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Abstract

Despite the potentials of artificial intelligence (AI) in healthcare, very little work focuses on the extraction of clinical informa-

tion or knowledge discovery from clinical measurements. Here we propose a novel deep learning model to extract characteristics

in electrocardiogram (ECG) and explore its usage in knowledge discovery. Utilising a 12-lead ECG dataset (nECGs = 2,322,513)

collected from unique subjects (nSubjects = 1,558,772) in primary care, we performed three independent medical tasks with the

proposed model: (i) cardiac abnormality diagnosis, (ii) gender identification, and (iii) hypertension screening. We achieved an

area under the curve (AUC) score of 0.998 (95% confidence interval (CI), 0.995-0.999), 0.964 (95% CI, 0.963-0.965), and 0.839

(95% CI, 0.837-0.841) for each task, respectively; We provide interpretation of salient morphologies and further identified key

ECG leads that achieve similar performance for the three tasks: (i) AVR and V1 leads (AUC=0.990 (95% CI, 0.982-0.995); (ii)

V5 lead (AUC=0.900 (95% CI, 0.899-0.902)); and (iii) V1 lead (AUC=0.816 (95% CI, 0.814-0.818)). Using ECGs, our model

not only has demonstrated cardiologist-level accuracy in heart diagnosis with interpretability, but also shows its potentials in

facilitating clinical knowledge discovery for gender and hypertension detection which are not readily available.
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1 Introduction1

AI-driven approaches, and in particular deep learning, are developing at pace, have increasing potential for application in health-2

care, and have been used to address challenges for a variety of medical conditions [1], such as circulatory failure prediction3

[2], pulmonary tuberculosis testing [3], retinal disease diagnosis [4], and mortality prediction [5, 6]. In particular, encouraging4

developments in deep neural networks (DNN) have shown dermatologist-level classification of skin cancer [7], radiologist-level5

accuracy in identifying breast cancer [8], and ophthalmologist-level performance in detecting diabetic retinopathy [9]. The use6

of AI in healthcare has the potential to deliver meaningful impacts, both in improving productivity and efficiency of clinical7

practice, optimise workflow of care delivery, and in reducing medical errors through comprehensive diagnosis [10].8

Despite the great promise of AI techniques in healthcare, concerns over the unknown interpretation process, i.e., black-9

box model, have spurred a movement toward building trust in machine learning (ML) algorithms [11]; In particular, there are10

growing calls for transparent and trustworthy AI models from clinicians, lawmakers, and government regulators [1, 12]. For11

example, the European Union’s General Data Protection Regulation states that all people have the right to know meaningful12

information about the logic behind automated decisions using their data [10]; the U.S. Food and Drug Administration (FDA)13

emphasises the importance of interpretability among a set of terms for AI/ML practice [13, 14]. Transparency can support a14

physician’s competence in interpretation, and build trust within the physician–patient relationship; Conversely, a lack of this15

interpretive ability may impede the general acceptance of AI techniques in healthcare practice [12]. In addition, the improvement16

in interpretability of clinical data allows physicians to better understand the biological mechanisms behind disease, to identify17

disease-specific features, and enables efforts with the potential to derive more reliable biomarkers [12, 15, 16].18

There are several efforts to develop interpretable techniques to produce explanations for ML decisions; such methods include19

class activation mapping (CAM) [17], local interpretable model-agnostic explanation (LIME) [18], Shapley additive explanations20

(SHAP) [19], and gradient-weighted class activation mapping (Grad-CAM) [20]. In particular, Grad-CAM and its variants have21

shown promising interpretation ability in processing medical images. For example, it was used to localise salient areas in chest22

radiographs for acute respiratory distress syndrome (ARDS) diagnosis [21]; segment chest X-ray images for COVID-19 detection23

[15], and identify scaphoid fractures in radiographic images [22]. However, these studies either focus on specific tasks or have24

limited experimental validation, and the interpretation capabilities of these techniques are still largely unexplored.25

In this work, we hypothesise that AI models with a specific design can provide interpretation of healthcare data, identify clin-26

ically useful information, and facilitate discovering new knowledge that can be understood by clinicians. To test this hypothesis,27

we created, trained, and validated a novel AI model with a large-scale dataset; and we particularly focused on the interpretation28

of electrocardiogram (ECG), which is primarily due to the following two reasons. On one hand, ECG recording is the most com-29

monly performed diagnostic test to screen cardiovascular diseases (CVD), which are responsible for more than 30% of all deaths30

globally [23]. It is understood that ECG recording provides an assessment of overall rhythm and cardiovascular status [24]; nev-31

ertheless, interpretation of the test varies greatly, even among cardiology specialists. Such variance between physicians presents a32

challenge to ensure consistency and reliability in the diagnosis; Moreover, the physician’s recognition of abnormal morphologies33

is mostly limited to existing cardiac disorders, it is therefore difficult to detect rare or relatively unknown diseases or recognise34
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visually imperceptible elements in the morphology. On the other hand, modern technologies are constantly increasing the abil-1

ity to acquire large numbers of ECG recordings, such that more than 300 million ECGs are obtained annually worldwide [25].2

The data-intensive nature of ECGs requires comprehensive analytical methods to perform automated interpretation, which will3

facilitate understanding of the complexity of underlying diseases and ultimately improve healthcare outcomes.4

There are recent studies showing advances in using AI techniques for digital ECG analysis, such as abnormal heart rhythm5

detection [26], cardiac contractile dysfunction identification [27], aortic valve stenosis screening [28], and early diagnosis of6

low ejection fraction [29]. However, most of these AI models focus on task performance rather than extracting clinically useful7

information or expanding knowledge from ECG recordings. For example, the AI model used in the study [26] demonstrated8

cardiologist-level detection of cardiac arrhythmia using ECGs; but the model primarily outputs diagnostic scores instead of9

explaining how the ECG morphologies were used to diagnose arrhythmias. From a clinical perspective, ECG morphologies10

characterise cardiovascular status and are used to derive disease-specific features for the diagnosis of arrhythmias, e.g., abnormal11

P waves for the diagnosis of atrial fibrillation [30]. Despite the impressive performance of AI models, it is unreasonable for either12

a patient or medical professional to accept an automated diagnosis at face value without justification [31]. More importantly, AI13

techniques are often highly complex, and thus require a substantial number of samples to train the model, without which outputs14

may be unreliable and have potential pitfalls [32]. For example, a treatment recommendation with an explicit contraindication15

could be made even by well-trained AI systems [10], but without an accompanying means of alerting the treating physician of16

the potential risk, there may be a consequence of major harm to patients.17

Using our proposed interpretable DNN model, we perform three independent medical tasks with state-of-the-art diagnosis18

performance in this study, and in particular, the model enables to produce lead-specific interpretation of standard 12-lead ECG19

recordings. We first use the developed DNN model to identify and interpret rhythm abnormalities; this is because arrhythmias20

confer a substantial risk of mortality and morbidity in patients with heart failure, which represents a major healthcare burden21

and affects an estimated 64.3 million people worldwide [33]. Other than the diagnosis of heart conditions, we test the developed22

DNN model in a more general task of gender identification. This is highly relevant to our central task, because gender differences23

have been observed in the development of CVD; for example, women tend to develop heart disease later in life than men, while24

also having worse outcomes and higher mortality [34, 35]. In a further step, we perform the third task of hypertension screening25

to validate the developed model in a wider context of medical practice. Hypertension is the largest single contributor to CVD,26

causing stroke, heart failure, and coronary artery disease [36]. In particular, it has a rising prevalence and affects approximate27

1.38 billion people worldwide (31.1% of the global adult population) [37]. To the best of our knowledge, this is the first time that28

an explanatory DNN model has been deployed and extensively studied with an ECG dataset of such a sheer scale. In particular,29

we identify salient features to explain the decision-making in each of the three tasks, and these features are also used to extract30

clinically useful information in the ECG recordings, i.e., dominant leads. We then further investigate the effectiveness of the31

identified dominant leads by performing various comparison studies in the three medical tasks.32
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2 Results1

2.1 Overview and Study Population2

Our developed explanatory deep learning model has two major components: a new architecture with channel-wise deep residual3

networks (CResNet) to implement the medical diagnosis, and an interpretation module to produce salient features that have been4

used for the decision-making. To validate the diagnostic and interpretation abilities of the developed model, we perform three5

independent medical tasks using a large dataset consisting of standard 12-lead ECG recordings (nECGs = 2,322,513) collected6

from unique individuals during clinic visits (nSubjects = 1,558,772). Figure 1 depicts the dataflow and study population for the7

three medical tasks in this study; (i) In the first task, we use 2,315,782 ECG recordings to train the CResNet model to diagnose8

Figure 1: Dataflow and population characteristics for the three medical tasks in this study. The data was collected in primary
care facilities with population characteristics as following. (i) For the first task (Task #1), the ECG recordings were collected
from a population with an average age of 53.64 ± 17.42 years old (yr), and 60.26% are females (nFemale = 1,395,461); (ii) For
the second task (Task #2), the population has an average age of 51.66 ± 17.58 yr and 59.78% are females (nFemale = 836,267);
(iii) For the third task (Task #3), subjects with hypertension accounts for 31.66% of the whole population; the hypertension
group has an average age of 59.33 ± 14.79 yr, and 62.71% are female subjects (nFemale = 277,756). Detailed descriptions of the
dataset and population characteristics can be found in Extended Figure S1 and Table S1.

