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Abstract 

We employed machine learning (ML) approaches to evaluate 2,199 clinical features and disease phenotypes 
available in the UK Biobank as predictors for Atrial Fibrillation (AF) risk. After quality control, 99 features were 
selected for analysis in 21,279 prospective AF cases and equal number of controls. Different ML methods were 
employed, including LightGBM, XGBoost, Random Forest (RF), Deep Neural Network (DNN),) and Logistic 
Regression with L1 penalty (LR). In order to eliminate the black box character of the tree-based ML models, 
we employed Shapley-values (SHAP), which are used to estimate the contribution of each feature to AF 
prediction. The area-under-the-roc-curve (AUROC) values and the 95% confidence intervals (CI) per model 
were: 0.729 (0.719, 0.738) for LightGBM, 0.728 (0.718, 0.737) for XGBoost, 0.716 (0.706,0.725) for DNN, 0.715 
(0.706, 0.725) for RF and 0.622 (0.612, 0.633) for LR. Considering the running time, memory and stability of 
each algorithm, LightGBM was the best performing among those examined. DeLongs test showed that there 
is statistically significant difference in the AUROCs between penalised LR and the other ML models. Among 
the top important features identified for LightGBM, using SHAP analysis, are the genetic risk score (GRS) of AF 
and age at recruitment. As expected, the AF GRS had a positive impact on the model output, i.e. a higher AF 
GRS increased AF risk. Similarly, age at recruitment also had a positive impact increasing AF risk. Secondary 
analysis was performed for the individuals who developed ischemic stroke after AF diagnosis, employing 129 
features in 3,150 prospective cases of people who developed ischemic stroke after AF, and equal number of 
controls in UK Biobank. The AUC values and the 95% CI per model were: 0.631 (0.604, 0.657) for XGBoost, 
0.620 (0.593, 0.647) for LightGBM, 0.599 (0.573, 0.625) for RF, 0.599 (0.572, 0.624) for SVM, 0.589 (0.562, 
0.615) for DNN and 0.563 (0.536, 0.591) for penalised LR. DeLongs test showed that there is no evidence for 
significant difference in the AUROCs between XGBoost and all other examined ML models but the penalised 
LR model (pvalue=2.00 E-02). Using SHAP analysis for XGBoost, among the top important features are age at 
recruitment and glycated haemoglobin. DeLongs test showed that there is evidence for statistically significant 
difference between XGBoost and the current clinical tool for ischemic stroke prediction in AF patients, 
CHA2DS2-VASc (pvalue=2.20E-06), which has AUROC and 95% CI of 0.611 (0.585, 0.638). 

 

Introduction 

Atrial fibrillation (AF) is the most common cardiac arrythmia, which is characterised by a rapid and irregular 

heartbeat [1-5]. The incidence of AF is increasing rapidly with 12.1 million people expected to be affected by 

2030 [6]. This is mainly attributed to the ageing of the population, along with changes in lifestyle [5, 7, 8]. AF, 

besides doubling the risk of cardiovascular mortality, is associated with increased risk of stroke, ischemic heart 

disease, heart failure and cognitive dysfunction [1, 4, 8, 9]. More specifically, AF quintuple the risk for ischemic 

stroke, independent of age [6, 10]. Additionally, the contribution of AF to ischemic stroke increases 

exponentially with age; a 1.5% attribution at 50-59 years reaches 23.5% for the age range 80-89 [6]. However, 

AF is sometimes asymptomatic, and thus remains undetected [3, 5], and subsequently the ischemic stroke risk 

attributed to AF is under-estimated [6, 11].  
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In recent years, machine learning (ML) algorithms have gained popularity in the field of medicine and 

specifically in disease prediction, classification of medical images and diagnosis. ML models use a hypothesis-

free approach; there are no prior assumptions either among the input features or between the features and 

the outcome. Thus, it is possible to reveal new features, along with non-linear associations amongst them, 

which would have not been discovered using traditional statistical models. ML models have been proven to 

improve the accuracy of disease prediction, although they have a "black box" character and a different way of 

interpretating results than the traditional models [12-15].  

