis that found no associations between Hg and infertility.74  500 

 501 
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The absorption, distribution, metabolism, and excretion (ADME) of metals, particularly 502 

Cd, depend on nutritional status. The intestinal absorption of Cd increases when the 503 

body iron stores are depleted.62 In addition, women typically have higher levels of Cd 504 

than men because women are more susceptible to having low iron stores due to the 505 

monthly menstruation.63,75 It has also been found that people with vegan/vegetarian 506 

diets often have low iron, while concurrently these people on vegan/vegetarian diets 507 

tend to have higher blood levels of Cd.76 These results suggest that although we did not 508 

anticipate Cd being protective against women’s long-term amenorrhea, it is possible 509 

that women who have normal menstruation and thus the metal transporters in the GI 510 

track are more upregulated than amenorrhea women tend to have higher blood levels of 511 

Cd, resulting in a negative association in our analysis. Therefore, future research is 512 

necessary to consider associations between Cd levels, dietary patterns, iron levels, and 513 

amenorrhea.   514 

 515 

So far, evidence regarding the effects of heavy metal exposure on women’s 516 

reproduction is limited and inconsistent; however, the rationale behind our observed 517 

associations can be explained by previous in vitro and in vivo studies.23,77-81  With 518 

respect to Pb, results from experimental research suggest that Pb may impact female 519 

fertility through various mechanisms, including disrupting menstrual cycle, altering 520 

hormone levels, and impairing fetal development.82,83 It was also found in mice that Pb 521 

accumulates in the ovary and disrupts folliculogenesis, decreases ovarian reserve, and 522 

increases follicle atresia,79,81,84,85 suggesting that all these Pb-induced reproductive 523 
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toxicities may contribute to women’s historical infertility observed in our NHANES 524 

analysis.  525 

 526 

Animal studies found that Cd may adversely impact female reproduction.85 For example, 527 

Cd has been shown to decrease the number of growing follicles,85-87 induce follicle 528 

atresia,85,88 alter follicular cell structure,85,89,90 decrease ovarian reserve,85,91,92 reduce 529 

FSH and LH levels,85,93 and increase ovarian cycle length.80,85 Additionally, Cd has also 530 

been found to affect follicle maturation, induce luteoolysis,85,94 and thicken 531 

endometrium.23,85 All these results suggest that exposure to Cd may impair women’s 532 

fertility. However, results obtained from epidemiological studies have been conflicting. 533 

Several cohort studies investigating associations between exposure to Cd and women’s 534 

fertility had conflicting results including no associations95 or even reduced fecundity.96 In 535 

contrast, Cd has also been found to disrupt reproductive hormone secretion.78,97 A study 536 

from Lee et al. discovered an inverse relationship between blood concentrations of Cd 537 

and Anti-Mullerian hormone (AMH) – a peptide hormone secreted from growing follicles 538 

and is commonly used as a biomarker of ovarian reserve, suggesting that exposure to 539 

Cd may increase women’s infertility risk by diminishing ovarian reserve.98 Collectively, 540 

as we study the role of nutrition status on the toxicokinetics of Cd, it is essential to 541 

integrate both experimental and epidemiological evidence and include all possible 542 

confounding factors to determine the effects of Cd on women’s reproductive health and 543 

fertility.  544 

 545 
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Experimental evidence reveals that Hg accumulates in the ovaries and impacts female 546 

reproduction77,85,99 by interfering with the secretion patterns of gonadotropins of LH and 547 

FSH, altering ovarian cyclicity, and inducing follicular cell apoptosis and follicle 548 

atresia.85,100-102 Although some other studies reported that Hg is associated with female 549 

infertility, the evidence to support this is limited and inconclusive.77,85,103,104 Thus, 550 

evidence is inadequate to draw meaningful conclusions about how Hg impacts female 551 

reproductive outcomes, underscoring the need for additional research. 552 

 553 

Heavy metal mixtures on women’s fertility in epidemiological and experimental studies 554 

Previous studies have examined heavy metals and individual reproductive outcomes 555 

without examining the complexities of reproductive cycles and the interactions of these 556 

exposures. Both epidemiological and experimental literature is lacking for assessing the 557 

mixture of heavy metals on women’s reproductive outcomes. Previous studies 558 

assessing other health outcomes have used the simple concentration additive method 559 

or other statistical methods105 for combining metals.39,40 Here, we integrated multiple 560 

heavy metal concentrations by considering each individual metal’s toxicity related to the 561 

ER stress, a key mediator of the adverse outcome pathway in female reproduction.49,106 562 

EPA’s framework for metal risk assessment outlines that some metals act additively 563 

while others are antagonistic or synergistic when they are present together.107 These 564 

interactions occur during absorption, excretion, or sequestration.107 However, the exact 565 

fate and joint effects of Pb, Cd, and Hg together in women has yet to be determined; 566 

additionally, metal mixtures in women can be dependent on other factors that are 567 

different across individuals, making it hard to quantify. 568 
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 569 

