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Abstract
During the COVID-19 pandemic, wastewater-based epidemiology has progressively taken a central
role as a pathogen surveillance tool. Tracking viral loads and variant outbreaks in sewage offers
advantages over clinical surveillance methods by providing unbiased estimates and enabling early
detection. However, wastewater-based epidemiology poses new computational research questions
that need to be solved in order for this approach to be implemented broadly and successfully. Here,
we address the variant deconvolution problem, where we aim to estimate the relative abundances of
genomic variants from next-generation sequencing data of a mixed wastewater sample. We introduce
LolliPop, a computational method to solve the variant deconvolution problem by simultaneously
solving least squares problems and kernel-based smoothing of relative variant abundances from
wastewater time series sequencing data. We derive multiple approaches to compute confidence
bands, and demonstrate the application of our method to data from the Swiss wastewater surveillance
efforts.

Introduction
During the COVID-19 pandemic, genomic surveillance has been applied at an unprecedented scale to
support various national efforts in containing outbreaks [1]. In this context, wastewater monitoring has
seen its broadest and most successful application: PCR-based surveillance of total viral load has
been deployed successfully in a large number of surveillance campaigns, some of which1 are now
complementing this piece of information with next-generation sequencing (NGS) data to distinguish
different genomic variants [2]. As genomic analysis is extended from clinical samples to samples from
wastewater treatment plants (WWTPs), new statistical and computational research questions arise
[1]. Beyond SARS-CoV-2, and in the contemporary context of the emergence and resurgence of viral
threats, such as, for example, monkeypox, wastewater-based epidemiology (WBE) is becoming a
central tool for pathogen surveillance in general [2]. It is therefore pressing that the computational
challenges relating to WBE be addressed.

Most of the existing viral genomic data analysis pipelines and tools were designed for clinical samples
and rely on classifying the majority variant of each sample from the consensus sequence of the read
alignment [3–5]. As wastewater samples consist by nature of a heterogeneous mix of genomic
variants, this approach is ill-advised and can at best result in a major information loss and at worst
produce false and misleading results. Detecting minor variants in a wastewater sample corresponds
to detecting minor variants in a population and is therefore of great interest because it can enable
early detection of an emerging lineage before it becomes dominant. One of the main challenges in the
analysis of wastewater-derived NGS data is the loss of mutation phasing information, which can result
both from fragmentation of the genetic material and from the (usually tiling-amplicon PCR-based)
sequencing protocols used. In addition, the sequencing data exhibits very high levels of overdispersed

1 see for example:
https://bsse.ethz.ch/cbg/research/computational-virology/sarscov2-variants-wastewater-surveillance.h
tml
https://assets.publishing.service.gov.uk/government/uploads/system/uploads/attachment_data/file/104
3807/technical-briefing-33.pdf
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noise. From a large pool of raw wastewater, extreme downsampling steps (grab or composite
sampling, filtering, random reverse transcription, etc.) are followed by extreme amplification steps
(PCR). Some tools have been developed to increase sensitivity in the detection of variants, for
example, by looking at co-occurring mutations on the same read, which has been shown to improve
early detection of variants [6].

Beyond early detection, quantitative estimation of the relative abundances of different variants from
wastewater is a very important endeavor. Tracking the relative abundance through time of a new
variant can inform on its fitness advantage relative to the dominating strain [7], and hence on its
predicted impact on the infection dynamics. It has been shown that this epidemiologically important
parameter can be estimated accurately from wastewater samples using either specific PCR-based
assays [8,9] or NGS data [6], while using far fewer samples as compared to using clinical data. For
practical planning and policy making, it is therefore crucial to have accurate and time-efficient
methods for estimation of the relative abundances through time of variants from wastewater NGS
data, including reliable measures of uncertainty.

Prior research has shown that the relative abundance of an emerging variant can be accurately
quantified by averaging over a set of mutations that is unique for this variant [6]. However, as the
number of variants grows, shared mutations cannot generally be discarded as finding sets of unique,
characteristic mutations for each variant quickly becomes impossible. To address this limitation, some
methods that take into account the correlation structure of mutations between different variants have
been developed [10–13]. However, with these methods, quantification of uncertainty is done on the
basis of the computationally intensive bootstrap, which can be prohibitive when faced with large
amounts of data or limited computational resources.