There have been several studies that employed ML methods for prediction of circulatory diseases. A recent 

study by Raghunathan et al. [16] employed Deep Neural Networks (DNN) in 430,000 patients recorded in 

Geisinger's clinical MUSE database between 1984 to 2019 with no history of AF, within 1-year of an ECG, and 

reported a model for AF prediction with an area under the receiver operating characteristic (AUROC) of 0.85. 

They also reported that 62% of patients who had a stroke caused by AF within 3 years of an ECG, with no prior 

AF diagnosis, would have been identified by their prediction tool before the stroke occurred. Another study 

by Su et al. [17] employed four ML models to predict modified Rankin Scale (mRS) at hospital discharge and 

in-hospital deterioration for acute ischemic stroke patients enrolled on the Stroke Registry in Chang Gung 

Healthcare System (SRICHS). Random Forest (RF) performed well in both outcomes; the AUROC was 0.829 for 

discharge mRS and 0.710 for in-hospital deterioration. 

The aim of this study is to develop ML models for prediction of: 1) AF and 2) ischemic stroke in patients with 

AF, using UK-Biobank’s real-world clinical data, questionnaires, hospital episode statistics data and genomic 

data. To achieve this, five types of ML models, including extreme gradient boosting (XGBoost) [18], light 

gradient boosting machine (LightGBM) [19], RF [20], support vector machine (SVM) [21], DNN [22], and 

penalised logistic regression (LR) [23] as a baseline model, were constructed, and their predictive 

performances were compared. Besides the comparison of the model performances, we also focused on the 

ranking of feature importance by employing the SHapley Additive exPlanations (SHAP) [24], in order to unravel 

each feature’s contribution both to AF and to ischemic stroke prediction in AF patients.  

Methods 

Overview of the research framework 

We included clinical data, phenotypes, lifestyle, and medications from the UKB. We imputed the missing values 

and employed a feature selection process, described in more detail at Data pre-processing section, in order to 

reduce the number of features employed to the ones relative to the outcome. Then six models, including 

XGBoost, LightGBM, RF, SVM, DNN and penalised LR were used to create the predictive models. The model’s 

hyperparameters were optimised using 10-fold cross validation at the training dataset, which was the 80% of 

the original one. The ML models were validated on the test dataset and their performances were compared. 

Lastly, we employed the SHAP explanations to reveal the features’ contributions to the prediction. 

Data pre-processing 

We examined the UKB, a prospective cohort of 502,492 participants, aged 37-73 years old, recruited between 

2006 and 2010. The dataset includes blood measurements, clinical assessments, anthropometry, cognitive 

function, hearing, arterial stiffness, hand grip strength, sociodemographic factors, lifestyle, family history, 

psychosocial factors and dietary intake [25]. Related individuals were removed, and the remaining dataset for 

analysis included 454,118 participants. Furthermore, we incorporated medications as features, derived from 

field 20003 (https://biobank.ndph.ox.ac.uk/showcase/field.cgi?id=20003). Additionally, clinical data were 

employed, coded in ICD10, derived from the Hospital Episodes Statistics (HES), which are linked to the UKB. 

From these, we constructed phenotype codes or “phecodes”, using a phecode map [26], which are aggregated 

ICD10 codes defining specific diseases or traits. We employed only the umbrella phecode categories. Detailed 
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list of all the features that we examined can be found at the Supplementary_Material.xlsx (Table_S1, Table_S2, 

Table_S3). Moreover, we created two polygenic scores (PGS) which were included as features for the 

prediction of ischemic stroke in people with AF. The first one is the AF score, based on 94 genome-wide 

variants derived from the Roseli et al. [27] genome-wide association study (GWAS) for AF. The second is the 

Ischemic STROKE score, based on 28 genome-wide variants derived from the Malik et al. [28] GWAS for 

ischemic stroke. The AF SCORE was also employed as a feature both for the prediction of AF and for the 

ischemic stroke in AF patients.  