The link between women’s infertility and long-term amenorrhea  570 

The menstrual cycle, or periodic vaginal bleeding due to the shedding of uterine 571 

endometrium, is regulated by the cyclic changes of reproductive hormones, including 572 

both gonadotropins from the pituitary and sex hormones from the ovaries.108 573 

Pathological amenorrhea that are not caused by pregnancy, lactation, or menopause 574 

occurs in 3 – 4% of women in the US.109,110 In our study, we found no association 575 

between women’s ever-infertility and their recent long-term amenorrhea, suggesting that 576 

women’s recent menstrual cycle status does not reflect their fertility history. It is also 577 

likely that amenorrhea is only one of many complex contributing factors towards 578 

women’s fertility success. For example, although up to 25% of infertile women have 579 

disturbed menstrual cycle such as amenorrhea,1,111 infertility can also be attributed to 580 

sperm defects from the male partner and other unexplained reasons.4 The underlying 581 

mechanism of women’s amenorrhea remains poorly understood and has been 582 

attributed to both genetic and environmental factors.112,113 In addition to causing 583 

infertility, amenorrhea can have additional health consequences. For example, continual 584 

anovulation for two to three years increases the risk of developing endometrial 585 

cancer,114 suggesting that long-term amenorrhea is a risk factor of other female 586 

reproductive disorders. 587 

 588 

Advantages and limitations 589 

This study overcomes several limitations in previous papers using NHANES database 590 

to investigate associations between heavy metals and women’s infertility.27,74 First, both 591 
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of these studies only included participants from two NHANES cycles (2013-2014 and 592 

2015-2016), whereas we further added the cycle of 2017-2018. Second, the study from 593 

Lee et al. only included infertile women up to age 39 and compared them to pregnant 594 

women, which resulted in a smaller sample size of n=124.27 Here, in addition to women 595 

of 20-39 years, we also included women of 40-49 years, because these women may 596 

have experienced infertility before and are also within reproductive age; moreover, we 597 

defined the fertile women in two ways, including self-reported fertile women and 598 

pregnant women. Third, our study accounts for additional covariates related to 599 

reproduction that are essential for understanding infertility, such as hormonal 600 

contraception use, menstruation patterns, and possible help from a doctor for fertility 601 

issues; further, our study also examined the difference in infertility status among women 602 

who may have seen a doctor and gotten assistance to become pregnant vs. those who 603 

did not. Fourth, we chose to define fertile women in two sub-groups due to some 604 

limitations in the NHANES survey questions. The main-group or women who self-605 

reported to be fertile or ever-infertile could include women who have never ‘tried’ to 606 

become pregnant. Therefore, it is possible to include several misclassifications. Thus, 607 

we additionally looked at a sub-group of current pregnant women. There were ten 608 

women who were pregnant but also answered “yes” to the question of "Have you ever 609 

attempted to become pregnant over a period of at least a year without becoming 610 

pregnant?" We chose to include these ten women in the ever-infertile group because 611 

they reported having had issues with their fertility in the past. Indeed, five of those ten 612 

women responded that they had previously seen a doctor because they were unable to 613 

become pregnant, indicating that these women likely have received ART such as IVF to 614 
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become pregnant. Lastly, this study takes a unique approach to assessing the 615 

reproductive toxicity of the mixture of heavy metals using weighted TEQ values.  616 

 617 

Our study has several limitations due to NAHNES study design, the complexities of 618 

assessing female reproduction and reproductive toxicities of heavy metals. First, there 619 

are limitations due to NHANES study design. NHANES is a cross-sectional study, 620 

therefore casual and temporal relationships cannot be confirmed. Cross-sectional data 621 

are also prone to survival bias. Although women aged 15-19 are still considered of 622 

reproductive age, we did not include them because the study design did not collect 623 

exposure or outcome information in this age group. Additionally, NHANES did not 624 

collect information on some reproductive diseases that also play a role in infertility, such 625 

as endometriosis and PCOS. For example, about 30 to 50% of women with 626 

endometriosis are infertile and PCOS is a leading cause of infertility.115,116 Moreover, the 627 

NHANES questionnaire only collected historical use of birth control and female 628 

hormones. Second, the reproductive health outcomes are measured using a self-629 

reported questionnaire. Although self-reported information is useful, various definitions 630 

may affect the prevalence of a measured outcome. With the information collected, we 631 

did our best to define the outcomes (ever-infertile, fertile, pregnant, long-term 632 

amenorrhea, menstruating). However, there are limitations for the definitions we used. 633 

For example, amenorrhea is defined as the absence of menstruation for at least a 90-634 

day period.117 However, NHANES only collects information on absence of menstruation 635 

for the past 12 months.57 Although menopause can also be defined by one year of no 636 

menses, we chose to name our variable long-term amenorrhea because these women 637 
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self-reported not having menopause. Thus, women categorized with long-term 638 

amenorrhea may have suspected early menopause or POF. Third, male factors account 639 

for approximately 40-50% of all cases of infertility.118 The NHANES questionnaire only 640 

addressed females. Therefore, male infertility factors were not considered. However, 641 

the relationship between male reproduction and heavy metals has been well studied, 642 

while female reproductive function is lacking.  643 

 644 

Understanding what blood metal concentrations represent is also worth discussing. A 645 

single measurement of blood metal concentration may not reflect long-term exposure 646 

though some studies suggested that under steady state conditions a single 647 

measurement of blood metal level seems to be acceptable as it can reflect body metal 648 

burden of long-term exposure.119 Our study assumes women’s blood metal 649 

concentrations during the time of the examination were the same as when they 650 

experienced infertility or long-term amenorrhea. However, by study design, there is no 651 

way of knowing temporality. Although the biological half-lives for heavy metals in the 652 

human body are long, the half-lives in blood specifically can be shorter and vary (Hg = 653 