4
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morphological abnormalities, including the first-degree atrioventricular block (1dAVb), right bundle branch block (RBBB), left1

bundle branch block (LBBB), sinus bradycardia (SB), atrial fibrillation (AF), and sinus tachycardia (ST). The trained CResNet2

model is then tested on a holdout ECG dataset, which is rigorously annotated by certified cardiologists; (ii) In the second task,3

we train the CResNet model for gender identification using ECGs collected from 1,398,907 subjects (female: 59.78%, nFemale4

= 836,267), which is tested with holdout ECGs sampled from 155,435 subjects (female: 59.52%, nFemale = 92,513); (iii) In the5

third task, the model is trained to screen hypertension for 1,398,907 subjects (hypertension: 31.66%, nHypertension = 442,918), and6

tested with 155,435 subjects (hypertension: 31.65%, nHypertension = 49,202). In both the second and third tasks, we select only7

one ECG recording for each individual, and when a subject has multiple ECG recordings, the earliest record is used.8

2.2 Diagnosis and Interpretation of ECG Morphological Abnormalities9

In the first task, the CResNet model has a micro average AUC score of 0.998 (95% CI, 0.995-0.999) and an F1-score of 0.94810

(95% CI, 0.921-0.971) on identifying the ECG morphological abnormalities. We report the F1-scores in Table 1A and compare11

the performance of our CResNet model with evaluation results from three junior professionals with experience in ECGs, two12

senior cardiologists, and the state-of-the-art study [38]. It can be seen from Table 1A that the highest evaluation score from the13

three junior professionals is 0.876 (95% CI, 0.830-0.915); The two senior cardiologists have higher performance than the junior14

professionals, with the highest F1-score of 0.945 (95% CI, 0.914-0.970); While the state-of-the-art benchmark [38] has a score15

of 0.938 (95% CI, 0.910-0.961). In comparison to the evaluation results yielded by the cardiology professionals, our CResNet16

model has better performance than the three junior professionals and one senior professional in the diagnosis of 1dAVb (p =17

0.0433, in Extended Table S2). Furthermore, it significantly outperforms the three junior professionals in the diagnosis of AF18

(p = 0.0412), and has comparable performance with that of the senior cardiologists (p = 0.2482). We also provide the Cohen’s19

kappa coefficients to demonstrate the inter-rater agreement between our diagnosis with the evaluation results from the cardiology20

professionals in Extended Table S3. To show a comprehensive comparison of model performance, we present the evaluation21

results from our CResNet model, cardiology professionals, and the benchmark [38] in Figure 2. The highlighted symbol in22

the Figure 2 indicates the F1-score for each of the evaluation results, and the point at top-right corner of the figure is the ideal23

F1-score for the diagnosis. It can be seen from Figure 2 that the CResNet model has superior or comparable performance with24

evaluation results from the comparison studies, suggesting effectiveness of our model on the diagnosis of ECG abnormalities.25

Among these abnormalities, the diagnosis of AF particularly has important medical implications, because it is a leading26

cardiac cause of stroke, heart failure, and mortality [39]. However, it is challenging to obtain a definitive diagnosis of AF with27

ECG recordings [30], which is also indicated by the evaluation results as presented in Table 1A. It can be seen from the table that28

among all the five professionals, the highest F1-score for the diagnosis of AF is 0.889 (95% CI, 0.737-1.000); and the benchmark29

model from the literature also has moderate performance with a score of 0.870 (95% CI, 0.667-1.000) [38]. In contrast, our30

developed CResNet model successfully identifies all AF in the dataset.31

Next, we interpret how the decisions that have been made by the CResNet model to diagnose ECG abnormalities. Figure32

3(a) shows a standard 12-lead ECG recording with AF identified in the test. Five cardiology professionals evaluated the test, and33

only one of the senior cardiologists and the emergency resident successfully diagnosed the AF; while the other senior and two34
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Table 1A: Performance comparison for the diagnosis of abnormalities using standard 12-lead ECG recordings.

F1-score (95% CI)

Junior Professionals Senior Professionals DNN models

Cardio. Rd. Emerg. Rd. Medical Sd. Cardio. #1 Cardio. #2 DNN Comp [38] CResNet

1dAVb
0.776 0.719 0.732 0.828 0.926 0.897 0.966

(0.625-0.889) (0.578-0.831) (0.605-0.836) (0.704-0.925) (0.844-1.000) (0.793-0.969) (0.912-1.000)

RBBB
0.917 0.852 0.928 0.957 0.971 0.944 0.971

(0.842-0.974) (0.746-0.939) (0.852-0.985) (0.899-1.000) (0.921-1.000) (0.881-0.989) (0.928-1.000)

LBBB
0.947 0.912 0.915 0.966 1.000 1.000 0.949

(0.875-1.000) (0.828-0.980) (0.830-0.983) (0.907-1.000) (1.000-1.000) (1.000-1.000) (0.882-1.000)

SB
0.882 0.848 0.750 0.897 0.897 0.882 0.865

(0.743-0.976) (0.692-0.963) (0.538-0.889) (0.750-1.000) (0.741-1.000) (0.750-0.976) (0.727-0.973)

AF
0.769 0.696 0.706 0.870 0.889 0.870 1.000

(0.545-0.933) (0.400-0.875) (0.500-0.865) (0.667-1.000) (0.737-1.000) (0.667-1.000) (1.000-1.000)

ST
0.882 0.946 0.873 0.896 0.930 0.960 0.933

(0.789-0.951) (0.881-0.989) (0.778-0.949) (0.813-0.965) (0.853-0.987) (0.904-1.000) (0.862-0.987)

Micro avg
0.876 0.846 0.833 0.908 0.945 0.938 0.948

(0.830-0.915) (0.793-0.892) (0.789-0.876) (0.871-0.941) (0.914-0.970) (0.910-0.961) (0.921-0.971)

*Cardio. Rd. — 4th year cardiology residents; Emerg. Rd. — 3rd year emergency residents; Medical Sd. — 5th year medical students;
Cardio. #1 — the 1st cardiologist; Cardio. #2 — the 2nd cardiologist; DNN Comp — the state-of-the-art benchmark model developed
in [38]; CResNet — the DNN model developed in this study. The bold-faced scores denote the best performance for the three junior
professionals, two senior professionals, and two DNN models.

Table 1B: Performance comparison for the diagnosis of abnormalities using ECG recordings with dominant leads.

Dominant AVR and V1 Leads Dominant DII, AVR, and V1 Leads

Precision AUC F1-score Precision AUC F1-score
(95% CI) (95% CI) (95% CI) (95% CI) (95% CI) (95% CI)

1dAVb
0.870 0.991 0.784 0.952 0.992 0.816

(0.714 - 1.000) (0.982 - 0.998) (0.632 - 0.898) (0.842 - 1.000) (0.982 - 0.998) (0.667 - 0.927)

RBBB
0.935 0.996 0.892 0.909 0.997 0.896

(0.833 - 1.000) (0.992 - 0.999) (0.800 - 0.964) (0.800 - 1.000) (0.993 - 0.999) (0.807 - 0.966)

LBBB
0.966 0.978 0.949 1.000 0.993 0.947

(0.889 - 1.000) (0.931 - 1.000) (0.875 - 1.000) (1.000 - 1.000) (0.982 - 1.000) (0.880 - 1.000)

SB
0.762 0.998 0.865 0.842 0.999 0.914

(0.565 - 0.947) (0.995 - 1.000) (0.722 - 0.973) (0.647 - 1.000) (0.996 - 1.000) (0.786 - 1.000)

AF
0.857 0.998 0.889 1.000 0.997 0.917

(0.636 - 1.000) (0.993 - 1.000) (0.727 - 1.000) (1.000 - 1.000) (0.992 - 1.000) (0.750 - 1.000)

ST
0.868 0.997 0.880 0.878 0.998 0.923

(0.750 - 0.972) (0.993 - 0.999) (0.786 - 0.956) (0.757 - 0.973) (0.995 - 1.000) (0.844 - 0.976)

Micro avg
0.885 0.990 0.879 0.921 0.995 0.903

(0.830 - 0.937) (0.982 - 0.995) (0.834 - 0.919) (0.875 - 0.962) (0.992 - 0.997) (0.868 - 0.935)

*The term of ‘Dominant AVR and V1 Leads’ indicates that the model has inputs with only two ECG leads, e.g., AVR and V1 leads, rather
than using 12 ECG leads.
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Figure 2: Performance comparison for the diagnosis of abnormalities, including (a) 1dAVb, (b) RBBB, (c) LBBB, (d) SB, (e)
AF, and (f) ST. This figure shows the precision-recall (P-R) curves for the performance of the CResNet model, evaluation
results from five cardiology professionals, and the result of the benchmark DNN model [38]. The solid lines are the average P-R
curves for the diagnosis of arrhythmias, and the shading areas represent standard deviations obtained by the bootstrap method.
The brown dots correspond to the F1-scores for the CResNet model, the red ‘+’ symbols are used to denote F1-scores for the
two senior professionals, the purple ‘X’ for the three junior professionals, and the blue ‘Y’ for the benchmark DNN model. The
contour plots show the iso-F1 curves with a constant value for each curve, and a point closes to the ideal score of ‘1’ in the
top-right corner indicating a higher F1-score.
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junior professionals failed to diagnose it. Using our developed CResNet model, the diagnosis of AF with the ECG recording1

has a prediction probability of 0.961. To interpret the diagnosis that has been identified by the CResNet model, we calculate the2

heatmap for each of the 12 ECG leads, and highlight the salient information that has been used for decision making. In Figure3

3(a), the different colours indicate weights of data points in the ECG recording, e.g., red colour for important information with4

a high weight, and blue for less important data with a low weight. It can be seen from Figure 3(a) that the CResNet model uses5

salient information in the DII and V1 leads for the diagnosis of AF, and has the most important features with red colour in the6

DII lead.7

Notably, the hallmark of AF is the absence of P waves in an ECG recording [30]. However, artifacts or fibrillatory waves can8

mimic P waves and lead to misdiagnosis [40, 41]. Figure 3(b) shows the refined view of the DII lead with background colour9

removed, which demonstrates the ECG morphology and salient features that have been used for the diagnosis. It can be seen10

from Figure 3(b) that the P wave is absent in some areas of the ECG morphology, e.g., segment A (around 5.18s); and there are11

also waves clearly presented in some areas, e.g., segment B (around 7.85s). The inconsistent morphologies in the locations of P12

waves challenge the diagnosis of AF using the ECG recording. Our developed CResNet model is very flexible in the recognition13

of P waves, and it highlights important information in segment A rather than segment B, which is consistent with the existing14

diagnostic criteria [40, 41]. As well as identifying the absence of P waves, the CResNet model also recognises S waves as salient15

features in the DII lead, and other features in the V1 lead. With combining salient information from different leads in the ECG16

recording, the CResNet model makes a comprehensive decision with the prediction probability of 0.961 for the diagnosis of AF.17

Other than the interpretation for the diagnosis of AF, we present salient features that are used to diagnose other types of ECG18

abnormalities in Extended Figures S4-S8. The results demonstrate that the interpretation that has been made by the CResNet19

model matches well with existing knowledge, but also provides new implications with the identified salient features. For example,20

as shown in Extended Figure S4, the CResNet identifies the absence of Q waves, notched R waves, and T wave inversion in the21