The investigator phenotypes dataset from UKB includes 2,199 fields for 454,118 participants. We set answers 

“Do not know” and “Prefer not to answer” as NA and removed features that had more than 25% missingness, 

resulting in 390 investigator phenotypes. Afterwards, we imputed the missing values using a multivariate 

imputer that estimates each feature from all the others, using IterativeImputer from Python [29]. Then, we 

added 419 phecodes, available for 278,177 participants, derived from HES in UKB. Lastly, we added the 

medications from field 20003 (https://biobank.ndph.ox.ac.uk/showcase/field.cgi?id=20003), after applying 

one-hot-encoding, resulting in 1,289 medications for 294,698 participants.  

Next, we decided to balance the outcome sample size, since imbalanced data has a negative impact on ML 

procedures [30]. The classification algorithms have the tendency to get biased estimates towards the majority 

class, ignoring the minority class. This happens because most of the classifying methods aim to maximize the 

accuracy rate, meaning the number of correctly classified observations [31, 32]. Therefore, we employed the 

fixed under-sampling technique from Python [33], which is a process for reducing the number of samples in 

the majority class; the control group in our case. The algorithm randomly selects samples from the control 

group, in order to have equal representation of both classes. After balancing the outcome, we used 

VarianceThreshold from Python [29], which eliminates all features whose variance does not meet a threshold 

of 90%. Additionally, we removed the continuous correlated fields using Pearson correlation, at a 0.8 

threshold; features strongly correlated with the outcome were maintained. Next, we performed feature 

selection in order to reduce the computational cost via dimensionality reduction [34], achieve higher 

classification accuracy by eliminating the noise, and include the most relevant features for the disease 

prediction. A recent paper by Ramos-Pérez et al. [35], suggests that the best practice is for the fixed under-

sampling technique to precede the feature selection. Therefore, we filtered all the remaining features using 

recursive feature elimination with cross-validation from Python [29] in order to find the optimal number of 

features to include in the ML models. 

Outcome-AF 

We removed participants from the UKB that had cardiac dysrhythmias before the time of enrolment, with one 

or more of the following codes: non-cancer illness code, self-reported (1471, 1483); operation code (1524); 

diagnoses – main/secondary ICD10 (I44, I44.1-I44.7, I45, I45.0-I45.6, I45.8-I45.9, I46, I46.2, I46.8-I46.9, I47, 

I47.0-I47.2, I47.9, I48, I48.0-4, I48.9, I49, I49.0-I49.5, I49.8-I49.9, R00.0, R00.1, R00.2, R94.3, Z86.7, Z95.0, 

Z95.8-Z95.9); underlying (primary/secondary) cause of death: ICD10 (I44, I44.1-I44.7, I45, I45.0-I45.6, I45.8-

I45.9, I46, I46.2, I46.8-I46.9, I47, I47.0-I47.2, I47.9, I48, I48.0-4, I48.9, I49, I49.0-I49.5, I49.8-I49.9, I60-I61, I63-

I64 (NOT I63.6), R00.0, R00.1, R00.2, R94.3, Z86.7, Z95.0, Z95.8-Z95.9); diagnoses – main/secondary ICD9 

(4273, 430, 431, 4339, 4340, 4341, 4349, 436); operative procedures – main/secondary OPCS (K57.1, K62.1-

4). In total, 20,584 participants were excluded, having at least one of the above conditions, before enrolment 

in the UKB.  

AF cases were defined when having one or more of the following codes: non-cancer illness code, self-reported 

(1471, 1483); operation code (1524); diagnoses – main/secondary ICD10 (I48, I48.0-4, I48.9); underlying 

(primary/secondary) cause of death: ICD10 (I48, I48.0-4, I48.9); operative procedures – main/secondary OPCS 
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(K57.1, K62.1-4). In total, 21,279 people developed one of the conditions described above, after enrolment in 

the UKB.  

Based on the data pre-processing described above, 21,279 prospective AF cases and equal number of controls, 

along with 99 features were included in the ML models (Supplementary_Material.xlsx, Table_S4). Table 1 

includes the baseline characteristics of the examined participants.  

Table 1:Baseline characteristics for the 21,279 prospective AF cases and equal number of controls.  