50 days,120 Cd = 3-4 months for the fast component and 7-16 years for the slow 654 

component,121-123 Pb = 1-2 months124). Blood metal concentrations are used to 655 

represent both recent and chronic exposures.125,126 However, it is important to note that 656 

the acute exposures can modify blood metal concentrations. For example, eating fish 657 

right before the examination could markedly elevate blood Hg concentrations, however, 658 

someone who has been chronically exposed to Hg, maintains high concentrations in 659 

their blood even after exposure has ended.127,128 This same concept could be applied to 660 
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Cd blood concentrations with a participant who smoked before the examination. Our 661 

study assumes that the individual’s behavior prior to the examination is consistent to 662 

their daily behaviors. Additionally, those with chronic past exposure are often 663 

underestimated when assessing blood levels because metals like Pb can be stored in 664 

the bone. Therefore, individuals can have a high body burden of Pb but still appear to 665 

have normal Pb concentrations in the blood.129 Lastly, we used the ER stress, an 666 

important contributing factors of female reproductive dysfunctions, to calculate the 667 

mixture score of heavy metals because the Tox21 program has the screening results of 668 

all three metals available. However, it is possible that heavy metals may compromise 669 

female reproduction through other mechanisms such as DNA damage, oxidative stress, 670 

and epigenetic modification. Thus, an optimized calculation method of heavy meatal 671 

mixtures is highly desired. 672 

 673 

Conclusion 674 

In summary, the results of our studies using NHANES 2013-2018 reveal that there are 675 

significant percentages of women having blood heavy metal levels exceeding typical or 676 

normal levels. Moreover, the blood concentrations of single Pb and heavy metal 677 

mixtures are associated with an increase of women’s historical infertility. This study 678 

highlights the threat of heavy metal exposure on women’s reproductive health and 679 

fertility as well as an urgent unmet need to prevent and reduce heavy metal exposure. 680 
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Figure 1: Schematic diagram depicting the process of inclusion of women from NHANES 2013–2018 for investigating 

associations between blood heavy metal concentrations and women’s fertility. 
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Figure 2: Schematic diagram depicting the process of inclusion of women from NHANES 2013–2018 for investigating 

associations between blood heavy metal concentrations and women’s long-term amenorrhea. 
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Figure 3: The original and log-transformed blood heavy metal concentrations and heavy metal mixture scores in women

for the main-group (ever-infertile and fertile) comparison. Each box plot includes the lower (25%) and upper (75%)

quartile, median (string), and mean (diamond dot). These results are un-weighted.  
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Figure 4: The blood heavy metal distributions among the sub-group (pregnant and ever-infertile) samples. These results 

are un-weighted. The original and log-transformed blood heavy metal concentrations and heavy metal mixture scores in 

women for the sub-group (pregnant and fertile) comparison. Each box plot includes the lower (25%) and upper (75%) 

quartile, median (string), and mean (diamond dot). These results are un-weighted. ***p<0.001. 
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Figure 5: The original and log-transformed blood heavy metal concentrations and heavy metal mixture scores in women 

with normal menstruation and long-term amenorrhea. Each box plot includes the lower (25%) and upper (75%) quartile, 

median (string), and mean (diamond dot). These results are un-weighted. 
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Table 1: Women’s characteristics for studying associations between blood heavy metal concentrations and historical 

infertility 

Characteristics Main group sample (ever-infertile vs fertile) Sub-group sample (ever-infertile vs pregnant) 

 Total 
Sample  
N (%) 

Ever-
infertile1 

N (%) 

Fertile2 

N (%) 
p-
Value4 

Total 
Sample  
N (%) 

Ever-
infertile1 

N (%) 

Pregnant3 
N (%) 

p-
Value4 

Total Subjects 1999 238 (12.8) 1761 (87.2)  297 238 (81.6) 59 (18.4)  

Age, mean ± SE (years) 34 ± 0.23 37 ± 0.79 33 ± 0.22 <.001 35 ± 0.71 37 ± 0.70 27 ± 0.58 <.001 

Race/Ethnicity    0.85    0.26 

Hispanic 518 (18.2) 62 (17.9) 456 (18.2)  78 (18.5) 62 (17.9) 16 (21.4)  

Non-Hispanic White 697 (58.4) 90 (60.5) 607 (58.1)  108 (57.8) 90 (60.5) 18 (45.8)  

Non-Hispanic Black 426 (13.2) 47 (13.0) 379 (13.2)  61 (14.4) 47 (13.0) 14 (20.4)  

Other Race Including 

Multi-Racial 

358 (10.2) 39 (8.6) 319 (10.5)  50 (9.3) 39 (8.6) 11 (12.4)  

Education Level    0.53    0.73 

Less than High School 297 (10.8) 36 (11.7) 261 (10.7)  46 (15.5) 36 (11.7) 10 (14.1)  

High School 397 (19.6) 50 (22.1) 347 (19.2)  62 (20.9) 50 (22.1) 12 (17.1)  

More than High School 1305 (69.6) 152 (66.3) 1153 (70.1)  189 (63.6) 152 (66.3) 37 (68.8)  

Marital Status    <.001    0.59 

Married / Living with 

Partner 

1173 (61.3) 175 (78.1) 998 (58.9)  223 (78.6) 175 (78.1) 48 (80.6)  

Divorced / Widowed / 

Separated 

243 (10.3) 29 (8.8) 214 (10.5)  31 (8.0) 29 (8.8) 2 (4.2)  

Never Married 583 (28.4) 34 (13.0) 549 (30.6)  43 (13.4) 34 (13.0) 9 (15.2)  