V6 lead for the diagnosis of LBBB; Furthermore, it highlights the absence of Q waves and T wave inversion in the DII lead even22

with higher weights. Combining salient features in the 12 ECG leads, the CResNet model diagnoses the LBBB with a probability23

of 0.948. In another example as illustrated in Extended Figure S7, the CResNet model identifies the U waves in the AVR lead,24

and uses them as important information for the diagnosis of SB. This is consistent with previous observations of prominent U25

waves in the ECG recording [42]; Apart from identifying U waves in the AVR lead, the CResNet also identifies the downslopes26

of T waves in DII lead as important information, and the model has a probability of 0.932 to diagnose the SB with combining27

salient information in the ECG recording.28

In a further step, because ECG abnormalities have varied morphologies, we present the statistical results of dominant leads29

that are derived from the salient information. First, we filter ECG recordings in the whole dataset with prediction probabilities30

higher than 0.8, which indicates the CResNet model having confident outputs for the diagnosis of abnormalities. Then, we sum31

the values of the heatmap for each lead, and identify the dominant lead with the highest value for the ECG recording. To show32

distributions of the identified dominant leads, we calculate their occurrences and the percentages among all the 12 ECG leads,33

and the results can be found in Figures 3(c)-(h). It can be seen from Figures 3(c)-(h) that the six types of ECG abnormalities34

have varied distributions of dominant leads. The 1dAVb has AVR, V1, and V5 as dominant leads; both the RBBB and LBBB35
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Figure 3: Interpretation for the diagnosis of AF and distributions of dominant ECG leads. (a) The original calculated heatmaps
for the diagnosis of AF using 12 ECG leads, with colour bar ranging from blue to red indicating the increasing weights of data
importance. (b) The refined view of the DII lead in (a) by removing background colours with values less than 0.4. Segments A
and B show the inconsistent morphologies in the locations of P waves in the DII lead. We show distributions of dominant ECG
leads for the diagnosis of (c) 1dAVb, (d) RBBB, (e) LBBB, (f) SB, (g) AF, and (h) ST. We annotate the number of occurrences
when the dominant lead accounts for more than 10% of all the 12 ECG leads. The number of occurrences is presented as mean
and standard deviation calculated by bootstrap method.
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have dominant DII, AVR, V1, and V5 leads; the SB has a prominent AVR lead; the AF has three dominant leads of DII, V1 and1

V6; and the ST has DII, AVR and V4 as dominant leads.2

Next, we investigate the effectiveness of the identified dominant leads on the diagnosis of ECG abnormalities. As shown in3

Figures 3(c)-(h), the AVR and V1 leads are two representative leads for the ECG abnormalities. We therefore use the two leads to4

train the CResNet model, and test the performance on the holdout dataset. Table 1B shows the results of the diagnosis using the5

AVR and V1 leads. It can be seen from the table that the CResNet model achieves an AUC score of 0.990 (95% CI, 0.982-0.995)6

and an F1-score of 0.879 (95% CI, 0.834-0.919) using the two dominant leads, which is comparable to the best performance of7

the three junior professionals (p = 0.505). In addition to the dominant AVR and V1 leads, the DII lead is also representative8

for all types of ECG abnormalities. With including the DII lead, the CResNet model achieves an AUC score of 0.995 (95% CI,9

0.992-0.997) and an F1-score of 0.903 (95% CI, 0.868-0.935). In particular, using the DII, AVR, and V1 leads, the model has an10

F1-score of 0.917 (95% CI, 0.750-1.000) for the diagnosis of AF, and 0.923 (95% CI, 0.844-976) for the diagnosis of ST, which11

is higher than the scores of 0.889 (95% CI, 0.727-1.000) and 0.880 (95% CI, 0.786-0.956) using the AVR and V1 leads.12

Additionally, we validate our developed CResNet model on an external dataset, which is retrieved from the PhysioNet/CinC13

Challenge 2017 [43]. The dataset consists of short single-lead ECG recordings that have been annotated with four classes, i.e.,14

normal sinus rhythm, atrial fibrillation, other alternative rhythms, and noise. We train the CResNet model using ECG recordings15

(nECGs = 8,528) in the training dataset, and test the model on the holdout validation dataset. Extended Table S4 presents the16

model performance for classifying the four types of ECG recordings. It can be seen from the table that the CResNet model has17

a micro average F1-score of 0.884 on the validation dataset. In particular, the model has an F1-score of 0.929 on the diagnosis18

of AF, and a score of 0.921 on detecting noise signals; Given the widespread noises in ECG recordings, the results indicate19

robustness of our model for the diagnosis of heart rhythm abnormalities.20

2.3 Identification and Interpretation of Genders21

In the second task, as demonstrated in Figure 4(a), our developed CResNet model has an AUC score of 0.964 (95% CI, 0.963-22

0.965) on gender identification for individual subjects in the holdout testing dataset (nSubjects = 155,435). Because features23

presented in ECG recordings may change over time due to normal ageing [44], we therefore investigate the model performance24

in different age groups [45], i.e., young-age (years (yr) < 45, nSubjects = 54,341), middle-age (45 ≤ yr < 75, nSubjects = 84,640),25

and old-age (yr ≥ 75, nSubjects = 16,454). It can be seen from Figure 4(a) that the CResNet model has an AUC score of 0.97926

(95% CI, 0.977-0.980) on identifying genders for the young-age group, which is higher than the AUC score of 0.959 (95% CI,27

0.958-0.961) for middle-age group, and 0.914 (95% CI, 0.909-0.918) for old-age group, suggesting the effect of ageing on the28

gender identification (p < 0.01) using standard 12-lead ECG recordings.29

To show the interpretation of gender identification, we visualise the salient features in ECG recordings for identifying female30

in Extended Figure S10, and male in Extended Figure S11. It can be seen from Figure S10 that the model mainly uses salient31

information from the DII, V1, and V5 leads for identifying the female subject, which has a prediction probability of 0.971; For32

identifying the male subject, the model uses the DI, V4, V5, and V6 leads and has a probability of 0.981. We then use the33
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Figure 4: Model performance and lead importance for gender identification using our proposed CResNet model. (a)
Performance comparison of the CResNet model for gender identification using 12-lead ECG recordings in different age groups.
(b) Distributions of dominant leads for identifying male subjects. (c) Distribution of dominant leads for identifying female
subjects. (d) Performance comparison between different dominant ECG leads. We demonstrate confusion matrices for gender
identification using the dominant V5 lead in different age groups, including (e) the young-age group (yr < 45), (f) the
middle-age group (45 ≤ yr < 75), and (g) the old-age group (yr ≥ 75). In each of the receiver operating characteristic (ROC)
curves, the dot point indicates the optimal cut-off point for the sensitivity and specificity calculated by the G-mean method.

post-hoc method as presented in the first task to analyse the distribution of dominant leads for gender identification. Figures 4(b)1

and (c) present distributions of dominant leads for identifying male and female subjects separately. The detailed distributions of2

dominant leads in terms of age differences, i.e., young-age, middle-age, and old-age, can be found in Extended Figure S12. It3

can be seen from Figures 4(b) and (c) that V5 is the mostly used lead for gender identification by the CResNet model, which is4

a dominant lead for identifying male subjects (nMale = 125,060 ± 299) and female subjects (nFemale = 437,449 ± 412). Other5

than the V5 lead, the V3 lead also appears as a dominant lead for identifying male subjects (nMale = 60,670 ± 236) and female6

subjects (nFemale = 113,764 ± 306).7
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Next, we investigate the model performance of gender identification using the identified dominant leads, and the comparison1

results are presented in Figure 4(d). As the V5 lead is dominant for both male and female subjects, we first only use the V5 lead to2

identify gender, and the CResNet model obtains an AUC score of 0.900 (95% CI, 0.899-0.902). We show confusion matrices of3

gender identification in different age groups using the dominant V5 lead in Figures 4(e)-(g), and it can be seen that the CResNet4

model has the highest performance in the young-age group (p < 0.01), with an accuracy of 84.44% for identifying female5

subjects and 88.87% for identifying male subjects. Apart from the V5 lead, we note that the V6 is identified as a dominant lead6

for identifying males, but less important for females as shown in Figure 4(c). Therefore, we combine V6 with V5 to implement7

the gender identification, and the model has a slightly higher AUC score of 0.914 (95% CI, 0.913-0.915) with the two dominant8

leads (p < 0.01). In a further step, we include the V3 lead to generate a new combination of three dominant leads for gender9

identification, and the AUC score increases from 0.914 (95% CI, 0.913-0.915) using the V5 and V6 leads to 0.941 (95% CI,10

0.940-0.943) using the V3, V5, and V6 leads, indicating the importance of the V3 lead for gender identification (p < 0.01).11

In addition, we present comprehensive comparisons of model performance using different combinations of dominant ECG12

leads for gender identification in Extended Figures S14-S16 and Tables S5-S7. The results show that using the DI, V3, and V513

leads, the CResNet model has the highest performance (p < 0.01) with an AUC score of 0.970 (95% CI, 0.969-0.972) and a14

diagnostic odds ratio (DOR) of 145.891 (95% CI, 139.089-156.331) for gender identification in the young-age group (Extended15

Figure S14). We note that all models have lower performance on identifying genders in the old-age group than in the young-age16

group (p < 0.01), with the highest AUC score of 0.885 (95% CI, 0.880-0.890) in the old-age group using the DI, V3, and V517

leads. The comparison results of model performance suggest the effectiveness of our identified dominant ECG leads for gender18

identification.19

2.4 Screening and Interpretation of Hypertension20

In parallel with the previous two tasks, we implement the third task of hypertension screening using our developed CResNet21

model, and the results of model performance are presented in Figure 5(a) and (b). It can be seen from Figure 5(a) that the22

CResNet model achieves an AUC score of 0.839 (95% CI, 0.837-0.841) and a diagnostic odds ratio (DOR) of 12.101 (95%23

CI, 11.794-12.447) in screening subjects with hypertension in the testing dataset (hypertension: 31.65%, nHypertension = 49,202).24

Considering the effects of age and gender on the prevalence of hypertension [44], we investigate the model performance of25

hypertension screening in different populations. It can be seen from Figure 5(a) that the model achieves an AUC score of 0.84926

(95% CI, 0.847-0.852) for hypertension screening in the female group, which is slightly higher than the AUC score of 0.82327