Here, we introduce a new method for solving the variant deconvolution problem, named LolliPop.
Tailored to time-series data, our method implements simultaneous deconvolution and kernel
smoothing of the variant relative abundances. In addition to confidence bands based on the bootstrap,
we derive analytical methods to compute asymptotic confidence bands, which provide a 30-fold
speedup. We evaluate our method by comparing to clinical data from [6]. LolliPop is currently used for
the Swiss wastewater monitoring program2. It is available as a Bioconda package.

Methods

Variant deconvolution
We consider an ordered collection of samples, taken at (not necessarily evenly spaced) timepoints

. Each studied variant carries a subset of the mutations relative𝑡 ∈ {1,  ...,  𝑇} 𝑣 ∈ {1,..., 𝑉} 𝑚 ∈ {1,..., 𝑀}
to a fixed reference strain. Let be the design matrix of variant definitions, i.e.,𝑋 ∈ {0, 1}𝑀× 𝑉 𝑋

𝑚,𝑣
= 1

if the variant bears mutation , and otherwise. Let be the observed mutation𝑣 𝑚 𝑋
𝑚,𝑣

= 0 𝑦
𝑡

∈ 0, 1[ ]𝑀

frequency vector at time , where the entries are the observed proportions of reads from the𝑡
wastewater sequencing experiment supporting a certain mutation . We are interested in𝑚

the relative variant abundances vector at each time point . We further make𝑏
𝑡

∈ 0, 1[ ]𝑉,  ||𝑏
𝑡
||

1
= 1, 𝑡

the assumption of a linear probability model, such that at time , the expected proportion of reads with𝑡
a given mutation is a linear combination of the relative variant abundances:

 𝐸[𝑦
𝑡
 | 𝑏

𝑡
] = 𝑋𝑏

𝑡

Definition: For given variant definitions and a time series of mutation frequencies , the𝑋 𝑦
1
,  ...,  𝑦

𝑇
variant deconvolution problem is to find the relative variant abundances in the population of𝑏

1
,  ...,  𝑏

𝑇
the catchment area of the WWTP, such that for all time points t. 𝑦

𝑡
= 𝑋𝑏

𝑡

2 https://bsse.ethz.ch/cbg/research/computational-virology/sarscov2-variants-wastewater-surveillance.html
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As finding the exact relative variant abundances in the population is generally not possible due to the
randomness of the data-generating process and model misspecification, we relax the problem to
finding a best estimate. Solving the variant deconvolution problem is then performed by choosing a
loss function and optimizing:𝐿

𝑏
𝑡

= 𝑎𝑟𝑔𝑚𝑖𝑛
𝑏

𝑡
: 𝑏

𝑡,𝑖
≥0 ∀𝑖, ||𝑏

𝑡
||

1
=1

𝐿(𝑦
𝑡

− 𝑋𝑏
𝑡
)

Here, we choose two different loss functions, namely least squares (LS) and the𝐿
𝐿𝑆

(𝑧) = ||𝑧||
2

2

robust soft loss (SL1) , but other choices𝑙
1

𝐿
𝑆𝐿1

(𝑧, α) = ∑
𝑖

1
α 𝑧

𝑖

2
· 1(|𝑧

𝑖
| ≤ α) +  |𝑧

𝑖
| · 1(|𝑧

𝑖
| > α)( )

are readily implementable.

Simultaneous smoothing
To deal with the high levels of noise in the observed data, we assume temporal continuity of the
variant abundances. Thus, we smooth across time by introducing the kernel values to link all𝑘 𝑡, 𝑡′( )

to all , where is a non-negative, non-decreasing function of ,𝑦
𝑡′

𝑏
𝑡

𝑘 𝑡 − 𝑡'

𝑘 𝑡, 𝑡′( )𝐸[𝑦
𝑡′

|𝑏
𝑡
] = 𝑘 𝑡, 𝑡′( )𝑋𝑏

𝑡

Summing to account for all contributions implies that

𝑡′∈𝑇
∑ 𝑘 𝑡, 𝑡′( )𝐸[𝑦

𝑡′
|𝑏

𝑡
] =

𝑡′∈𝑇
∑ 𝑘 𝑡, 𝑡′( )𝑋𝑏

𝑡

and hence

1
𝑍 𝑡( ) 𝐸[𝑌|𝑏

𝑡
]𝑘

𝑡
= 𝑋𝑏

𝑡

where , and .𝑌 ∈ [0, 1]𝑀×𝑇 = 𝑦
1
,..., 𝑦

𝑇[ ] 𝑘
𝑡

= 𝑘 𝑡, 𝑡
1( ),..., 𝑘 𝑡, 𝑡

𝑇( )[ ]⊤ 𝑍 𝑡( ) =
𝑡′∈𝑇
∑ 𝑘 𝑡, 𝑡′( )