Poverty Income Ratio, mean ± SE 2.770 ± 0.07 2.95 ± 0.14 2.75 ± 0.070 0.15 2.90 ± 0.14 2.95 ± 0.14 2.72 ± 0.23 0.52  

Covered by Health Insurance    0.33    0.03 
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Yes 1601 (83.0) 187 (80.7) 1414 (83.3)  239 (82.6) 187 (80.7) 52 (91.0)  

No 398 (17.0) 51 (19.3) 347 (16.7)  58 (17.4) 51 (19.3) 7 (9.0)  

Body Mass Index (kg/m**2)    0.007    0.16 

Underweight (<18.5) 39 (2.0) 4 (1.2) 35 (2.1)  5 (1.2) 4 (1.2) 1 (1.4)  

Normal Weight (18.5-

24.9) 

615 (32.1) 64 (27.8) 551 (32.7)  78 (26.2) 64 (27.8) 14 (19.2)  

Overweight (25.0-29.9) 471 (24.9) 38 (18.5) 433 (25.9)  53 (21.1) 38 (18.5) 15 (32.4)  

Obesity (>30) 874 (50.0) 132 (52.5) 742 (39.3)  161 (51.5) 132 (52.5) 29 (47.0)  

Ever Smoked    0.028    0.50 

Yes 613 (33.0) 88 (40.5) 525 (31.9)  109 (39.3) 88 (40.5) 21 (34.1)  

No 1386 (67.0) 150 (59.5) 1236 (68.1)  188 (60.7) 150 (59.5) 38 (65.9)  

Ever taken hormone-based 

contraception? 

   0.85    0.15 

Yes 1389 (75.7) 170 (76.3) 1219 (75.6)  204 (74.3) 170 (76.3) 34 (65.1)  

No 610 (24.3) 68 (23.7) 542 (24.4)  93 (25.7) 68 (23.7) 25 (34.9)  

At least one period in past 12 

months 

   0.73    n/a 

Yes 1815 (89.8) 222 (89.0) 1593 (89.9)  281 (91.0) 222 (89.0) 59 (100)  

No 183 (10.2) 16 (11.0) 167 (10.1)  16 (9.0) 16 (11.0) 0 (0)  

Seen a DR b/c unable to become 

pregnant? 

   <.001    <.001 

Yes 166 (9.3) 136 (60.3) 30 (1.8)  137 (49.5) 136 (60.3) 1 (1.9)  

No 1833 (90.7) 102 (39.7) 1731 (98.2)  160 (50.5) 102 (39.7) 58 (98.1)  

Values for continuous variables are mean +/- SD.  
Values for categorical variables are n (unweighted sample counts) and % (weighted sample percentages to account for 
NHANES survey design). 
1 ‘Ever-infertile’ if subject responded ‘yes’ to the following question: “Have you ever attempted to become pregnant over a 
period of at least a year without becoming pregnant?”  
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2 ‘Fertile’ if answered “No” to the following question: "Have you ever attempted to become pregnant over a period of at 
least a year without becoming pregnant?" 
3 ‘Pregnant’ if women answered “Yes” to the question “Are you pregnant now?” 
4 p-Value for categorical variables comes from a chi-squared test, which determines if there is a significant difference 
between demographics in ever infertile vs. fertile or pregnant. p-values for continuous variables comes from a t-test to 
determine if there is a significant difference between the means of ever infertile vs. fertile or pregnant. 
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Table 2: Medians and log transformed means of blood heavy metal concentrations and heavy metal mixture scores in 

ever-infertile or fertile/pregnant women 

 Main group sample (ever-infertile vs fertile n=1999) Sub-group sample (ever-infertile vs pregnant n=297) 

Metal Total Sample Ever- 
infertile1 

Fertile2 p-Value4 Total Sample 
- 

Ever- 
infertile1 

Pregnant3 p-Value4 

Lead, median, IQR (ug 

/ dL) 

0.53 

(0.34 - 0.78) 

0.56  

(0.42 - 0.79) 

0.53  

(0.38 - 0.78) 

0.19 0.54  

(0.36 - 0.74) 

0.56  

(0.42 - 0.79) 

0.36  

(0.26 - 0.53) 

0.001  

 

Log Transformed 

Lead, Mean, SE 

 

-0.57 ± 0.02 -0.49 ± 0.04 -0.58 ± 0.03 0.11 -0.58 ± 0.05 -0.49 ± 0.04 -0.99 ± 0.06 <.001  

 

Cadmium, median, 

IQR (ug / L) 

0.25  

(0.16 - 0.44) 

0.26  

(0.15 - 0.47) 

0.25  

(0.60 - 0.44) 

0.68 0.25  

(0.14 - 0.44) 

0.26  

(0.15 - 0.47) 

0.19  

(0.11 - 0.35) 

0.21 

Log Transformed 

Cadmium, Mean, SE 

 

-1.25 ± 0.03 -1.24 ± 0.07 -1.25 ± 0.03 0.91 -1.30 ± 0.07 -1.24 ± 0.07 -1.54 ± 0.10 0.07 

Mercury, median, IQR 

(ug / L) 

0.61  

(0.33 - 1.26) 

0.60  

(0.37 - 1.15) 

0.61  

(0.32 - 1.27) 

0.72 

 

0.59  

(0.35 - 1.16) 

0.60  

(0.37 - 1.15) 

0.55  

(0.26 - 1.14) 