 Total AF cases AF controls 

Sex    

Females 20231 (47.5%)   8122 (38.2%) 12109 (56.9%) 

Males 22327 (52.5%) 13157 (61.8%)   9170 (43.1%) 

Age (mean, sd)       59 (8)        62 (6)        57 (8) 

Ethnicity    

EUR 41042 (96.9%) 20791 (97.7%) 20251 (95.0%) 

AFR     535 (1.2%)     154 (0.7%)      381 (1.8%) 

EAS     127 (0.3%)       31 (0.2%)        96 (0.5%) 

SAS      854 (1.6%)     303 (1.4%)      551 (2.7%) 

Comorbidities    

Diabetes   6434 (15.1%)   4423 (20.8%)   2011 (9.5%) 

Hypertension 22019 (51.7%) 14810 (69.6%)   7209 (33.9%) 

Smoking    

    Never 23273 (54.7%) 11627 (54.6%) 11646 (54.7%) 

    Previous 14791 (34.8%)   7389 (34.7%)   7402 (34.8%) 

    Current   4494 (10.6%)   2263 (10.6%)   2231 (10.5%) 

Cholesterol lowering 
medication 

  7459 (17.5%)   3712 (17.4%)   3747 (17.6%) 

History of heart 
diseases 

21102 (49.6%) 11233 (52.8%)   9869 (46.4%) 

History of stroke 12317 (28.9%)   6581 (30.9%)   5736 (26.9%) 

 

Outcome-AF & Stroke 

Cases were defined as participants who developed ischemic stroke after AF diagnosis in the UKB with one or 

more of the following codes: diagnoses – main/secondary ICD10 (I63, I63.0-9, I64); diagnoses – 

main/secondary ICD9 (434, 436); underlying (primary/secondary) cause of death: ICD10 (I63, I63.0-9, I64). 

Thus, 3,150 people developed ischemic stroke after AF diagnosis and were included as cases, and the controls 

were people diagnosed with AF and did not develop stroke, as far as the data allow us to know.  

Based on the data pre-processing described above, 3,150 prospective cases who developed stroke after AF 

diagnosis and equal number of controls were included, along with 129 features were included in the ML 

models (Supplementary_Material.xlsx, Table_S7). 

Machine learning models 

XGBoost 

XGBoost is a “scalable machine learning system for tree boosting” [18]. This machine learning technique 

handles sparse data, incorporating a novel tree learning algorithm, runs ten times faster than similar 

algorithms, using parallel and distributed computing, and employs out-of-core computation, allowing the 

manipulation of massive datasets [18, 36]. In more detail, XGBoost uses regression trees in a sequential 
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learning process as weak learners into a single strong model, where each tree attempts to correct the residuals 

in the predictions made by previous trees. Regression trees include a continuous score on each leaf, which is 

the last node once the tree has grown. For a specific observation, the algorithm uses the decision rules in the 

trees to classify it into the leaves. The sum of the scores on each leaf is the final prediction [15, 18, 37].  

LightGBM 

Machine learning methods relying on Gradient Boosting Decision Tree (GBDT) scan all the data instances, for 

all the features, in order to calculate the information gain for each possible split. As a result, the computational 

time and complexity will increase as the features accumulate. To this end, LightGBM [19] is introduced, which 

is an improved and lighter version of XGBoost. There are two techniques incorporated at LightGBM algorithm 

that contribute towards this improvement. Firstly, in the Gradient-based One-Side Sampling (GOSS) technique, 

instances that have larger gradients contribute more to the information gain, and the instances with smaller 

gradients are randomly sampled to provide accurate and fast estimation. Secondly, the Exclusive Feature 

Bundling (EFB) technique reduces the number of effective features. For datasets that are sparse, many 

features are mutually exclusive; they will rarely take nonzero values at the same time. Therefore, to reduce 

the dataset's dimensions, such features are tied into one, reducing complexity of the algorithm [17, 19, 38, 

39].  

Random Forests (RF) 

Random forest is a popular ensemble learning method using bootstrap aggregation (bagging) and feature 

randomness, in order to build an uncorrelated forest of several decision trees [20]. At the bagging step, each 

one of the decision trees is constructed from a random sample, drawn with replacement, from the training 

set. Once the tree is built, then a random subset of features is employed to split each node, which results in 

low correlation among the decision trees. Afterwards, the final prediction of RF is the result of the majority 

voting of all decision trees, leading to more accurate results [12, 17, 40].  