We use the box kernel and the Gaussian kernel𝑘
𝑏𝑜𝑥

𝑡, 𝑡′, κ( ) = 1(|𝑡 − 𝑡'| ≤ κ/2)

; other choices are also possible.𝑘
𝐺𝑎𝑢𝑠𝑠𝑖𝑎𝑛

𝑡, 𝑡′, κ( ) = exp −(𝑡 − 𝑡')2

2κ{ }
Solving the deconvolution problem
With observed mutation frequencies and known variant definitions as input, we solve the𝑌 𝑋
deconvolution problem for a kernel and loss function by finding as𝑘 𝑡, 𝑡′( ) 𝐿(𝑧) 𝑏

𝑡

𝑏
𝑡

= 𝑎𝑟𝑔𝑚𝑖𝑛
𝑏

𝑡
: 𝑏

𝑡,𝑖
≥0 ∀𝑖, ||𝑏

𝑡
||

1
=1

𝐿( 1
𝑍 𝑡( ) 𝑌𝑘

𝑡
− 𝑋𝑏

𝑡
)

To solve this optimization problem, we use routines from the Python scientific computing library Scipy
[14]. When using the LS loss function, this involves the non-negative least squares solver [15]. When
using the SL1 loss, we use the Trust Region Reflective method [16].

Confidence intervals
To use WBE for robust decision making, it is essential to provide estimates of the uncertainty in the
prediction of relative abundances. We pursue two different strategies for computing confidence
intervals: one based on an analytical approximation to the standard errors, and one simulation-based.
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Asymptotic confidence intervals
We assume that at a given time , the proportion of reads supporting a certain mutation follows𝑡 𝑦

𝑡,𝑚
𝑚

a distribution with parameter , i.e.,𝐵𝑖𝑛𝑜𝑚𝑖𝑎𝑙/𝑛 π
𝑚

𝑝(𝑦
𝑚

|π
𝑚

) = π
𝑚

𝑦
𝑚(1 − π

𝑚
)

1−𝑦
𝑚

Using here the assumption that the contributions of each variant to the expected proportion of
mutated reads is additive, we have that . We additionally assume conditionalπ

𝑚
= 𝑋𝑏[ ]

𝑚

independence of the mutation proportions such that .  Differentiating twice the𝑝(𝑦|π) =
𝑚∈𝑀
∏ 𝑝(𝑦

𝑚
|π

𝑚
)

log-likelihood, we find the Fisher information matrix (see Supplementary 1)

 𝐼
𝑏
(𝑏) = 𝐸 − ∂2

∂𝑏2 ℓ π( )⎡⎢⎣
⎤⎥⎦

= 𝐸 ∂
∂𝑏 π( )⊤

− ∂2

∂π2 ℓ π( )( )⊤
∂

∂𝑏 π
⎡⎢⎢⎣

⎤⎥⎥⎦
= 𝑋⊤𝑑𝑖𝑎𝑔 π

𝑚
(1 − π)

𝑚{ }−1

𝑚=1,...,𝑀
𝑋 

from which we can extract asymptotic standard errors, which can be used to construct Wald
confidence intervals:

𝑠𝑒2 𝑏
^

𝑣( ) ≈ 𝐼 𝑏
^( )

−1⎡
⎢
⎣

⎤
⎥
⎦𝑣𝑣

Here, a pseudofraction must be added to the entries of to avoid division by zero when computing𝑏
the asymptotic standard errors.