0.051 

Log Transformed 

Mercury, Mean, SE 

-0.37 ± 0.03 -0.36 ± 0.08 -0.37 ± 0.03 0.89 -0.40 ± 0.07 -0.36 ± 0.08 -0.58 ± 0.12 0.21 

Mixed Metal, median, 

IQR 

3.01  

(2.12 – 4.39) 

3.10  

(2.27 – 4.31) 

2.10  

(2.98 – 4.39) 

0.19 2.94  

(2.03 – 4.23) 

3.10  

(2.27 – 4.31) 

1.39  

(2.04 – 2.79) 

0.001 

Log Transformed Mix, 

Mean, SE 

1.14 ± 0.02 1.21 ± 0.04 1.13 ± 0.02 0.15 1.12 ± 0.04 1.21 ± 0.04 0.73 ± 0.06 <.001 

Blood metal distributions were skewed. Therefore, we presented the median and IQR (25th and 75th percentile) and the 
mean of the Log Transformed blood heavy metal levels. These results are weighted to account for NHANES survey 
design. 
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1 ‘Ever-infertile’ if subject responded ‘yes’ to the following question: “Have you ever attempted to become pregnant over a 
period of at least a year without becoming pregnant?”  

2 ‘Fertile’ if answered “No” to the following question: "Have you ever attempted to become pregnant over a period of at 
least a year without becoming pregnant?" 
3 ‘Pregnant’ if women answered “Yes” to the question “Are you pregnant now?” 
4 p-values represent a t-test to determine if there is a significant difference between the means of ever-infertile vs. fertile 
or pregnant. 
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Table 3: Associations between blood heavy metal concentrations and heavy metal mixture scores and women’s infertility 

  Main group sample (ever infertile2 vs fertile3 

n=1999) 

Sub-group sample (ever-infertile2 vs pregnant4 

n=297) 

Characteristics Total  
N (%)1 

Ever- 
infertile2 
n (%) or 
Mean (SD) 1 

Crude OR 
(95% CI) 
Model 1 

Adj OR 
(95% CI) 
Model 2 

Fully Adj 
OR (95% 
CI) 
Model 3 

Ever- 
infertile2 
n (%) or 
Mean (SD) 1 

Crude OR 
(95% CI) 
Model 1 

Adj OR 
(95% CI) 
Model 2 

Fully Adj 
OR (95% 
CI) 
Model 3 

LEAD 

Log Transformed, 

Mean (SD) 

-0.52 

(0.62) 

-0.48 (0.61) 1.28 (0.97 

- 1.68) 

1.69 

(1.01 - 

2.85)* 

1.75 (1.02 - 

3.02)* 

-0.48 (0.61) 5.02 (2.73 

- 9.23)* 

5.19 (2.14 - 

12.59)* 

3.09 (1.22 - 

7.85)* 

Lead quartiles, n 

(%) 

         

    Q1 (Ref) (�0.40) 488 

(24.41%) 

52 (2.6%) Ref Ref Ref 52 (17.51%) Ref Ref Ref 

    Q2 (0.41 – 0.56) 492 

(24.61%) 

56 (2.8%) 1.15 (0.70 

- 1.89) 

1.37 

(0.67 - 

2.80) 

1.38 (0.68 - 

2.79) 

56 (18.86%) 3.23 (1.18 

- 8.86)* 

2.88 (0.61 - 

13.55) 

2.52 (0.53 - 

12.09) 

    Q3 (0.57 – 0.86) 513 

(25.66%) 

70 (3.5%) 1.52 (1.00 

- 2.29)* 

1.60 

(0.82 - 

3.10) 

1.61 (0.83 - 

3.09) 

70 (23.57%) 5.32 (2.20 

- 12.88)* 

5.60 (1.67 - 

18.73)* 

3.47 (1.11 - 

10.83)* 

    Q4 (>0.86) 506 

(25.31) 

60 (3.0%) 1.30 (0.80 

- 2.11) 

1.71 

(0.76 - 

3.85) 

1.72 (0.75 - 

3.95) 

60 (20.2%) 6.71 (2.85 

- 15.81)* 

12.62 (2.48 

- 64.21)* 

5.26 (1.18 - 

23.54)* 

CADMIUM 
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Log Transformed, 

Mean (SD) 

-1.16 

(0.84) 

-1.13 (0.84) 1.01 (0.81 

- 1.26) 

1.01 

(0.68 - 

1.52) 

0.94 (0.63 - 

1.41) 

-1.13 (0.84) 1.51 (0.94 

- 2.43) 

2.29 (0.87 - 

6.04) 

1.90 (0.64 - 

5.63) 

Cadmium quartiles, 

n (%) 

         

    Q1 (Ref) (�0.18) 469 

(23.46%) 

52 (2.6%) Ref Ref Ref 52 (17.51%) Ref Ref Ref 

    Q2 (0.19 – 0.29) 509 

(25.46%) 

67 (3.35%) 1.08 (0.66 

- 1.77) 

0.65 

(0.34 - 

1.25) 

0.67 (0.35 - 

1.27) 

67 (22.56%) 2.06 (0.81 

- 5.27) 

0.82 (0.16 - 

4.05) 

0.58 (0.10 - 

3.41) 

    Q3 (0.30-0.51) 513 

(25.66%) 

53 (2.65%) 0.87 (0.57 

- 1.32) 

0.71 

(0.38 - 

1.33) 

0.70 (0.37 - 

1.31) 

53 (17.85%) 1.83 (0.76 

- 4.41) 