(95% CI, 0.820-0.827) in the male group (p = 0.011). In terms of age differences, as shown in Figures 5(b) and (c) that the28

model has the highest performance in the old-age female group (p < 0.01), with an AUC score of 0.829 (95% CI, 0.822-0.836)29

and the DOR of 18.172 (95% CI, 16.516-20.576).30

To show the interpretation of hypertension screening, we visualise the salient features in the 12 ECG leads, which have been31

used to make decision by the CResNet model. As an illustration in Extended Figure S17, the CResNet model mostly uses the DII,32

AVL, and V1 leads to screen hypertension, with particular focuses on T waves in the DII and V1 leads. Next, we use post-hoc33

analysis to identify dominant ECG leads from the salient features, and investigate their performance on hypertension screening.34
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Figure 5: Model performance and lead importance for hypertension screening using our developed CResNet model. (a)
Performance comparison of the CResNet model for hypertension screening using 12-lead ECGs in terms of gender differences.
(b) Performance comparison in terms of age differences using 12-lead ECGs. (c) Diagnostic odds ratios (DOR) with 95% CI for
hypertension screening in different populations. (d) Distributions of the dominant ECG leads (mean ± standard deviation). (e)
Performance comparison of hypertension screening using the dominant V1 lead. We demonstrate confusion matrices for
hypertension screening using the dominant V1 lead in different population groups, including (f) the whole population, (g) the
female group, and (h) the male group. The confidence interval and standard deviation are calculated by bootstrap method.
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It can be seen from the distribution in Figure 5(d) that the CResNet model identifies the DII and V1 as dominant ECG leads.1

In particular, the V1 lead accounts for more than 80% of the occurrences among the 12 ECG leads, which is used to screen2

hypertension for nHypertension = 148,845 ± 136 subjects; Other than the V1 lead, the DII lead is also identified as a dominant lead3

to screen hypertension for nHypertension = 20,725 ± 129 subjects.4

We therefore use the dominant V1 lead to screen hypertension for individual subjects, and it can be seen from Figure 5(e)5

that the model obtains an AUC score of 0.831 (95% CI, 0.823-0.840) in the old-age female group, which is a similar result to the6

model performance of 0.839 (95% CI, 0.837-0.841) using 12 ECG leads; and as shown in Figures 5(f)-(h) that the CResNet model7

has an accuracy of 74.80% on screening hypertension in the whole population using the V1 lead, and it has a higher accuracy8

of 75.30% in the female group than in the male group. In a further step, we use two ECG leads to screen hypertension with9

including the additional DII lead, which achieves the highest AUC score of 0.835 (95% CI, 0.827-0.844) in the old-age female10

group (Extended Figure S19). As shown in Extended Figures S21-S23 and Tables S9-S11, we present the detailed comparison11

of hypertension screening using dominant ECG leads and 12 ECG leads in terms of age and gender differences, and the results12

suggest effectiveness of our identified dominant leads for hypertension screening in different population groups.13

3 Discussion14

In this study, we developed and validated a novel ‘end-to-end’ DNN model with state-of-the-art performance on medical diag-15

nosis, and in particular it has the ability to interpret the ECG recording that has been used to make the decision by the AI model.16

Our work builds on the recent research in literature that shows deep learning can be used to diagnose ECG abnormalities with17

cardiologist-level performance [26, 30, 38]. However, these models are seen as black boxes, which primarily focus on improving18

the accuracy of arrhythmia detection. It is therefore difficult to explain how the methods underlying the ECG morphologies have19

been used for the diagnosis. Given the rising demand for explanatory AI models from clinicians and government regulators [1,20

10, 12, 13, 14], our study presents a substantial response towards developing an interpretable deep learning model for healthcare.21

There are several initial studies in the literature that show computerised interpretation of ECG recordings [5, 46, 47, 48].22

As a representative example, the study in [5] developed a DNN model to predict 1-year all-cause mortality using 12-lead ECG23

recordings. The research in [5] obtained attractive results with an AUC score of 0.88, and derived prognostic information for24

mortality prediction, which had important implications in medical practice; In a further step, the research interpreted ECG25

recordings and indicated the relationship between ST segments and mortality prediction [5]. However, the interpretation of lead-26

specific ECG recordings is still challenging for several reasons. First, the research used multiple leads together as model inputs,27

the learned saliency map was therefore shared by several leads rather than the accurate weight for a specific ECG lead. Although28

a guided-backpropagation technique [20] was used to derive lead-wise weight, the generated heatmap for the ECG recording29

was discrete. For example, adjacent data in the ECG morphology was highlighted as disconnected points in the heatmap, which30

makes it difficult to understand the visualised salient features; Second, it is understood that ECG morphology may change over31

time. As demonstrated in Figure 3(b) in our study, some morphologies, e.g., segments in the location of P waves, may be not32

constant in the ECG recording. It therefore requires the interpretation of ECGs to be flexible and accurate over time. While the33
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study in [5] demonstrated the interpretation for ECG data segments with a short duration, i.e., 0.6s, and it is not clear how the1

interpretability changes over time when standard or longer duration ECG recordings are used. Third, from a clinical perspective,2

it is difficult to verify the interpretation of specific morphologies for the prediction of mortality or rare diseases.3

Our developed interpretable DNN model was first implemented on the diagnosis of arrhythmias, which has been well studied4

in the literature and existing knowledge can be used to validate our findings. A recent study showed the importance of DII5

lead in the diagnosis of abnormalities, which was used to classify twelve rhythm classes [26]; For the diagnosis of ventricular6

arrhythmias, the V1 lead was observed having dominant waves [49]; In addition, lateral leads (e.g., lead V5) were considered7

to be important in the diagnosis of bundle branch blocks [50, 51]. Consistent with prior knowledge of dominant ECG leads for8

the diagnosis of arrhythmias, our findings also provide new insights; For example, the diagnosis of SB and ST primarily focuses9

on the checking of a patient’s heart rate by cardiologists, whereas our CResNet model highlights the importance of U waves10

for the identification of SB. Notably, prominent U waves were also reported in asymptomatic SB in literature [42]. However,11

U waves are usually difficult to be measured in manual review due to their low amplitudes [52], which in contrast suggests12

the advantages of our model for computerised ECG interpretation. In particular, we highlight the benefits from our proposed13

isolation-integration strategy, which allows the model to precisely calculate the importance of each ECG lead, and therefore14

enables to identify lead-specific and disease-specific features for the diagnosis of different arrhythmias. After validating our15

developed interpretable model in the first task of the diagnosis of ECG abnormalities, we then extended the study in a wider16

context of medical diagnosis, i.e., the second task of gender classification and the third task of hypertension screening; Again,17

a previous study indicated the importance of V5 lead for gender identification [48], confirming the findings of our identified18

dominant leads. We note that previous studies indicated that high blood pressure is in association with an increased risk of AF19

[53], this could explain the AF and hypertension having similar dominant ECG leads in our study, i.e., the DII and V1 leads.20

Finally, we highlight that our interpretation was implemented on standard 12-lead ECG recordings, instead of a specific lead21

or limited sampling duration; this moves research efforts a step closer towards the application of interpretable AI algorithms in22

medical practice.23

From a clinical perspective, the interpretation of ECG recordings is critical to understand and diagnose cardiovascular dis-24

eases. Our developed DNN model can potentially augment the current clinical workflow in several ways. First, rather than25

developing a stand-alone computerised method for automated ECG diagnosis, our CResNet model presents a paradigm shift by26

producing visually salient features for the interpretation of ECG recordings, which allows practitioners to understand the deci-27

sion that has been made by the AI model, and therefore reduce the risk of misdiagnosis. Second, benefiting from the visually28

salient features and the identified dominant ECG leads, our developed model has the potential to facilitate the discovery of new29

biomarkers, particularly in areas where expert knowledge is not readily available, i.e., hypertension screening using ECG record-30

ings. Third, even in well-established area, e.g., diagnosis of arrhythmias, our developed DNN model can provide new insights for31

the interpretation of ECG morphologies; this enables us to promote further understanding of cardiovascular systems. Notably,32

the model developed in this study does not involve any prior domain knowledge, i.e., cardiovascular medicine, but instead allows33

automated learning of salient features in data measurements that are collected from physically isolated sensors. It is therefore34

that our CResNet model could potentially be used in other scenarios apart from the medical tasks performed in this study. For35
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example, it could be applied to identify the importance of different channels for electroencephalography (EEG) signals, which1

allows further understanding of brain activities.2

We note that the standard 12-lead ECG test is a widely used non-invasive screening tool in healthcare, and recent advances3

in ECG technologies have enabled the development of small, low-cost, and easy-to-use wearable devices in limited-resources or4

home settings [54], which typically use a subset of the standard 12 ECG leads for remote monitoring. However, as highlighted5

in the recent PhysioNet/Computing Challenge [55], there is limited research to demonstrate that reduced-lead ECGs can capture6

the wide range of diagnostic information achieved by the 12-lead ECGs. The study in this paper provides substantial evidence7

to show that our developed AI model enables to automatically identify important ECG leads for various medical tasks other than8

the diagnosis of cardiac abnormalities. By undertaking extensive comparison studies between our identified dominant ECG leads9

and the standard 12 ECG leads, we show that our identified reduced-lead ECGs can achieve comparable performance with the10

standard 12-lead ECGs for lead-specific and disease-specific diagnosis, which can meaningfully contribute to the development11

of reduced-lead wearable devices for cardiac monitoring. In particular, our proposed CResNet demonstrates the effectiveness of12

hypertension screening using reduced-lead ECGs, indicating the potential applications of our developed model for cuffless blood13

pressure estimation/monitoring as a future direction.14

Our work is perhaps best understood in the context of its limitations. We note that there are a broad range of heart arrhythmias,15

and the current study tested the interpretation with a limited category of abnormalities. However, the diagnosis of different types16

of arrhythmias has a similar procedure in the analysis of ECG morphologies, and our model learns salient features in ECG17

recordings with no assumption of a specific type of abnormalities. It is therefore that the CResNet model could be possibly18

extended to study other abnormalities when the datasets are available. We note that in order to perform accurate visualisation19

of salient features, it is vital to recognise that ECG morphology varies between subjects, and that, in some cases, indeed there20

are exceptions that it might not be possible to derive accurate diagnostic information from the ECG morphology features. To21

select representative features that are used for the diagnosis, we first use post-hoc analysis to calculate prediction probabilities22

for all the ECG recordings, and then screen them with a threshold of probability larger than 0.8, which represents an acceptable23

level of confidence that the model can accurately make the prediction using the features identified in the ECG test. In a further24

step, we present comprehensive results of the identified features across a large cohort of the population by providing statistical25

distributions of dominant leads that are derived from the salient features. We also note that in addition to hypertension screening26

using ECGs as presented in this study, there are many other life-threatening diseases to which the model could be applied, such27

as myocardial infarction, ventricular tachycardia or other cardiac conditions. Our future research will use the developed model to28

perform interpretation for other medical tasks in a wider diagnostic context. Additionally, it is well accepted that a DNN model29

is complex and highly nonlinear, and it is nearly impossible to explain the whole inference process of the decision making [1].30