Logit reparametrization
To ensure that the confidence bands stay confined to the [0,1] interval, we can also compute the
asymptotic standard errors and Wald confidence intervals on the logit scale

, before projecting them back to the linear scale. We compute the inverseϕ
𝑣

= 𝑙𝑜𝑔𝑖𝑡 𝑏
𝑣( ) = 𝑙𝑜𝑔

𝑏
𝑣

1−𝑏
𝑣

( )
of the Fisher information matrix of by using the Delta method:ϕ

𝐼
ϕ

(ϕ)−1 = 𝐷
ϕ

(𝑏)𝐼
𝑏
(𝑏)−1𝐷

ϕ
(𝑏)⊤

where is the Jacobian of the transformation, such that𝐷
ϕ

(𝑏)

𝐷
ϕ

(𝑏)
𝑖𝑗

=
∂ϕ 𝑏( )

𝑖

∂𝑏
𝑗

= (− 1)1(𝑖≠𝑗) 𝑏
𝑖

1 − 𝑏
𝑖( )( )

−1

Here again, a pseudofraction must be added to the entries of to avoid division by zero.𝑏

Overdispersion
In both Wald type confidence intervals, overdispersion (and underdispersion) is accounted for by
following a quasilikelihood approach [17]. In this approach, we are computing the deviations of the
data from the model fitted values to estimate to which extent the variability in the data is greater (or
smaller) than what is expected from the fitted model. At a given time t, the asymptotic standard errors
are adjusted for either or :𝑏

𝑡
ϕ

𝑡
 

𝑠𝑒
𝑎𝑑𝑗.

2 𝑏
^

𝑡,𝑣( ) = σ
𝑡,𝑣

2 𝑠𝑒
2

𝑏
^

𝑡,𝑣( )  ,  𝑠𝑒
𝑎𝑑𝑗.

2 ϕ
^

𝑡,𝑣( ) = σ
𝑡,𝑣

2 𝑠𝑒
2

ϕ
^

𝑡,𝑣( )
and the dispersion factor is computed as:σ

𝑡,𝑣
2

σ
𝑡,𝑣

2 = 1

𝑡'∈𝑇
∑ κ(𝑡,𝑡') 𝑡'∈𝑇

∑ κ(𝑡,𝑡')

𝑚∈𝑀
∑ 𝑋

𝑚,𝑣
𝑚∈𝑀

∑
(𝑦

𝑡',𝑚
−𝑦

𝑡,𝑚

^
)2

𝑦
𝑡,𝑚

^
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Bootstrapping
Another strategy to compute confidence bands is to use the non-parametric bootstrap approach [18].
Here, we construct bootstrap samples of the whole time series, by resampling mutation indices𝐵 𝑀
from with replacement. Each bootstrap sample is then processed by deconvolution and𝑚 ∈ 1,  ..., 𝑀
smoothing, resulting in time series of dimensionality .  For each relative variant abundance𝐵 𝑉

, confidence intervals are constructed at each timepoint from the empirical quantiles of𝑣 ∈ 1,  ..., 𝑉 𝑡
the bootstrap samples.

Implementation and availability
The methods we present here are implemented in the Python package LolliPop, which takes as input
a tabular file of observed mutation frequencies and variant definitions, performs simultaneous kernel
smoothing and deconvolution using numerical optimization, and produces confidence intervals.
LolliPop is available on Github3 and as a Bioconda package.

Wastewater sequencing data
We used the wastewater sequencing data from the Swiss surveillance project reported in [6]. The
dataset contains 1295 NGS datasets from longitudinal samples collected at six major WWTPs,
sampled daily between January 2021 and September 2021. We defined the variants of concern
(VOCs) B.1.1.7 (Alpha), B.1.351 (Beta), P.1 (Gamma), B.1.617.1 (Kappa), and B.1.617.2 (Delta) by
querying the mutations present in ≥80% of the sequences defining these variants on Cov-Spectrum
[19] and supported by at least 100 sequences. We then counted these mutations from pileups of the
read alignments. We deconvoluted using both LS and SL1 losses, using the Gaussian kernel function.
We computed Wald confidence intervals with and without logit reparametrization, as well as
bootstrap-based confidence intervals (1000 resamples).

Comparison to clinical data
Using the LAPIS API of Cov-Spectrum [19], we retrieved counts of sequenced SARS-CoV-2
PCR-positive clinical samples for Switzerland, stratified by submitting lab, canton, and inferred variant.
We restricted the data to samples from the large clinical testing company Viollier, where the
PCR-positive samples are randomly subsampled before being sent for sequencing. We compare each
WWTP to the clinical data from the canton it is located in. For the Berne WWTP of Laupen, we
compare to an aggregate of the clinical sequences from both the cantons of Bern and Fribourg, as the
catchment area is split between those two cantons [6].