0.38 (0.05 - 

2.83) 

0.37 (0.04 - 

3.20) 

    Q4 (>0.51) 508 

(25.41%) 

66 (3.3%) 1.07 (0.64 

- 1.81) 

0.95 

(0.41 - 

2.18) 

0.83 (0.36 - 

1.94) 

66 (22.22%) 2.19 (0.80 

- 6.02) 

1.33 (0.09 - 

19.70) 

0.61 (0.04 - 

9.94) 

MERCURY 

Log Transformed, 

Mean (SD) 

-0.29 

(0.99) 

-0.28 (0.96) 1.01 (0.85 

- 1.21) 

1.07 

(0.80 - 

1.44) 

1.02 (0.76 - 

1.36) 

-0.28 (0.96) 1.35 (0.84 

- 2.17) 

1.37 (0.71 - 

2.67) 

1.38 (0.76 - 

2.51) 

Mercury quartiles, n 

(%) 

         

    Q1 (Ref) (�0.34 ) 491 

(24.56%) 

46 (2.3%) Ref Ref Ref 46 (15.49%) Ref Ref Ref 

    Q2 (0.34 – 0.67) 508 

(25.41%) 

72 (3.6%) 1.69 (0.96 

- 2.97) 

1.70 

(0.76 - 

3.81) 

1.59 (0.70 - 

3.61) 

72 (24.24%) 2.54 (0.90 

- 7.17) 

2.26 (0.47 - 

10.90) 

1.48 (0.43 - 

5.03) 
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    Q3 (0.68-1.38) 493 

(24.66%) 

63 (3.15%) 1.43 (0.82 

- 2.49) 

1.54 

(0.75 - 

3.18) 

1.49 (0.72 - 

3.08) 

63 (21.21%) 1.91 (0.62 

– 5.90) 

2.53 (0.54 - 

11.78)* 

2.51 (0.60 - 

10.59) 

    Q4 (>1.38) 507 

(25.36%) 

57 (2.85%) 1.20 (0.66 

- 2.17) 

0.58 

(3.66 - 

3.11) 

1.26 (0.51 - 

3.11) 

57 (19.19%) 1.90 (0.61 

– 5.94) 

2.01 (0.40 - 

10.20) 

1.67 (0.33 - 

8.43) 

MIX 

Log Transformed, 

Mean (SD) 

1.19 

(0.60) 

1.22 (0.61) 1.26 (0.94 

- 1.69) 

1.69 

(0.95 -

2.99) 

1.00 (0.46 - 

2.19) 

1.22 (0.61) 4.60 (2.42 

- 8.76)* 

6.21 (2.24 - 

17.20) * 

1.30 (0.09 - 

18.13) 

Mix quartiles, n (%)          

    Q1 (Ref) (�2.24) 499 

(24.96%) 

53 (2.65%) Ref Ref Ref 53 (17.85%) Ref Ref Ref 

    Q2 (2.24-3.14) 500 

(25.01%) 

65 (3.25%) 1.34 (0.91 

- 1.99) 

1.58 

(0.86 -  

2.91) 

1.47 (0.80 - 

2.71) 

65 (21.89%) 2.66 (1.33 

-  5.32) * 

1.86 (0.53 -  

6.47) 

0.87 (0.18 - 

4.30) 

    Q3 (3.14-4.74) 500 

(25.01%) 

59 (2.95%) 1.39 (0.90 

-  2.15) 

1.31 

(0.65 -  

2.63) 

1.12 (0.56 - 

2.25) 

59 (19.87%) 9.62 (2.74 

- 33.80)  * 

15.87 (3.11 

- 80.91) * 

6.92 (0.72 -  

66.79) 

    Q4 (>4.74) 500 

(25.01%) 

61 (3.05%) 1.29 (0.82 

-  2.05) 

2.02 

(0.89 -  

4.75) 

1.17 (0.44 - 

3.10) 

61 (20.54%) 4.80 (1.77 

- 13.03)  * 

13.22 (2.39 

- 73.17) * 

0.48 (0.01 -  

16.32) 

* Statistically significant and corresponding p-value <0.05 
1 Values are unweighted sample counts and percentages. 
2 ‘Ever infertile’ if subject responded ‘yes’ to the following question: “Have you ever attempted to become pregnant over a 
period of at least a year without becoming pregnant?”  

3 ‘Fertile’ if answered “No” to the following question: "Have you ever attempted to become pregnant over a period of at 
least a year without becoming pregnant?" 
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4 ‘Pregnant’ if women answered “Yes” to the question “Are you pregnant now?” 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

A
ll rights reserved. N

o reuse allow
ed w

ithout perm
ission. 

(w
hich w

as not certified by peer review
) is the author/funder, w

ho has granted m
edR

xiv a license to display the preprint in perpetuity. 
T

he copyright holder for this preprint
this version posted N

ovem
ber 3, 2022. 

