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Abstract

MCP-Mod (Multiple Comparison Procedure-Modelling) is an efficient statistical method for the

analysis of Phase II dose-finding trials, although it requires specialised expertise to pre-specify

plausible candidate models along with model parameters. This can be problematic given lim-

ited knowledge of the agent/compound being studied. Misspecification of candidate models and

model parameters can severely degrade its performance. To circumvent this challenge, in this

work, we introduce MAP-curvature, a Bayesian model-free approach for the detection of the

dose-response signal in Phase II dose-finding trials. MAP-curvature is built upon a Bayesian

hierarchical method incorporating information about the total curvature of the dose-response

curve. Through extensive simulations, we show that MAP-curvature has comparable perfor-

mance to MCP-Mod if the true underlying dose-response model is included in the candidate

model set of MCP-Mod. Otherwise, MAP-curvature can achieve performance superior to that

of MCP-Mod, especially when the true dose-response model drastically deviates from candidate

models in MCP-Mod.

Keywords: Dose finding, Dose-response signal detection, Minimum effective dose estimation,

Model-free approach, Bayesian hierarchical model, Curvature prior

1. Introduction1

Characterising the dose-response relationship and finding the right dose are important but2

challenging in the pharmaceutical drug development process. Nearly half of all failures in Phase3

III trials result in part from a lack of understanding of the dose-response relationship in Phase II4
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trials (Sacks et al., 2014). Over the last decade, the Multiple Comparison Procedure-Modelling5

(MCP-Mod) method, developed by Bretz et al. (2005), has been increasingly popular for Phase6

II trials as it can provide superior statistical evidence for dose selection.7

MCP-Mod is a two-step approach that combines MCP principles and modelling techniques.8

In the first MCP step, it establishes a dose-response signal (Proof of Concept, PoC). In the9

second Mod step, it estimates the dose-response curve and target doses of interest. It overcomes10

shortcomings of traditional approaches for dose-finding studies (see e.g., Ting, 2006, for an11

excellent introduction). MCP-Mod requires the pre-specification of plausible candidate models12

and model parameters to capture model uncertainty, which however is mainly based on the13

limited knowledge of the agent/compound being studied, if it is available at all (Chen & Liu,14

2020). Misspecification of candidate models and model parameters in MCP-Mod may cause15

a loss in power and unreliable model selection (see Saha & Brannath, 2019, and references16

therein).17

Motivated by these shortcomings, in this work, we develop a model-free Bayesian approach18

for the detection of the dose-response trend and estimation of the dose-response relationship19

in Phase II trials. We introduce a novel Bayesian hierarchical method incorporating the total20

(in the L2 sense) curvature of the dose-response curve as a prior parameter. Our approach21

avoids the requirement of a set of pre-specified candidate models. The responses at the given22

set of doses are estimated through maximum a posteriori (MAP), with which we construct a23

test statistic to establish PoC through simulations. We can then estimate the dose-response24

relationship using simple interpolation.25

The remainder of this work is organised as follows. In Section 2, we describe in detail our26

MAP approach with a curvature prior, abbreviated MAP-curvature. In Section 3, we assess the27

operating characteristics of MAP-curvature through simulations, and compare its performance28

to that of MCP-Mod. We present concluding remarks and future directions in Section 4.29

2. Methods30

We consider a trial with a total of M + 1 distinct doses x0, x1, . . . , xM , where x0 represents31

placebo. Let Ni be the number of patients in dose group i. We assume the true dose response32

function is f(x) at dose x. We assume f(x) is defined on the interval [0, 1] in what follows33
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unless otherwise specified. For i = 0, 1, . . . ,M and j = 1, 2, . . . , Ni, we let Yij be the response34

observed for patient j allocated to dose xi. We assume35

Yij = µi + ϵij , (1)

where µi = f(xi) denotes the mean response at dose xi, and ϵij
iid∼ N(0, σ2) denotes the error36

term for patient j in dose group i. As in MCP-Mod (Bretz et al., 2005), we assume σ is known.37

Detailed discussion of the assumption on the standard deviation σ can be found in Fleischer38

et al. (2022).39

In MCP-Mod, a set of plausible candidate model curves are specified. This constrains the40

possible set of dose-response curves. However, with limited knowledge of the agent/compounds41

in the trial, it is possible to mis-specify this candidate set of models. The procedure for specifying42

models is also somewhat cumbersome. We would like to avoid the pre-specification of possible43

models beforehand, but still want to impose a degree of smoothness to the dose-response curve.44

To this end, we introduce the L2-total curvature45

Sf =

(∫ xM

x0

f ′′(x)2 dx

)1/2

to measure how far the dose-response curve f(x) is from being a straight line. We will impose a46

half-normal HN(γ2) prior on Sf to give low prior probabilities to the dose-response that is very47

curved, where the standard deviation γ controls the trade-off between the L2-total curvature of48

f(x) and fidelity to data Y . Given the dose-response function f(x) being available at M + 149

distinct doses, for i = 1, 2, . . . ,M − 1, we have50

f ′′(xi) ≈ 2

(
µi+1 − µi

(xi+1 − xi)(xi+1 − xi−1)
− µi − µi−1

(xi − xi−1)(xi+1 − xi−1)