Deep Neural Networks (DNN) 

Deep learning is a subdomain of ML attempting to learn many levels of representation using multiple layers. 

These layers transform the data in a non-linear way, and as a result, more complex structure and relationships 

can be discovered. This method is inspired by the human brain, using a series of connected layers of neurons 

that constitute a whole network, including at least three layers: input, hidden and output. The input layer 

consists of multiple neurons, which use as input the original features. Then, the hidden layers can be more 

than one, depending on the complexity of the dataset. Each layer includes multiple nodes, and each node from 

the previous layer is connected to each one from the next layer, constituting a fully connected or dense 

network. Lastly, the output layer, using a sigmoid activation function, concludes in a number between 0 and 

1, which represents the probability belonging to one of the two classes [22, 41-44].  

Support Vector Machine (SVM) 

Support Vector Machine (SVM) is a high accuracy ML model, which can deal with non-linear spaces. The basic 

idea is to map the input data into a higher dimension feature space, using a kernel function, which can be 

either linear, polynomial, radial basis function (rbf) or sigmoid. Then, a linear decision surface is created to 

classify the outcome, with properties that satisfy the generalisation of the algorithm. The linear decision 

surface is more commonly called hyperplane; the optimal one classifies the data by using the maximal margin 

of the hyperplane, employing a small percentage of the training data, which are named support vectors. It is 

supported that if the optimal hyperplane is created from a few support vectors, then the algorithm can be 

generalised, even in a space with infinite dimensions [21, 45, 46]. The SVM model is not easily interpretable, 
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however it is included in our study in order to compare the predictive performance with the rest of the ML 

models [47].  

Logistic regression-L1 penalty 

One of the most common and easily interpretable models is the logistic regression, which is used to predict 

the outcome when it is classified in one of two classes. The Least Absolute Shrinkage and Selection Operator 

(Lasso) [48] - L1 regularisation - efficiently reduces the number of features of large datasets, and it has been 

proven to produce optimal sparse estimates when the true vector is sparse. To achieve this, it shrinks the 

coefficients of correlated and redundant features to zero. This method performs shrinkage and automatic 

feature selection in parallel. L1 regularisation has been proven to be effective when selection of relevant 

features, among plenty irrelevant ones, needs to be conducted [49, 50].  

Cross-validation 

The ML model aims to optimise the general model performance on datasets different from the ones used to 

train them [44]. Therefore, evaluating the generalisation of ML methods requires the data to be split in three 

non-overlapping sets of training/validation/test, using grid search, combined with stratified 10-fold cross-

validation (CV), maintaining the same proportion of cases and controls in each fold. Grid search is performed 

using 9 sets for the parameter tuning, and the 1 remaining set is used for validation. This process is repeated 

10 times, until every set is used once for training and once for validation. The best parameters for the model 

correspond to the highest score, which is calculated by averaging the results from all repetitions. The test 

dataset is used to check for overfitting and unbiased evaluation of the final model [29, 41, 42]. Tables with the 

hyperparameter values that were examined for each model can be found in Supplementary_Material.xlsx.  

SHAP 

ML models, although accurate and capable of capturing the non-linear relationships, are complex to interpret. 

A more widespread method for interpretation is SHapley Additive exPlanations (SHAP) [32, 37]. This is 

important, since ML models until recently were treated as “black boxes” [51]. We want to understand each 

feature’s contribution to the prediction, by calculating their explanations, using cooperative game theoretic 

tools [40, 52].  

The SHAP values are in theory the best solution up to now, however time-consuming, since all possible 

combinations need to be calculated. TreeExplainer is an expansion of SHAP, employing tree nodes instead of 

linear models for the estimation of Shapley values. The Shapley values of a tree-based algorithm are calculated 

as the weighted average of the Shapley values corresponding to individual trees. Thus, it is commonly used to 

explain tree-based machine learning models, such as random forests and gradient boosted trees, reducing 

tremendously the computation time. In parallel, consistency and local accuracy are preserved [51, 53, 54].  