; 
https://doi.org/10.1101/2022.10.31.22281773

doi: 
m

edR
xiv preprint 

https://doi.org/10.1101/2022.10.31.22281773


 54

Table 4: Association between women’s infertility and recent long-term amenorrhea 

 Amenorrhea Menstruating Total % of women with amenorrhea 
by infertility status 

p-value 

Infertile 9 222 231 3.9% 0.29 

Fertile 94 1593 1687 5.6%  

Total 103 1815 1918   

% of women who are 
infertile by menstrual status 

8.7% 12.2%    
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Table 5: Women’s characteristics for studying associations between blood heavy metal concentrations and long-term 

amenorrhea 

Characteristics Total Sample 
N (%) 

Long-term 
amenorrhea1 

N (%) 

Menstruating2 

N (%) 
p-Value3 

Total Subjects 1919 103 (6.4) 1816 (93.6)  

Age, mean ± SE (years) 34 ± 0.2 35 ± 0.1 33 ± 0.2 0.24 

Race/Ethnicity    0.03 

Hispanic 501 (18.4) 23 (11.9) 478 (18.8)  

Non-Hispanic White 664 (58.0) 47 (68.5) 617 (57.3)  

Non-Hispanic Black 409 (13.4) 26 (14.1) 383 (13.3)  

Other Race Including Multi-Racial 345 (10.3) 7 (5.6) 338 (10.6)  

Education Level    0.65 

Less than High School 285 (10.7) 16 (11.8) 269 (10.6)  

High School 382 (19.9) 27 (23.0) 355 (19.6)  

More than High School 1252 (69.4) 60 (65.3) 1192 (69.7)  

Marital Status    0.77 

Married / Living with Partner 1117 (60.8) 57 (63.5) 1060 (60.6)  

Divorced / Widowed / Separated 228 (10.1) 13 (10.8) 215 (10.1)  

Never Married 574 (29.1) 33 (25.7) 541 (29.3)  

Covered by Health Insurance    0.47 

Yes 1533 (82.5) 88 (85.7) 1445 (82.3)  

No 386 (17.5) 15 (14.3) 371 (17.7)  

Poverty Income Ratio, mean ± SE 2.75 ± 0.065 2.59 ± 0.189  2.77 ± 0.067 0.39 

Body Mass Index (kg/m**2)    0.88 

Underweight (<18.5) 38 (2.1) 1 (1.2) 37 (2.1)  
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Normal Weight (18.5-24.9) 591 (31.8) 34 (31.9) 557 (31.8)  

Overweight (25.0-29.9) 451 (25.0) 21 (22.6) 430 (25.2)  

Obesity (>30) 839 (41.1) 47 (44.4) 792 (40.9)  

Ever Smoked    0.51 

Yes 580 (32.6) 34 (35.9) 546 (32.3)  

No 1339 (67.4) 69 (64.1) 1270 (67.7)  

Ever taken hormone-based contraception?    0.38 

Yes 1328 (75.4) 73 (71.3) 1255 (75.7)  

No 591 (24.6) 30 (28.7) 561 (24.3)  

Values for continuous variables are mean +/- the Standard Error of the Mean.  
Values for categorical variables are n (unweighted sample counts) and % (weighted sample percentages to account for 
NHANES survey design). 
If precents do not equal 100% it is due to rounding. 
1 ‘Long-term amenorrhea’ answered “no” to the question “Have you had at least one menstrual period in the past 12 
months? (Please do not include bleedings caused by medical conditions, hormone therapy, or surgeries.)” AND answered 
“Other” or “Don’t know” to the question “What is the reason that you have not had a period in the past 12 months?” 
2 ‘Menstruating’ if answered “Yes” to the question “Have you had at least one menstrual period in the past 12 months? 
(Please do not include bleedings caused by medical conditions, hormone therapy, or surgeries.)” 
3 P-Value for categorical variables comes from a chi-squared test, which determines if there is a significant difference 
between demographics in long-term amenorrhea vs. menstruating women. P-values for continuous variables comes from 
a t test to determine if there is a significant difference between the means of long-term amenorrhea vs. menstruating. 
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Table 6: Medians and log transformed means of blood heavy metal concentrations and heavy metal mixture scores in 
women with normal menstruation and long-term amenorrhea 

Metal Total Sample Long-term amenorrhea1 Menstruating2 p-Value3 

Lead, median, IQR (ug / dL) 0.53 (0.38 - 0.78) 0.52 (0.35 - 0.71) 0.53 (0.38 - 0.78) 0.72 

Log Transformed Lead, Mean, SE -0.58 ± 0.02 -0.62 ± 0.09 -0.57 ± 0.02 0.60 

 

Cadmium, median, IQR (ug / L) 0.25 (0.16 - 0.44) 0.23 (0.12 - 0.41) 0.26 (0.16 - 0.44) 0.99 

Log Transformed Cadmium, Mean, SE -1.25 ± 0.03 -1.37 ± 0.11 -1.25 ± 0.03 0.33 

 

Mercury, median, IQR (ug / L) 0.61 (0.33 - 1.26) 0.65 (0.37 - 1.01) 0.61 (0.32 - 1.29) 0.004 

Log Transformed Mercury, Mean, SE -0.37 ± 0.03 -0.38 ± 0.06 -0.37 ± 0.03 0.84 

 

Mixed Metal, median, IQR 2.97 (2.10 – 4.34) 2.91 (1.84 – 3.82) 2.97 (2.10 – 4.37) 0.74 

Log Transformed Mix, Mean, SE 1.13 ± 0.02  1.08 ± 0.08 1.13 ± 0.02 0.57 

Blood metal distributions were skewed. Therefore, we presented the median and IQR (25th and 75th percentile) and the 
mean of the Log Transformed blood metal levels. These results are weighted to account for NHANES survey design.  
1 ‘Long-term amenorrhea’ answered “no” to the question “Have you had at least one menstrual period in the past 12 
months? (Please do not include bleedings caused by medical conditions, hormone therapy, or surgeries.)” AND answered 
“Other” or “Don’t know” to the question “What is the reason that you have not had a period in the past 12 months?” 
2 ‘Menstruating’ if answered “Yes” to the question “Have you had at least one menstrual period in the past 12 months? 
(Please do not include bleedings caused by medical conditions, hormone therapy, or surgeries.)” 
3 P-Values represent a t test to determine if there is a significant difference between the means of long-term amenorrhea 
vs. menstruating. 
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Table 7: Associations between blood heavy metal concentrations and heavy metal mixture scores and women’s long-term 
amenorrhea 