Hyperparameters
To assess the sensitivity of our deconvolution method to hyperparameter choice, we analyzed the
data from the two biggest WWTPs (Zurich and Vaud) for an array of smoothing and robustness
hyperparameters. For the deconvolution based on the MSE loss, we explored values of the smoothing
bandwidth parameter (in days). For the deconvolution based on the SL1 loss, weκ ∈ {0,  1,  ...,  60}
tested pairs of values of the smoothing bandwidth parameter and of the f_scale parameter (controlling
the breakpoint between and loss) .𝑙

2
𝑙

1
(κ, α) ∈ {0,  5,  10,   ...,  30} × {0. 01,  0. 05,  0. 09,  0. 13,  ...,  1}

For each deconvolved dataset, we linearly regressed the relative abundances of the different variants
in clinical sequencing on the relative abundances in wastewater inferred by the deconvolution, using
the statistical software R [20], and we reported the R2 value and the average bias. The regressions
and average bias were computed with data points weighted by the square root of the clinical sample
sizes.

Results
We have developed LolliPop, a statistical method to solve the variant deconvolution problem. Our
method uses as input the mutation frequencies observed in wastewater samples, which are weighted

3 https://github.com/cbg-ethz/lollipop
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according to a kernel function and deconvolved according to a variant definition matrix and a loss
function (Figure 1 a). The results are vectors of relative variant abundance estimates and their
confidence intervals. LolliPop is implemented as a Python package available on Bioconda. In the
results section, we present a comparison of deconvolved relative abundance of variants from the
Swiss wastewater surveillance project to clinical data from populations connected to the respective
treatment plants. We assess the effect of hyperparameters, and present confidence bands computed
using the different methods introduced.

Hyperparameters
We ran LolliPop using a grid of different hyperparameter values. For both loss functions, increasing
the smoothing bandwidth increased goodness of fit with clinical values (Supplementary Figures S1κ
a, S2 a). However, increasing the bandwidth generally resulted in a slight increase of the bias
(Supplementary Figures S1 b, S2 b). For the deconvolution based on the SL1 loss, the R2 was highest
for scale parameter , independently of the value of used (Supplementary Figure S2 a).α = 0. 13 κ

Comparison to clinical data
We compared time series of relative variant abundances inferred from wastewater sequencing data
using LolliPop to those estimated using clinical data. We found that the wastewater-based infection
dynamics closely follow those derived from clinical sequencing (Figure 1 b). The Pearson r (weighted
by root clinical sample size) between the deconvolved and clinical estimates was 0.923 and 0.920 for
the LS-based and SL1-based deconvolutions, respectively (Figure 1 d,e). The highest
cross-correlation value between wastewater-derived estimates and clinical estimates was obtained for
a time lag of days and days for the LS and SL1 based deconvolutions,∆𝑡 = 4. 0 ∆𝑡 = 3. 3
respectively (Figure 1 c).
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Figure 1: Overview of the method: the vectors of mutation frequencies in..., 𝑦
𝑡−1

,  𝑦
𝑡
,  𝑦

𝑡+1
,  ...

wastewater samples are weighted according to kernel and deconvolved using the variant definition𝑘
matrix , producing estimates of relative variant abundances along with confidence intervals.𝑋
Repeating the operation for each timepoint tracks the relative abundances of the variants through𝑏

𝑡
time (A). Estimates of variant relative abundances obtained from deconvolution of wastewater NGS
data (solid and dotted lines), compared to relative abundances of variants in clinical samples of the
cantons surrounding the WWTPs (circles) (B). Different colors correspond to the different genomic
variants studied. Weighted cross correlation between the deconvolved values of relative abundances
and the clinical data estimates peaks at days (when using LS) and days (when∆𝑡 = 4. 0 ∆𝑡 = 3. 3
using SL1), and decreases quadratically (C). Pearson r between the deconvolved values and the
clinical data estimates (weighted by ) is 92.2% for the LS based estimates (D) and 92.0% for𝑛

𝑐𝑙𝑖𝑛𝑖𝑐𝑎𝑙
the SL1 based estimates (E) at lag . LS and SL1 deconvolution was performed with a∆𝑡 = 0
Gaussian smoothing kernel with . For the SL1 loss, .κ = 30 α = 0. 135
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Confidence intervals
Confidence intervals were different depending on whether they were computed using the Wald
method on the linear scale or logit scale or using the bootstrap. Wald confidence intervals computed
on the linear scale could, as expected, leave the [0,1] range and thus need to be clipped in a
post-processing step (Figure 2 a). They also were in general substantially narrower compared to the
other two approaches. Wald confidence intervals computed on the logit scale and then back
transformed (Figure 2 b) more closely resembled the confidence intervals computed using
bootstrapping (Figure 2 c). Especially in the Wald confidence intervals, uncertainty was consistently
higher during the months in which wastewater samples contained low concentrations of SARS-CoV-2
RNA due to low incidence of the virus4.