The current study leverages the advances of techniques from image visualisation to derive salient features for automated ECG31

interpretation; the relationship between these different features and how they interact and lead to a comprehensive diagnosis are32

potentially valuable areas for more detailed investigation in future.33

In conclusion, we demonstrate an end-to-end deep learning model with cardiologist-level performance outperforming the34

state-of-the-art in medical diagnosis, and more importantly, the model provides an interpretation of ECG recordings that have35
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been used for decision making. Using a sufficiently large dataset (2.3 million ECGs collected from 1.6 million subjects), we vali-1

dated the performance of our model on three independent medical tasks, such as arrhythmia diagnosis, gender identification, and2

hypertension screening. We showed that our model provides substantial advantages to promote accurate diagnosis by producing3

visually salient features, and that in particular, it has potential to enhance the understanding of diagnostic decisions for different4

diseases, and to discover novel patient-relevant information from clinical data measurements.5
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4 Methods16

4.1 Data Acquisition and Annotation17

The present study uses a dataset consisting of standard 12-lead ECG recordings collected by the Telehealth Network of Minas18

Gerais (TNMG), a public healthcare system to provide tele-consultation and tele-diagnosis for 811 municipalities in the state19

of Minas Gerais, Brazil [38, 56]. The ECG recordings were mostly collected in primary care facilities during clinic visits20

between 2010 and 2016, which were performed either using the tele-electrocardiogram machine of model TEB (Tecnologia21

Eletrônica Brasileira, São Paulo, Brazil), or the ErgoPC 13 (Micromed Biotecnologia, Brasilia, Brazil). This study complies22

with all relevant ethical regulations, and the Research Ethics Committee of the Universidade Federal de Minas Gerais (Protocol23

49368496317.7.0000.5149) gave the ethical approval.24

The ECG tests were recorded for a duration of 7 to 10 seconds with sampling frequencies ranging from 300 to 600 Hz.25

To ensure consistency of the data format, the recordings were resampled with 400 Hz, and then zero-padded to the length of26

4,096 data points. The rescaled ECG recordings were stored in a structured database, namely the Clinical Outcomes in Digital27

Electrocardiology (CODE). A cohort of 2,322,513 ECG recordings were retrieved from the CODE dataset. We excluded low-28

quality ECGs (nECGs = 6,731) that had zero values for more than 80% of the data points, and used a total of 2,315,782 ECG29

recordings for the current study.30
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We obtained electronic health records for subjects in the CODE dataset by performing a link matching between the ECG31

tests and the national mortality information system, using a standard probabilistic linkage method (FRIL: Fine-grained record1

integration and linkage software, v.2.1.5, Atlanta, GA) [56, 57]. Hypertension in the health records was defined as a systolic2

blood pressure ≥ 140 mm Hg, or diastolic blood pressure ≥ 90 mm Hg, or self-declared use of anti-hypertensive medication.3

The data were anonymised after the linkage matching.4

Annotation of ECG recordings in the CODE dataset was performed by both trained professionals and computerised software5

[58] using the following procedures, (i) the sampled ECG recordings were first sent by internet to central servers, and a team6

of trained professionals used standardised criteria to generate free-text ECG reports [59], which were digitally recognised by a7

hierarchical free-text machine learning method [60]. The ECG reports were periodically audited by professionals to recognise8

medical errors and discordant interpretations; (ii) The Glasgow 12-lead ECG analysis program was used to analyse the ECG9

recordings [61], and generate the diagnosis results of the Glasgow Diagnostic Statements and Minnesota Code [61, 62]; (iii) The10

presence of a specific ECG abnormality was automatically considered when there was an agreement between the cardiologist11

report and the computerised diagnosis result. A manual review was performed when the two sources of diagnosis disagreed [56].12

The holdout testing dataset for model evaluation was independently and rigorously reviewed by two certified cardiologists,13

and the data label was obtained when annotations from the two professionals were matched; Where annotations did not match,14

a specialist was introduced to decide the diagnosis. We present the evaluation results of the two senior professionals in Table15

1A. We also calculate the Cohen’s kappa coefficient of the evaluation results from the two senior professionals [38]; values are16

0.741 for 1dAVb, 0.955 for RBBB, 0.964 for LBBB, 0.844 for SB, 0.831 for AF, and 0.902 for ST. These values demonstrate17

the inter-rater agreement for the two professionals, and we therefore use these evaluation results as the data labels. The testing18

dataset was also reviewed by three groups of junior cardiology professionals, i.e., two 4th year cardiology residents, two 3rd year19

emergency residents, and two 5th year medical students. To reduce the bias of ECG evaluation, the two professionals in each of20

the three groups were asked to annotate half of the testing dataset, and the concatenated performance scores were obtained for21

the three groups.22

4.2 Model Development23

Our method developed in this study consists of two modules; the first one is a DNN model that is used to make inference for24

the diagnosis, and architecture of the DNN model is illustrated in Extended Figures S2. The second module is an interpretation25

model to produce salient features for ECG recordings, and the flowchart is described in Extended Figures S3. As the DNN model26

is developed using the mechanism of the interpretation model, we next introduce the principles of developing an interpretation27

model with refined resolution, and then describe the details of developing the DNN model.28

4.2.1 Principles for Designing the Interpretation Model29

The interpretation model is developed using a refined gradient-weighted class activation mapping (Grad-CAM) module. The30

Grad-CAM assumes that the last convolutional (Conv) layer in a deep learning model represents higher-level visual content of31
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the input data [20, 63]. Then, the model calculates the gradient information with respect to the last Conv layer, and uses it to32

represent the importance of each kernel for the decision making.1

Formally, for the input data X and corresponding label y ∈ N c, a deep learning model with convolutional neural networks2

builds mapping for the input data and output label, f : X → y. The Grad-CAM model first computes the gradient score for class3

yc with respect to the feature map W in the last Conv layer [20, 63],4

αc
k =

Global average pooling︷ ︸︸ ︷
1
Z

∑
i

∑
j

∂yc

∂wk
i,j︸ ︷︷ ︸

Backprop gradients

, (1)

where, wk
i,j is the element of feature map W in the last Conv layer, αc

k is the calculated weight, which is used to weight the5

importance of the kth kernel in the feature map.6

Next, a coarse localisation heatmap can be obtained by a weighted combination of feature maps, and it is followed by an7

activation function,8

Lc
Grad-CAM = ReLU

(∑
k

αc
kW k

)
︸ ︷︷ ︸

Linear combination

. (2)

where, ReLu(·) is the rectified linear unit function [64], which is used to find a positive influence on the class of interests; matrix9

Lc
Grad-CAM is the calculated heatmap for the yc class, and the calculated heatmap has the same dimension of the kernel size.10

The Grad-CAM has been widely used for the interpretation of image data, however, as demonstrated in previous research, the11

target objects detected by the model include much irrelevant information [20, 21]. This is mostly due to the following reasons:12

(i) Dimension alignment. Generally, a deep learning model uses pooling layers to reduce the dimension of input data, this results13

in the heatmap calculated from the last Conv layer having a smaller size than the input data. To match the dimension between14

the learned heatmap and the input data, a linear mapping must be used for the alignment. For example, the VGG model is widely15

used for image processing [65]; it has a size of 224×224 for the input image, and the dimension of kernels in the last Conv layer16

is 14×14, which is one sixteenth of the size of the input image. Therefore, the VGG model needs to magnify the heatmap at17

sixteen times for each dimension, which indicates a large number of adjacent data points sharing the same value of heatmap, and18

thus reduces the resolution for the interpretation; (ii) Weight sharing. Other than the dimension alignment of the heatmap, weight19

sharing across different ECG leads in a deep learning model also affects the interpretive ability. For instance, the Conv kernels20

of DNN models in previous research learn kernel weights across all ECG leads [38], and it is therefore difficult to interpret21

each lead precisely using the shared weights. With these considerations, we develop the following techniques to obtain a refined22

resolution for the interpretation. In particular, we develop an isolation-integration strategy to allow the deep learning model to23

learn lead-wise weights from the ECG recording. This strategy is defined in the following steps:24

(i) At the isolation stage, in order to reduce the effect of weight sharing on the interpretation, we separate each of the 12 leads25

in an ECG recording, and use each isolated lead as an independent input to the model. This strategy allows the DNN model to26
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learn features precisely for each separated ECG lead, rather than shared weights across multiple channels;27

(ii) At the integration stage, we develop a stepwise strategy to combine the learned features from each ECG lead, which1

enables the DNN model to explore elaborate relationships between different ECG leads, and prompts a comprehensive decision2

for diagnosis using the combined information. Some previous research used a global pooling layer for feature integration,3

however, the temporal information of the learned features would lost due to this global pooling [48];4

(iii) For the dimension alignment, it is important to ensure a similar size between the calculated heatmap and the input data,5

which will reduce the effect of data alignment on visualising salient features. As the dimension reduction of a DNN model is6

mostly from the pooling process, we therefore use a minimum number of pooling layers in the feature learning stage. This results7

in the kernel size of the last Conv layer having a close dimension to the input data, and therefore produces a refined resolution8

for the interpretation.9

Using the above principles and utilising the residual deep neural networks [26, 38], we design a channel-wise residual deep10

learning model (CResNet). We present the details of developing the CResNet model in the next section.11

4.2.2 The CResNet Model and Network Training12

Following our developed isolation-integration strategy, we first separate each of the 12 leads in the ECG recording, and use the13

isolated leads as inputs to the deep learning model; Then, we develop modules using residual neural networks (ResNet) to learn14

latent features for each ECG lead, as the ResNet has shown promising performance on processing ECG recordings in literature15

[26, 38]; Next, we use the long short-term memory model (LSTM) to learn temporal information, as well as the relationships16

between different ECG leads; Finally, the integrated features of the 12 ECG leads are used for the model prediction.17