)

through the second-order central difference scheme (Burden et al., 2015), therefore the L2-total51

curvature Sf being approximated through numerical integration with52

Sµ = 2

(
M−1∑
i=1

(
µi+1 − µi

(xi+1 − xi)(xi+1 − xi−1)
− µi − µi−1

(xi − xi−1)(xi+1 − xi−1)

)2

∆xi

)1/2

,

where ∆xi = (xi+1−xi−1)/2 for i = 2, 3, . . . ,M −2 with ∆x1 = (x2+x1)/2−x0 and ∆xM−1 =53
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xM − (xM−1 + xM−2)/2.54

We let55

Y = {Yij , i = 0, 1, . . . ,M, j = 1, 2, . . . , Ni}

and define our Bayesian hierarchical model to be56

p(µ, γ | Y ) ∝ p(µ, γ)p(Y | µ), (2)

where the prior57

p(µ, γ) = p(γ)
M∏
i=0

p(µi)p(Sµ | γ)

with58

Sµ | γ ∼ HN(γ2), γ ∼ HN(τ2), µi
iid∼ U(0, 1) for i = 0, 1, . . . ,M,

and the likelihood59

p(Y | µ) =
M∏
i=0

Ni∏
j=1

p(Yij | µi).

Suppose the standard deviation τ in the hyperprior for γ is pre-specified. The MAP estimates of60

all parameters in the model defined in Eq. (2) can be obtained by maximising the corresponding61

log-likelihood62

µ̂, γ̂ = argmax
µ,γ

−
M∑
i=0

Ni∑
j=1

(
Yij − µi

σ

)2

− log γ2 −
(
Sµ

γ

)2

−
(
γ

τ

)2


through a numerical optimisation algorithm like the Broyden–Fletcher–Goldfarb–Shanno (BFGS)63

method and its variants (see, e.g., Nocedal & Wright, 1999, for more details).64

To establish PoC, we propose a test statistic65

T = max{µ̂1 − µ̂0, µ̂2 − µ̂0, . . . , µ̂M − µ̂0}

with hypotheses66

H0 : µ̂0 = µ̂1 = . . . = µ̂M

H1 : max{µ̂1, µ̂2, . . . , µ̂M} > µ̂0.

4
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We define a significance level α for a dose-response signal, such that the corresponding critical67

value c satisfies68

P(T > c | H0) < α.

For a given α, we compute the critical value c via simulation69

P(T > c | H0) ≈
1

R

R∑
r=1

1{T (r)>c},

where T (r) is the test statistic computed from the data Y (r) simulated under the null hypothesis70

H0, R is the total number of replicates, and 1A is the indicator function equal to 1 if condition71

A holds and 0 otherwise.72

Finally, the mean response estimates µ̂ can be linearly interpolated (or using a more sophis-73

ticated interpolation scheme) to obtain an estimate of the dose-response curve f(x), which will74

also yield an estimate of the target dose of interest. In this work, we only perform simple linear75

interpolation as we shall focus on the PoC stage of dose-finding trials.76

3. Simulations77

In this section, we assess the performance of MAP-curvature, in terms of power to detect78

dose-response signals as well as estimates of the dose-response curve and target doses of interest.79

We compare MAP-curvature to MCP-Mod.80

3.1. Simulation settings81

We simulate randomised, double-blind, parallel-group trials with patients being equally82

allocated to placebo (0) or one of four active doses (0.15, 0.50, 0.80 and 1). We take the83

placebo response rate to be 0% and the maximum treatment effect to be 50%, respectively. We84

vary the sample size per dose group in {10, 20, 30, 40, 50, 60}. We choose one of 12 common85

dose-response shapes to be the true dose-response model. These models are plotted in Figure 1,86

with corresponding parameters summarised in Supplemental Material, Table S1. We simulate87

each patient’s response according to Eq. (1) with a standard deviation of σ = 1. For each of 7288

combinations of parameters, consisting of sample size and dose-response shape, we run 10,00089

simulated trials.90
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Figure 1: Dose-response shapes selected for the true dose-response model.

For each simulated trial, we run MAP-curvature to establish PoC and find the target doses91

of interest with a standard deviation of τ ∈ {1, 3, 5} for the hyperprior HN(τ2). To bench-92

mark MAP-curvature against MCP-Mod, we run MCP-Mod for each simulated trial using the93

DoseFinding package (version 1.0-2) in R, where we specify a fixed set of candidate models made94

up of linear, emax1, emax2, exponential1, quadratic and logistic1 (top six figures of Figure 1).95
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3.2. Simulation results96

To compare the performance of MAP-curvature and MCP-Mod, in Figure 2, we plot receiver97

operating characteristic (ROC) curves for all true dose-response models for sample size 40. The98

ROC curve is produced by plotting the true positive rate against the false positive rate across a99

range of critical values. The closer the ROC curve approaches the top left corner, the better the100

method performs overall. ROC curves for all other sample sizes are illustrated in Supplemental101

Material, Figures S1-S5. We also summarise their powers at 5% and 10% type I error rates in102