Additionally, SHAP values seem to overcome the interpretability issue by employing both global and local 

interpretation for analysis methods that use trees. Global explanation relies on the effect of input features on 

the whole model, and local interpretation depicts the effect of input features on single predictions [24, 51, 

53].  

For the methods presented above, Python programming language was employed [55].  

Results 

AF 

We examined 21,279 prospective AF cases and an equal number of controls in UKB including 99 features 

(Supplementary_Material.xlsx (Table_S4)) and using five ML models to predict AF. The results of the ML 
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models presented in this section correspond to the optimal hyperparameters, derived after 10-fold cross-

validation from the examined values included in Supplementary_Material.xlsx (Table_S5). SVM did not 

converge after running 10 days and utilising 16 cores in Queen Mary’s Apocrita HPC facility1.  

For the test dataset, Table 2 summarises AUROC, accuracy, precision, recall and F1 score for each model. The 

best AUROC value was achieved with LightGBM (0.79; Table 2) albeit De-Long’s test (Table 3) showed that 

there is no evidence for significant difference in the AUROCs between LightGBM and XGBoost, DNN, or RF. In 

contrast, DeLong's test showed that there was statistically significant difference in the AUROCs between 

LightGBM and penalised LR (pvalue=1.38E-02), after considering multiple correction. Actually, the AUROC of 

penalised LR differed from the AUROC of all other examined ML models based on DeLong’s test and this was 

statistically significant (Table 3). The AUROC curves for the 5 ML models in the test dataset are shown in Figure 

1.  

Table 2: Performance of the ML models for AF prediction, on the test dataset, under various metrics.  

Models AUROC (95% CI) Accuracy Precision Recall F1 score 

LightGBM 0.729 (0.719-0.738) 0.73 0.72 0.74 0.73 

XGBoost 0.728 (0.718-0.737) 0.73 0.74 0.73 0.73 

DNN 0.716 (0.706-0.725) 0.72 0.71 0.73 0.72 

RF 0.715 (0.706-0.725) 0.72 0.71 0.74 0.72 

LR (L1 penalty) 0.622 (0.612-0.633) 0.62 0.63 0.60 0.61 

 

Table 3: DeLong’s test for the ML model comparisons for AF prediction.  

Models LightGBM XGBoost DNN RF 

LightGBM - 
   

XGBoost 8.28E-01 - 
  

DNN 3.67E-02 5.78E-02 -  

RF 1.17E-02 2.44E-02 9.91E-01 - 

LR (L1 penalty) 1.38E-32 8.82E-32 2.41E-24 5.73E-27 

 

 
1 This research utilised Queen Mary's Apocrita HPC facility, supported by QMUL Research-IT. http://doi.org/10.5281/zenodo.438045 
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Figure 1: AUROC for each ML model for AF prediction in the test dataset. 

To estimate the contribution of each feature in each of the 5 models we assessed for prediction of AF, we 

employed the TreeExplainer SHAP analysis, which is accurate, fast and stable (see Methods). Figure 2 displays 

the top 20 features, ranked according to their SHAP value, for the LightGBM model; features are listed in 

descending order, starting with the most significant for AF prediction. SHAP values depict the distribution of 

the effect of each feature on the model output.  

Based on Figure 2, SHAP analysis reveals that the top 3 most important variables contributing to the model 

were “Records in HES inpatient diagnoses dataset” (fieldID 41234), “Age at recruitment” (fieldID 21022) and 

“AF SCORE”, using the unweighted sum of increasing alleles from Roseli et al. [27]. All the features’ 

contributions, based on SHAP analysis, can be found in Supplementary_Material.xlsx (Table_S6). 
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Figure 2: In both plots the top 20 features are depicted, in descending order, for the AF prediction on the test 
dataset, employing LightGBM model. On the top is the feature importance plot of the mean absolute SHAP 
values (x-axis) for the top 20 features (y-axis). On the bottom is the summary plot of the SHAP values (x-axis) 
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for the top 20 features (y-axis), showing the distribution of the impact that each feature has on the model. 
Each dot represents a participant. The red dots represent a high feature value and blue dots represent a low 
feature value for each participant. For example, the AF SCORE had a positive impact on the model output, i.e., 
a higher AF SCORE increased AF risk. 