As illustrated in Extended Figure S2, our developed CResNet model has 12 channels for the model inputs, with each channel18

corresponding to one ECG lead. For each isolated input channel, we first use a Conv layer with 16 kernels to learn latent features19

from raw data of the ECG lead, which is followed by a batch normalisation (BN) layer, a rectified linear unit (ReLU) activation20

layer, and a max pooling layer. Next, we use four residual blocks to learn deep features from each lead, and each of the residual21

blocks consists of four repeated modules with the BN, ReLU, and Conv layers. In the first two residual blocks, the Conv layer22

has 16 kernels with a width size of 16; In the remaining two residual blocks, the Conv layer has 48 kernels and the width size of23

48. After the second residual block, we use a Conv layer with 48 kernels to align dimensions with the following third residual24

block. At the end of each channel, we use a Conv layer with 48 kernels to finish feature learning for the ECG lead.25

After learning features from the isolated input channels, the features are processed in the integration stage as illustrated26

in Extended Figure S2. We stepwise integrate the features to learn elaborate relationships between different ECG leads. We27

generate a feature matrix by concatenating the learned features from each of the isolated channels. As there is only one pooling28

layer used for each input channel in the isolation stage, the temporal dimension of the generated feature matrix in the concatenate29

layer is half the size of the input ECG recording. We note that the last Conv layer in each channel has the size of 48 kernels,30

and the generated feature matrix has a dimension of 576, which is obtained by concatenating Conv layers in the 12 ECG leads.31

Next, we learn relationships between different ECG leads using a bidirectional long short-term memory (BiLSTM) block and32
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two time-distributed dense layer (TD Dense) blocks. Both the BiLSTM block and TD Dense blocks consist of a max pooling33

layer (MaxP), an average pooling layer (AvgP), and a dropout layer. The BiLSTM block consists of two LSTM layers, one has1

a forward direction and the other has a reverse direction, and each LSTM layer has 64 cells in the hidden state. For the two TD2

Dense blocks, the first one has 64 units and the second block has 32 units. We then flatten layers of the TD Dense block followed3

by a fully connected layer with 128 units. Finally, we use a sigmoid function to calculate probability for the output of model4

prediction.5

The developed CResNet model is used to perform the three tasks in this study, i.e., ECG abnormality diagnosis, gender6

identification, and hypertension screening. We train the CResNet model independently for each of the three tasks, whilst keep7

the model architecture and hyperparameters the same for all the three tasks, i.e., the number of neurons, activation function,8

optimizer, batch size, and epochs. For the first task, the CResNet model has an output vector of six values, indicating the six9

types of ECG abnormalities; For the second task, the CResNet model has an output of a single value, indicating the probability10

of male or female; For the third task, the CResNet model also has an output of a single value, indicating the probability of11

hypertension presented for the subject.12

The neural network was trained using the loss of binary cross-entropy, which was minimized by the Adam optimizer with13

default parameters [66]. Hyper-parameters of the network architecture were chosen via a combination of grid search and manual14

tuning with the following considerations, the number of residual blocks {2, 4, 8}, kernel size for the Conv layer {16, 32, 48, 64},15

the number of BiLSTM blocks {1, 2, 4}, the size of pooling layers {2, 4}, dropout rate of {0, 0.2, 0.5, 0.6}, the mini batch size16

of {32, 64, 128}, initial learning rate of {10−2, 10−3, 10−4}, the number of epochs without improvement in plateaus between 717

and 15, which would result in a reduction of the learning rate by a factor of 10. After tuning the parameters with 300K samples18

a small scale of the dataset, we set a learning rate of 10−4 and use the whole dataset to train the model with a mini batch size19

of 128 samples, and the maximum number of epochs was set as 70. During the model training, a holdout set with 10% of the20

data was used for the validation. We tried different configurations of the model development, especially in the feature integration21

stage, such as the BiLSTM, LSTM, and TD Dense layers; and found that the combination of BiLSTM with two TD Dense layers22

shows good performance for the diagnosis. To reduce the effect of imbalanced classes in the dataset, we weighted each sample by23

multiplying a score of 2*log(nECGs
/

nClass), where nECGs indicates the total number of samples, and nClass is the size of samples in24

the class. A total of 20 Nvidia V100 GPUs in a high performance computing platform are available to train the CResNet model,25

which is located at the Institute of Biomedical Engineering, Department of Engineering Science, University of Oxford.26

4.2.3 The Interpretation Model and Visualisation27

The interpretation model is paired with the CResNet model, and it is used in post-hoc analysis to visualise salient features that28

have been used by the CResNet model for decision making. Figure S3 shows the flowchart of developing the interpretation model.29

For each of the 12 leads in an ECG recording, the data is first processed using the ResNet model with our proposed isolation30

strategy, and a feature matrix can be obtained by concatenating features from all of the 12 ECG leads; Then, the concatenated31

feature matrix is processed in the integration stage and used for the model prediction; Next, we use back propagation to compute32
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gradient for the prediction with respect to the concatenated feature matrix, and the gradient matrix can be obtained accordingly.33

Keep in mind, the concatenated feature matrix is computed using an isolated strategy, therefore the calculated gradient matrix1

can precisely weight Conv kernels for each of the 12 ECG leads. Next, we weight kernels in the concatenated feature matrix2

using the averaged gradient scores, which are then filtered by a ReLu function. Finally, the heatmap of feature importance can3

be obtained by performing the dimension alignment. Notably, because the concatenated feature matrix has a half size of the4

input ECG recording in the temporal direction, the calculated heatmap only needs to be magnified two times for the dimension5

alignment, which allows to produce salient features with a refined resolution for the interpretation of the ECG recording.6

4.3 Statistical and Empirical Analysis of Model Performance7

To evaluate the performance of our developed CResNet model on the three tasks, we calculate standard matrices of the testing8

results for each independent task. We compute the area under the receiver operating characteristic curve (AUC-ROC) to report9

the model performance; we also calculate the F1-score for the first task, as it has an imbalanced testing dataset, and the score10

is used to compare the performance of our model with the evaluation results from the cardiology professionals and the state-of-11

the-art model [38]. We calculate the micro average across different classes to report an overall score of the model performance,12

which computes the total true positives, false negatives, and false positives to obtain a comprehensive metric. The optimal cut-13

off point for the sensitivity and specificity scores is obtained by maximising the G-mean value, which is a geometric mean of14

the two scores [67]. We use the diagnostic odds ratio (DOR) to indicate the model’s ability of diagnosis, which is calculated15

as the positive likelihood ratio (sensitivity / (1-specificity)) to the negative likelihood ratio ((1-sensitivity) / specificity). A16

value of DOR larger than 1 indicates the model having the discriminatory test performance, with the DOR value correlating17

positively with better diagnosis performance [68]. We use the bootstrap method (repeated sampling for 1,000 times) to compute18

the 95% confidence interval (CI) and standard deviation for the calculated indices [21, 38]. We use two-sided McNemar’s χ2
19

test to evaluate differences between classification results for paired samples [38, 69, 70], and use Pearson’s χ2 test to evaluate20

differences for unpaired samples [71]. We also calculate Cohen’s kappa coefficient to test inter-rater/-model agreement [72]. We21

consider a p-value of less than 0.05 as statistically significant.22
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Extended Data Figures and Tables651

Extended Figure S1: Prevalence of ECG abnormalities in the CODE dataset (nSubjects = 1,558,772), including (a) first-degree
atrioventricular block (1dAVb), (b) right bundle branch block (RBBB), (c) left bundle branch block (LBBB), (d) sinus
bradycardia (SB), (e) atrial fibrillation (AF), and (f) sinus tachycardia (ST).
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Extended Table S1: Dataset and study population for the three tasks in this study (Numbers and percentages).

Training (90%) + Validation (10%) Testing

Task #1

Numbers of ECGs (Task #1): n = 2,315,728 n = 827

Abnormality

1dAVb 35,755 (1.54%) 28 (3.39%)

RBBB 63,522 (2.74%) 34 (4.11%)

LBBB 37,166 (1.60%) 30 (3.63%)

SB 37,904 (1.64%) 16 (1.93%)

AF 41,776 (1.80%) 13 (1.57%)

ST 49,852 (2.15%) 37 (4.47%)

Age

yr < 45 706,764 (30.52%) 225 (27.21%)

45 ≤ yr < 75 1,321,650 (57.07%) 500 (60.46%)

yr ≥ 75 287,368 (12.41%) 102 (12.33%)

Gender
Male 920,321 (39.74%) 321 (38.81%)

Female 1,395,461 (60.26%) 506 (61.19%)

Task #2

Numbers of ECGs (Task #2): n = 1,398,907 n = 155,435

Age

yr < 45 488,946 (34.95%) 54,341 (34.96%)

45 ≤ yr < 75 762,286 (54.49%) 84,640 (54.45%)

yr ≥ 75 147,675 (10.56%) 16,454 (10.59%)

Gender
Male 562,640 (40.22%) 62,922 (40.48%)

Female 836,267 (59.78%) 92,513 (59.52%)

Task #3

Numbers of ECGs (Task #3): n = 1,398,907 n = 155,435

Hypertension
Present 442,918 (31.66%) 49,202 (31.65%)

Non-present 955,989 (68.34%) 106,233 (68.35%)

Age

yr < 45 488,946 (34.95%) 54,341 (34.96%)

45 ≤ yr < 75 762,286 (54.49%) 84,640 (54.45%)

yr ≥ 75 147,675 (10.56%) 16,454 (10.59%)

Gender
Male 562,640 (40.22%) 62,922 (40.48%)

Female 836,267 (59.78%) 92,513 (59.52%)
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Extended Figure S2: The developed channel-wise residual deep neural networks (CResNet) for this study.