Supplemental Material, Table S2 and S3, respectively.103

We see from Figure 2 that MAP-curvature has better performance when the true dose-104

response relationship is not dramatically curved, e.g. linear, emax1, logistic1, logistic2 and105

sigEmax, achieving over 80% power at 5% type I error rate. Choosing an appropriate τ can106

further improve the performance of MAP-curvature. More specifically, MAP-curvature achieves107

better performance with a larger τ for the true dose-response curve that is more curved, e.g.108

quadratic1 and beta models. Otherwise, e.g. in logistic1 and power models, a smaller τ performs109

better. How to select an appropriate τ in practice will be discussed in Section 4.110

To compare the performance of MAP-curvature and MCP-Mod, we divide into two cases:111

1. the true dose-response curve is one of the candidate models in MCP-Mod,112

2. the true dose-response curve is not one of the candidate models in MCP-Mod.113

Figures 2(a-f) compare the performance of MAP-curvature and MCP-Mod for the first case,114

which is a fairly rare situation in practice. The resulting ROC curves are in favour of MCP-115

Mod as expected, but MAP-curvature with τ = 3 achieves comparable performance. We note116

that for the true dose-response curve that is not dramatically curved, e.g. linear, emax1 and117

logistic1, τ = 1 yields better performance than when τ = 3, giving a power gain of around 2-9%118

for MAP-curvature with respect to MCP-Mod at 5% type I error rate.119

Figures 2(g-l) compare the performance of MAP-curvature and MCP-Mod for the second120

case. This is the situation we expect to encounter in practice. We see that with τ = 3, MAP-121

curvature uniformly outperforms MCP-Mod, especially when the true dose-response model dras-122

tically deviates from the candidate model set in MCP-Mod such as sigEmax and beta mod-123

els. In the latter case, MAP-curvature has a power gain of approximately 5-10% compared to124

MCP-Mod at a type I error rate of 5%. Some true dose-response models such as exponential2,125
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Figure 2: ROC curves of MAP-curvature and MCP-Mod across different true dose-response models with the
sample size of 40 patients per arm. The ROC curves of MCP-Mod in (a)-(f) are produced with the true dose-
response model not included in the candidate model set, and the ROC curves of MCP-Mod in (g)-(l) are produced
with the true dose-response model not included in the candidate model set.

quadratic2 and power models, are captured by the candidate model set of MCP-Mod sufficiently126

well that the performance of MAP-curvature and MCP-Mod is similar. With an appropriate τ ,127

however, MAP-curvature is still able to achieve significantly better performance, e.g. a power128

gained by around 2-3% for MAP-curvature over MCP-Mod at 5% type I error rate.129

We also assess and compare the performance in estimating the dose-response curve and tar-130
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get doses of interest, known as the minimum effective dose (MED). See Supplemental Material,131

Figures S6-S11 for the dose-response curves estimated using MAP-curvature and MCP-Mod132

for various true dose-response models and sample sizes. The corresponding results for MED133

estimation are summarised in Supplemental Material, Table S4.134

4. Discussion135

In this work, we have introduced MAP-curvature, a novel Bayesian approach for establish-136

ing PoC and estimating the dose-response curve alongside target doses of interest in Phase II137

trials. MAP-curvature is “model-free”, in the sense that it does not require pre-specification of138

candidate model curves, which can influence the performance of MCP-Mod. It is built upon139

a Bayesian hierarchical model incorporating prior information on the L2-total curvature of the140

dose-response curve. Through extensive simulations, we have shown that MAP-curvature has141

performance comparable to that of MCP-Mod in establishing PoC and estimating MED when142

the candidate model set of MCP-Mod includes the true dose-response model. When the true143

dose-response model deviates from the candidate model set of MCP-Mod, we have shown that144

MAP-curvature outperforms MCP-Mod.145

To achieve optimal performance, MCP-Mod requires specialised expertise to pre-specify146

plausible candidate models and model parameters, but the knowledge of the agent/compounds147

being studied is commonly limited. Compared to MCP-Mod, the only requirement for pre-148

specification in MAP-curvature is the standard deviation τ for the hyperprior γ ∼ HN(τ2),149

which encodes prior knowledge of how far the dose-response curve is from a straight line. Based150

on additional simulations with varying values of the standard deviation τ (see Supplemental151

Material, Figure S12 and Table S5), we recommend choosing152

1. τ ∈ [2, 4] if our prior knowledge is poor,153

2. τ < 2 if we are confident that the curvature of the dose-response curve is weak,154

3. τ > 4 if we are confident that the curvature of the dose-response curve is strong.155

A number of relevant issues for MAP-curvature deserve further research. The current version156

of MAP-curvature is limited to analysing Phase II dose-finding trials with continuous endpoints,157

i.e., a single normally distributed homoscedastic response measured at the end of the trial for158

each patient. To expand the applicability of MAP-curvature, extensions to other common159
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types of endpoints (e.g., binary, counts and survival endpoints) and trials (e.g., longitudinal160

dose-finding trials) require further investigation. Other directions of future research include the161

investigation of trial designs tailored to MAP-curvature and development of statistical software162

implementing MAP-curvature.163
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