Figure 2: Confidence bands of the deconvolved relative abundance values, at 95% level. Wald
confidence bands were computed using the asymptotic standard error on the linear scale (A), or on
the logit scale and then back-transformed to the linear scale (B). Bootstrap confidence intervals (C)
were computed using 1000 resamples.

4 https://sensors-eawag.ch/sars/overview.html
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Runtime
Wall time on a MacBook Air M1 2020 was ~2s to deconvolve all 1295 samples using the LS loss
function. Using the SL1 loss function, wall time was ~1min for the same task. Wall time was ~1min to
construct Wald confidence intervals, and ~1min for reparameterized Wald confidence intervals.
Constructing confidence intervals by bootstrapping (1000 resamples) had a wall time of ~30min. All
computations were performed using a single CPU core.

Discussion
We introduced LolliPop, a method for solving the variant deconvolution problem. We showed its
application to data from the Swiss wastewater monitoring program, extending over eight months at six
different locations around the country. We found that the deconvolved values of relative abundance
closely follow the dynamics seen in the clinical sequencing effort.

Regarding runtime, we observed that LolliPop can be easily used on a standard laptop computer to
process thousands of samples in a matter of seconds or minutes, using a single computing core. This
emphasizes how the program can readily be used in analyses that scale up to national monitoring
programs. More substantial speedups could easily be obtained by using multiple cores, as the task is
naturally parallelizable.

Modifications to LolliPop can be easily implemented. First, the behavior of the deconvolution under
different types of loss functions could be investigated. We have assessed here Least Squares and
Soft losses, and the results were not very strongly affected by the choice of loss function, indicating𝑙

1
robustness of the method to this choice. Other types of losses could certainly have interesting
properties for the problem at hand. For example, if the number of candidate lineages to deconvolve
grows, building in a sparsity assumption by adding an regularization term of the relative variant𝑙

1
abundances could lower the variance of their estimates.

Another component that can readily be modified is the type of kernel used for smoothing. We have
used a Gaussian kernel, but other choices could be relevant depending on the application. For
example ad-hoc kernels could be used for more precisely relating the relative abundances in samples
to the relative incidences in the population. The temporal dynamics of viral shedding in wastewater
are generally described by a shedding load distribution [21], which could be accounted for by an
asymmetric and non zero-centered kernel.

To assess the uncertainty in the estimates of relative abundances, we have derived two analytical and
one bootstrap-based approaches to produce confidence intervals. Bootstrap confidence intervals are
by design computationally intensive, and having an analytical approach can provide substantial
speedup. The Wald confidence intervals we derived here include three components of the variance of
the estimates: one to account for the mutation overlap between variant definitions, one to account for
the binomial nature of the sampling, and one to account for overdispersion. The Wald confidence
interval computed on the linear scale suffers from known shortcomings, as it can exit the [0,1] range.
They are also substantially narrower than the others and hence we would advise against using these.
In our results, the Wald confidence intervals computed on the logit scale very closely resemble the
bootstrap confidence intervals, while providing almost ~30x speedup in the computation time.
However, they could be subject to numerical stability issues in case of an ill-conditioned Fisher
information matrix, which could happen in instances where low coverage leads to high levels of
missing values.

We have here built in the assumption of temporal continuity of the variant relative abundances in our
model, in the form of kernel smoothing simultaneous to the deconvolution. As in a monitoring program
multiple locations are generally being monitored, another useful assumption to build in the
deconvolution could be that of spatial continuity if the spatial resolution allows for it. Jointly smoothing
the different locations might offer increased robustness to the estimates by partial pooling of the
information.

To summarize, LolliPop solves the variant deconvolution problem, taking into account the time series
nature of wastewater sequencing datasets and mitigates the high levels of noise these experiments
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typically display. Our method can estimate uncertainty using different approaches, including analytical
confidence bands with short computation times. LolliPop enables genomic variant tracking in
large-scale wastewater-based epidemiology projects.
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