30

 . CC-BY-NC-ND 4.0 International licenseIt is made available under a 
perpetuity. 

 is the author/funder, who has granted medRxiv a license to display the preprint in(which was not certified by peer review)preprint 
The copyright holder for thisthis version posted November 1, 2022. ; https://doi.org/10.1101/2022.11.01.22281722doi: medRxiv preprint 

https://doi.org/10.1101/2022.11.01.22281722
http://creativecommons.org/licenses/by-nc-nd/4.0/


Extended Figure S3: The developed interpretation module for visualising salient features using Grad-CAM method. The figure
illustrates the pipeline of visualising salience information in the 12th lead of an ECG recording.
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Extended Figure S4: Interpretation for the diagnosis of left bundle branch block (LBBB) using the proposed CResNet model.
(a) The original calculated heatmaps for 12 ECG leads, with colour bar ranging from blue to red indicating the increasing
weights of importance. (b) The refined view of heatmaps for the DII and V6 leads with background colour removed. The
diagnosis criteria of LBBB include the absence of Q waves in lateral leads, notched R waves in lateral leads, and T wave
inversion [50, 51]. Our proposed CResNet model recognises these pathological morphologies successfully in the V6 lead. The
model also identifies other salient waves in the DII lead, such as the absence of Q waves, T inversion, and the segments before P
waves. Using the combination of salient waves in the 12 ECG leads, the CResNet model diagnoses the LBBB with the
probability of 0.974; While with the removal of the DII lead, we obtained a prediction probability of 0.886, indicating additional
knowledge derived from DII was missing. Notably, our model is very flexible in identifying the pathological morphologies. For
example, the morphologies in segments A and B have different time durations, and the CResNet model identifies the varying
lengths for the two segments successfully in the V6 lead.
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Extended Figure S5: Interpretation for the diagnosis of right bundle branch block (RBBB) using the proposed CResNet model.
(a) The original calculated heatmaps for 12 ECG leads, with colour bar ranging from blue to red indicating the increasing
weights of importance. (b) The refined view of heatmaps for V1 and V6 leads with background colour removed. For the
diagnosis of RBBB, the RSR′ pattern in the anterior precordial leads is an important criterion [50, 51]. Our proposed CResNet
model recognises the ‘M-shaped’ QRS complexes successfully in the V1 lead, and it also highlights the importance of J waves
in the V6 lead. Using the combined salient features, the CResNet model has a probability of 0.929 to diagnose the RBBB with
the ECG recording.
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Extended Figure S6: Interpretation for the diagnosis of first degree atrioventricular block (1dAVb) using the proposed
CResNet model. (a) The original calculated heatmaps for 12 ECG leads, with colour bar ranging from blue to red indicating the
increasing weights of importance. (b) The refined view of heatmaps for DII, AVR, and V6 leads with background colour
removed. For the diagnosis of 1dAVb, the criteria include prolonged PR interval, normal QRS, and normal rhythm [50, 51].
Because the QRS complex is normal, our proposed CResNet model highlights other morphologies for the diagnosis, such as the
T and P waves in the DII lead, and the segments after T waves in the AVR and V6 leads. Using the combination of salient
features, the CResNet model has a probability of 0.932 to diagnose the 1dAVb with the ECG recording.
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Extended Figure S7: Interpretation for the diagnosis of sinus bradycardia (SB) using the proposed CResNet model. (a) The
original calculated heatmaps for 12 ECG leads, with colour bar ranging from blue to red indicating the increasing weights of
importance. (b) The refined view of heatmaps for the DII and AVR leads with background colour removed. SB is defined as a
sinus rate below 50 bpm with otherwise normal P, QRS and T waves [50, 51]; while the prominent U waves were also reported
for asymptomatic SB in literature [42]. For the diagnosis of SB, our proposed CResNet model highlights the U waves in the
AVR lead and the downslops of T waves in the DII lead. Using the combination of salient features, the CResNet model has a
probability of 0.932 to diagnose the SB using the ECG recording.
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Extended Figure S8: Interpretation for the diagnosis of sinus tachycardia (ST) using the proposed CResNet model. (a) The
original calculated heatmaps for 12 ECG leads, with colour bar ranging from blue to red indicating the increasing weights of
importance. (b) The refined view of heatmaps for the DII, AVR, V2, and V6 leads with background colour removed. ST is the
sinus rhythm with a heart rate greater than 100/min, and it has normal P wave preceding every QRS complex [50, 51]. For the
diagnosis of ST, our proposed CResNet model highlights the downslops of T and P waves in the DII lead, T waves in the AVR
lead, and ST segments in the V2 and V6 leads. Using the combination of salient features, the CResNet model has a probability
of 0.948 to diagnose the ST with the ECG recording.
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Extended Figure S9: Confusion matrices for the diagnosis of ECG abnormalities in the holdout testing dataset using 12-lead
ECGs, including (a) first-degree atrioventricular block (1dAVb), (b) right bundle branch block (RBBB), (c) left bundle branch
block (LBBB), (d) sinus bradycardia (SB), (e) atrial fibrillation (AF), and (f) sinus tachycardia (ST).
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Extended Table S2: Performance comparison for the diagnosis of ECG abnormalities with the McNemar’s test.

McNemar’s χ2 test (p-value)

1dAVb RBBB LBBB SB AF ST

CResNet vs Cardio. Rd.
4.9231 1.5000 0.2500 0.0000 4.1667 0.4444

(0.0265) (0.2207) (0.6171) (1.0000) (0.0412) (0.5050)

CResNet vs Emerg. Rd.
12.5000 3.2727 0.1667 0.1250 5.1429 0.0000
(0.0004) (0.0704) (0.6831) (0.7237) (0.0233) (1.0000)

CResNet vs Medical Sd.
12.1905 0.8000 0.1250 0.4444 8.1000 0.9000
(0.0005) (0.3711) (0.7237) (0.5050) (0.0044) (0.3428)

CResNet vs Cardio. #1
4.0833 0.0000 0.0000 0.1250 1.3333 0.0833

(0.0433) (1.0000) (1.0000) (0.7237) (0.2482) (0.7728)

CResNet vs Cardio. #2
0.1667 0.5000 1.3333 0.1250 1.3333 0.1000

(0.6831) (0.4795) (0.2482) (0.7237) (0.2482) (0.7518)

CResNet vs DNN Comp [38]
1.1250 0.5000 1.3333 0.0000 1.3333 0.5000

(0.2888) (0.4795) (0.2482) (1.0000) (0.2482) (0.4795)

*The table shows the two-sided McNemar’s χ2 test [38, 69, 70] and p-values for the performance comparison between our proposed
CResNet model and other evaluation results, including Cardio. Rd.: 4th year cardiology residents; Emerg. Rd.: 3rd year emergency
residents; Medical Sd.: 5th year medical students; Cardio. #1: the 1st cardiologist; Cardio. #2: the 2nd cardiologist; DNN Comp: the
state-of-the-art benchmark model developed in [38]. The bold-faced values denote statistical significance (p < 0.05) for the comparison
of paired evaluation results.
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Extended Table S3: Performance comparison for the diagnosis of ECG abnormalities with Cohen’s kappa coefficient.

Cohen’s kappa coefficient

1dAVb RBBB LBBB SB AF ST

CResNet vs Cardio. Rd. 0.737 0.915 0.926 0.869 0.766 0.864

CResNet vs Emerg. Rd. 0.716 0.819 0.889 0.785 0.691 0.930

CResNet vs Medical Sd. 0.699 0.926 0.857 0.751 0.700 0.855

CResNet vs Cardio. #1 0.792 0.956 0.909 0.760 0.868 0.816

CResNet vs Cardio. #2 0.889 0.970 0.947 0.760 0.887 0.855

CResNet vs DNN Comp [38] 0.862 0.972 0.947 0.921 0.868 0.972

*The table shows Cohen’s kappa coefficients [72] for the performance comparison between our proposed CResNet model and other
evaluation results, including Cardio. Rd.: 4th year cardiology residents; Emerg. Rd.: 3rd year emergency residents; Medical Sd.: 5th

year medical students; Cardio. #1: the 1st cardiologist; Cardio. #2: the 2nd cardiologist; DNN Comp: the state-of-the-art benchmark
model developed in [38]. The Cohen’s kappa coefficient is used to calculate the inter-rater agreement between paired measures, with a
value closer to 1 indicating a higher agreement between the two measures.
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Extended Table S4: Model performance on the external dataset retrieved from the PhysioNet/CinC 2017 Challenge.

Precision Recall F1-score Support

AF 0.885 0.979 0.929 n = 47

Normal 0.869 0.939 0.903 n = 148

Other rhythms 0.933 0.646 0.764 n = 65

Noise 0.972 0.875 0.921 n = 40

micro avg 0.894 0.873 0.884 n = 300

macro avg 0.915 0.860 0.879 n = 300

weighted avg 0.899 0.873 0.879 n = 300

*The PhysioNet dataset contains ECG recordings with varied lengths of data points. We either truncate or
zero pad the ECG recordings to match with those in the Brazilian ECG dataset. Each resulted ECG recording
therefore has a total of 4,096 data points with a sampling frequency of 300 Hz. We test the model on the
holdout benchmark validation dataset, as the competition was closed and the standard testing dataset is not
publicly available; While an average F1-score of 0.83 is the best performance of models in the competition
[73]. The micro average (micro avg) in the table computes the score across different classes, and it calculates
the total true positives, false negatives, and false positives to obtain a comprehensive metric; The macro average
(macro avg) is defined as the arithmetic mean of all scores of different classes; The weighted average (weighted
avg) computes the score considering the proportion of samples in each class.
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Extended Figure S10: Interpretation for identifying female subject using our developed CResNet model. (a) The original
calculated heatmaps for 12 ECG leads, with colour bar ranging from blue to red indicating the increasing weights of importance.
(b) The refined view of the DII, V1, and V5 leads with background colour removed. Using the combination of salient features,
the CResNet model has a probability of 0.971 to identify gender for the female subject using the ECG recording.
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Extended Figure S11: Interpretation for identifying male subject using our developed CResNet model. (a) The original
calculated heatmaps for 12 ECG leads, with colour bar ranging from blue to red indicating the increasing weights of
importance. (b) The refined view of the DI, V4, V5, and V6 leads with background colour removed. Using the combination of
salient features, the CResNet model has a probability of 0.981 to identify gender for the male subject using the ECG recording.
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Extended Figure S12: Distributions of dominant leads for gender identification using our developed CResNet model. (a)
Distribution for young-age male subjects (yr < 45). (b) Distribution for middle-age male subjects (45 ≤ yr < 75). (c)
Distribution for old-age male subjects (yr ≥ 75). (d) Distribution for young-age female subjects (yr < 45). (e) Distribution for
middle-age female subjects (45 ≤ yr < 75). (f) Distribution for old-age female subjects (yr ≥ 75). We annotate the number of
occurrences when the dominant lead accounts for more than 10% of all the 12 ECG leads. The number of occurrences is
presented as mean and standard deviation.
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Extended Figure S13: Confusion matrices of gender identification for the CResNet model using 12 ECG leads, dominant V3,
V5, and V6 leads, and dominant V3 and V5 leads. (a)-(c) Performance comparison in the whole population. (d)-(f)
Performance comparison young-age group (yr < 45). (g)-(i) Performance comparison in the middle-age group (45 ≤ yr < 75).
(j)-(l) Performance comparison in the old-age group (yr ≥ 75).