  Full sample (Long-term amenorrhea1 vs Menstruating2 n=1919) 

Characteristics Total N (%)1 Long-term 
amenorrhea 

n (%) or Mean (SD) 

Crude OR (95% CI) 
Model 1 

Adj OR (95% CI) 
Model 2 

Fully Adj OR (95% 
CI) 
Model 3 

LEAD 

Log Transformed, 

Mean (SD) 

-0.53 (0.62) -0.54 (0.56) 0.88 (0.53 - 1.46) 0.89 (0.53 - 1.50) 0.93 (0.54 - 1.59) 

Quartiles, n (%)      

     Q1 (�0.39) 460 (23.97%) 22 (1.15%) Ref Ref Ref 

     Q2 (0.40 - 0.55) 475 (24.75%) 27 (1.41%) 0.99 (0.41 - 2.35) 1.02 (0.42 - 2.50) 1.04 (0.42 - 2.54) 

     Q3 (0.56 - 0.83) 504 (26.26%) 32 (1.67%) 1.03 (0.46 - 2.32) 1.03 (0.46 - 2.32) 1.06 (0.46 - 2.42) 

     Q4 (>0.83) 480 (25.01%) 22 (1.15%) 0.71 (0.31 - 1.61) 0.72 (0.31 - 1.68) 0.76 (0.31 - 1.85) 

CADMIUM 

Log Transformed, 

Mean (SD) 

-1.16 (0.83) -1.27 (0.94) 0.84 (0.58 - 1.22) 0.73 (0.48 - 1.09) 0.72 (0.49 - 1.08) 

Quartiles, n (%)      

     Q1 (�0.18)  455 (23.71%) 38 (1.98%) Ref  

 

Ref Ref 

     Q2 (0.18 - 0.28) 490 (25.53%) 23 (1.20%) 0.49 (0.26 - 0.91)* 0.47 (0.25 - 0.87)* 0.47 (0.25 - 0.87)* 

     Q3 (0.29 - 0.51) 488 (25.43%) 16 (0.83%) 0.36 (0.16 - 0.82)* 0.31 (0.13 - 0.75)* 0.31 (0.13 - 0.76)* 

     Q4 (>0.51) 486 (25.33%) 26 (1.35%) 0.69 (0.34 - 1.38) 0.52 (0.23 - 1.20) 0.53 (0.24 - 1.21) 

MERCURY 

Log Transformed, 

Mean (SD) 

-0.29 (0.98) -0.38 (-1.61) 0.98 (0.84 - 1.15) 1.10 (0.92 - 1.32) 1.11 (0.91 - 1.36) 

Quartiles, n (%)      
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    Q1 (�0.34)  471 (24.54%) 25 (1.30%) Ref Ref Ref 

    Q2 (0.35 – 0.68) 485 (25.27%) 30 (1.56%) 1.60 (0.82 - 3.13) 1.68 (0.83 - 3.42) 1.70 (0.84 - 3.44) 

    Q3 (0.69 – 1.39)  480 (25.01%) 27 (1.41%) 1.60 (0.81 - 3.19) 1.87 (0.92 - 3.82) 1.87 (0.92 - 3.77) 

    Q4 (>1.39) 483 (25.17%) 21 (1.09%) 0.91 (0.53 - 1.56) 1.18 (0.65 - 2.14) 1.19 (0.63 - 2.25) 

MIX 

Log Transformed, 

Mean (SD) 

1.18 (0.60) 1.17 (0.56) 0.86 (0.51 -1.46) 0.86 (0.50 - 1.47) 0.82 (0.35 -1.93) 

Quartiles, n (%)      

    Q1 (�2.21)  479 (24.96%) 24 (1.25%) Ref Ref Ref 

    Q2 (2.21 – 3.10) 480 (25.01%) 25 (1.30%) 0.71 (0.31 - 1.63) 0.71 (0.30 - 1.67) 0.74 (0.29 -1.85) 

    Q3 (3.10 –4.66)  480 (25.01%) 27 (1.41%) 0.86 (0.39 – 1.90)  0.86 (0.39 - 1.92) 0.93 (0.37 - 2.34) 

    Q4 (>4.66) 480 (25.01%) 27 (1.41%) 0.83 (0.40 - 1.74) 0.85 (0.39 - 1.84) 1.04 (0.42 - 2.58) 

*Statistically significant and corresponding p-value <0.05 
Values are unweighted sample counts and percentages. 
1 ‘Long-term amenorrhea’ answered “no” to the question “Have you had at least one menstrual period in the past 12 
months? (Please do not include bleedings caused by medical conditions, hormone therapy, or surgeries.)” AND answered 
“Other” or “Don’t know” to the question “What is the reason that you have not had a period in the past 12 months?” 
2 ‘Menstruating’ if answered “Yes” to the question “Have you had at least one menstrual period in the past 12 months? 
(Please do not include bleedings caused by medical conditions, hormone therapy, or surgeries.)” 
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