44

 . CC-BY-NC-ND 4.0 International licenseIt is made available under a 
perpetuity. 

 is the author/funder, who has granted medRxiv a license to display the preprint in(which was not certified by peer review)preprint 
The copyright holder for thisthis version posted November 1, 2022. ; https://doi.org/10.1101/2022.11.01.22281722doi: medRxiv preprint 

https://doi.org/10.1101/2022.11.01.22281722
http://creativecommons.org/licenses/by-nc-nd/4.0/


Extended Figure S14: Model performance on gender identification using dominant ECG leads for young-age group (yr < 45).
(a) The ROC and AUC scores for gender identification using different combinations of dominant leads. (b) The distribution of
DOR values (95% CI) for model performance on gender identification using different combinations of dominant leads.
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Extended Table S5: Performance comparison of gender identification for young-age group (yr < 45) using dominant leads.

Dominant ECG Leads
Sensitivity Specificity AUC Score
(95% CI) (95% CI) (95% CI)

Lead: V5
0.851 0.886 0.939

(0.845-0.878) (0.860-0.893) (0.936-0.940)

Leads: V5, V6
0.878 0.887 0.948

(0.871-0.884) (0.881-0.894) (0.946-0.950)

Leads: DI, V5
0.881 0.896 0.952

(0.876-0.891) (0.886-0.901) (0.950-0.953)

Leads: V3, V5
0.912 0.914 0.965

(0.899-0.924) (0.902-0.927) (0.964-0.967)

Leads: V3, V5, V6
0.916 0.916 0.967

(0.909-0.920) (0.912-0.923) (0.965-0.968)

Leads: DI, V3, V5
0.914 0.932 0.970

(0.910-0.930) (0.918-0.936) (0.969-0.972)
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Extended Figure S15: Model performance of gender identification using dominant ECG leads for middle-age group (45
≤ yr < 75). (a) The ROC and AUC scores for gender identification using different combinations of dominant ECG leads. (b)
The distribution of DOR values (95% CI) for model performance on gender identification using different combinations of
dominant leads.
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Extended Table S6: Performance comparison of gender identification for middle-age group (45 ≤ yr < 75) using dominant
ECG leads.

Dominant ECG Leads
Sensitivity Specificity AUC Score
(95% CI) (95% CI) (95% CI)

Lead: V5
0.814 0.809 0.891

(0.807-0.822) (0.801-0.815) (0.888-0.893)

Leads: V5, V6
0.833 0.817 0.904

(0.805-0.836) (0.815-0.844) (0.902-0.906)

Leads: DI, V5
0.853 0.837 0.919

(0.835-0.860) (0.829-0.854) (0.917-0.921)

Leads: V3, V5
0.857 0.862 0.930

(0.844-0.867) (0.852-0.875) (0.928-0.932)

Leads: V3, V5, V6
0.861 0.868 0.934

(0.848-0.872) (0.858-0.882) (0.933-0.936)

Leads: DI, V3, V5
0.878 0.879 0.944

(0.869-0.886) (0.871-0.888) (0.942-0.945)
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Extended Figure S16: Model performance of gender identification using dominant ECG leads for old-age group (yr > 75). (a)
The ROC and AUC scores for gender identification using different combinations of dominant leads. (b) The distribution of
DOR values (95% CI) for model performance on gender identification using different combinations of dominant leads.
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Extended Table S7: Performance comparison of gender identification for old-age group (yr ≥ 75) using dominant leads.

Dominant ECG Leads
Sensitivity Specificity AUC Score
(95% CI) (95% CI) (95% CI)

Lead: V5
0.718 0.727 0.800

(0.705-0.753) (0.694-0.741) (0.793-0.806)

Leads: V5, V6
0.758 0.716 0.816

(0.716-0.777) (0.700-0.759) (0.809-0.822)

Leads: DI, V5
0.768 0.771 0.852

(0.756-0.820) (0.723-0.784) (0.846-0.858)

Leads: V3, V5
0.780 0.763 0.854

(0.732-0.800) (0.745-0.813) (0.849-0.860)

Leads: V3, V5, V6
0.794 0.767 0.861

(0.762-0.803) (0.759-0.798) (0.856-0.866)

Leads: DI, V3, V5
0.786 0.822 0.885

(0.781-0.834) (0.777-0.828) (0.880-0.890)
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Extended Figure S17: Interpretation for hypertension screening using our developed CResNet model. (a) The original
calculated heatmaps for 12 ECG leads, with colour bar ranging from blue to red indicating the increasing weights of
importance. (b) The refined view of the DII and V1 leads with background colour removed. Using the combination of salient
features, the CResNet model has a probability of 0.902 to screen hypertension for the subject using the ECG recording.
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Extended Figure S18: Distributions of dominant ECG leads for hypertension screening using our developed CResNet model.
(a) Distribution of dominant leads for female subjects. (b) Distribution of dominant leads for male subjects. We annotate the
number of occurrences when the dominant lead accounts for more than 10% of all the 12 ECG leads. The number of
occurrences is presented as mean and standard deviation.
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Extended Figure S19: Model performance on hypertension screening in different populations using the dominant DII and V1
leads. (a) The ROC and AUC scores for hypertension screening in different populations. (b) The distribution of DOR values
(95% CI) for model performance on hypertension screening in different populations.
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Extended Table S8: Performance comparison for hypertension screening using dominant DII and V1 ECG leads in terms of
age and gender differences.

Population Groups
Sensitivity Specificity AUC Score
(95% CI) (95% CI) (95% CI)

Female, yr < 45
0.705 0.730 0.783

(0.682-0.728) (0.709-0.753) (0.776-0.790)

Male, yr < 45
0.665 0.734 0.756

(0.650-0.718) (0.677-0.742) (0.747-0.765)

Female, 45 ≤ yr < 75
0.799 0.716 0.814

(0.781-0.814) (0.703-0.735) (0.810-0.818)

Male, 45 ≤ yr < 75
0.794 0.676 0.790

(0.748-0.801) (0.670-0.718) (0.786-0.795)

Female, yr ≥ 75
0.866 0.731 0.835

(0.844-0.885) (0.713-0.751) (0.827-0.844)

Male, yr ≥ 75
0.845 0.692 0.803

(0.822-0.866) (0.672-0.712) (0.793-0.814)
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Extended Figure S20: Confusion matrices for hypertension screening using 12 ECG leads, and the dominant DII and V1 leads.
(a)-(c) Performance comparison of hypertension screening using 12-lead ECGs in different populations. (d)-(f) Performance
comparison of hypertension screening using dominant ECG leads in different populations.
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Extended Figure S21: Model performance on hypertension screening using 12 ECG leads and dominant ECG leads in terms of
gender differences. (a) The ROC and AUC scores for hypertension screening using 12 ECG leads and dominant ECG leads. (b)
The distribution of DOR values (95% CI) for model performance on hypertension screening using 12 ECG leads and dominant
ECG leads.
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Extended Table S9: Performance comparison on hypertension screening using different ECG leads in terms of gender
differences.

ECG Leads & Gender Differences
Sensitivity Specificity AUC Score
(95% CI) (95% CI) (95% CI)

All 12 leads, Male
0.758 0.764 0.823

(0.745-0.772) (0.752-0.778) (0.820-0.827)

Leads: DII, V1, Male
0.763 0.740 0.812

(0.744-0.775) (0.729-0.760) (0.808-0.816)

All 12 leads, Female
0.777 0.797 0.849

(0.769-0.791) (0.784-0.805) (0.847-0.852)

Leads: DII, V1, Female
0.781 0.767 0.837

(0.765-0.787) (0.763-0.783) (0.834-0.840)
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Extended Figure S22: Model performance on hypertension screening using 12 ECG leads and dominant ECG leads in terms of
age differences. (a) The ROC and AUC scores for hypertension screening using 12 ECG leads and dominant ECG leads. (b)
The distribution of DOR values (95% CI) for model performance on hypertension screening using 12 ECG leads and dominant
ECG leads.
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Extended Table S10: Performance comparison on hypertension screening using different ECG leads in terms of age
differences.

ECG Leads & Age Differences
Sensitivity Specificity AUC Score
(95% CI) (95% CI) (95% CI)

All 12 leads, Age: < 45
0.714 0.736 0.791

(0.687-0.736) (0.717-0.763) (0.785-0.796)

Leads: DII, V1, Age: < 45
0.691 0.730 0.773

(0.678-0.711) (0.710-0.740) (0.767-0.779)

All 12 leads, Age: 45 ≤ yr < 75
0.794 0.725 0.817

(0.774-0.798) (0.721-0.744) (0.814-0.820)

Leads: DII, V1, Age: 45 ≤ yr < 75
0.782 0.713 0.805

(0.770-0.809) (0.690-0.724) (0.802-0.808)

All 12 leads, Age: ≥ 75
0.847 0.733 0.829

(0.831-0.865) (0.717-0.749) (0.822-0.836)

Leads: DII, V1, Age: ≥ 75
0.857 0.713 0.823

(0.844-0.874) (0.697-0.726) (0.816-0.829)
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Extended Figure S23: Model performance on hypertension screening using different combinations of dominant ECG leads in
terms of gender differences. (a) The ROC and AUC scores for hypertension screening using different dominant ECG leads. (b)
The distribution of DOR values (95% CI) for model performance on hypertension screening using different dominant ECG
leads.
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Extended Table S11: Performance comparison for hypertension screening using different dominant ECG leads in terms of
gender differences.

ECG Leads & Gender Differences
Sensitivity Specificity AUC Score
(95% CI) (95% CI) (95% CI)

Lead: V1, Male
0.751 0.731 0.802

(0.738-0.764) (0.719-0.746) (0.798-0.806)

Leads: DII, V1, Male
0.763 0.740 0.812

(0.744-0.775) (0.729-0.760) (0.808-0.816)

Lead: V1, Female
0.782 0.743 0.826

(0.751-0.793) (0.733-0.773) (0.823-0.829)

Leads: DII, V1, Female
0.781 0.767 0.837

(0.765-0.787) (0.763-0.783) (0.834-0.840)
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