AF & Stroke 

We examined 3,150 prospective cases who developed ischemic stroke after being diagnosed with AF, and an 

equal number of controls in UKB including 129 features (Supplementary_Material.xlsx (Table_S7) and using 

six ML models to predict ischemic stroke in AF cases.  As indicated previously results correspond to the optimal 

hyperparameters (Supplementary_Material.xlsx (Table_S8)).  

For the test dataset, Table 4 summarises the AUROC, accuracy, precision, recall and F1 score for each of the 

six models assessed for prediction of ischemic stroke in AF cases. The best AUROC value was achieved for 

XGBoost (Table 4). DeLong’s test (Table 5) showed that there is no evidence for significant difference in the 

AUROCs between XGBoost and all other examined ML models but the penalised LR model (pvalue=2.00 E-02).  

Table 4: Performance of the ML models for the prediction of ischemic stroke in AF patients, on the test 
dataset, under various metrics. 

Models AUROC (95% CI) Accuracy Precision Recall F1 score 

XGBoost 0.631 (0.604-0.657) 0.63 0.63 0.63 0.63 

LightGBM 0.620 (0.593-0.647) 0.62 0.62 0.61 0.62 

RF 0.599 (0.573-0.625) 0.60 0.61 0.56 0.58 

SVM 0.599 (0.572-0.624) 0.60 0.63 0.50 0.55 

DNN 0.589 (0.562-0.615) 0.59 0.59 0.60 0.59 

LR (L1 penalty) 0.563 (0.536-0.591) 0.56 0.56 0.56 0.56 

 

Table 5: DeLong’s test for the ML model comparisons for ischemic stroke prediction in AF patients.  

Models XGBoost LightGBM RF SVM DNN 

XGBoost - 
    

LightGBM 5.65E-01 -    

RF 1.33E-01 3.45E-01 -   

SVM 1.71E-01 3.75E-01 9.80E-01 -  

DNN 1.34E-01 2.89E-01 7.54E-01 7.45E-01 - 

LR (L1 penalty) 2.00E-02 5.70E-02 2.56E-01 4.50E-01 2.54E-01 
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Figure 3: AUROC for each ML model for predicting the development of ischemic stroke in AF patients, on the 
test dataset. 

As shown in Figure 4, SHAP analysis revealed that the 3 most important variables contributing to prediction of 

ischemic stroke in AF cases in the model were “Records in HES inpatient diagnoses dataset” (fieldID 41234), 

“Age at recruitment” (fieldID 21022), and “Glycated haemoglobin (HbA1c)” (fieldID 30750). 

Supplementary_Material.xlsx (Table_S9) lists the contribution of each of the 129 features in the model based 

on SHAP analysis. 
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Figure 4: In both plots the top 20 features are depicted, in descending order, for the development of ischemic 
stroke in AF patients, on the test dataset, employing XGBoost model. On the top is the feature importance plot 
of the mean absolute SHAP values (x-axis) for the top 20 features (y-axis). On the bottom is the summary plot 
of the SHAP values (x-axis) for the top 20 features (y-axis), showing the distribution of the impact that each 
feature has on the model. Each dot represents a participant. The red dots represent a high feature value and 
blue dots represent a low feature value for each participant. 

Comparison with the CHA2DS2-VASc 

The current tool used for the prediction of ischemic stroke occurrence among AF patients is CHA2DS2-VASc 

[56] which considers multiple risk factors; age, sex, heart failure, hypertension, stroke, vascular disease, 

diabetes. Thus, we decided to compare the performance of our best ML model, XGBoost (Table 4), with 

CHA2DS2-VASc in UKB. To construct the CHA2DS2-VASc we employed the codes described in 

Supplementary_Material.xlsx (Table_S10). The AUROC and 95% CI for the CHA2DS2-VASc and XGBoost was 

0.611 (0.585 – 0.638) and 0.631 (0.604 – 0.657) in the test set, respectively. The improved AUROC in the 

XGBoost model compared to CHA2DS2-VASc was statistically significant based on DeLong’s test for difference 

between the two models (pvalue=2.20E-06). Furthermore, SHAP analysis for the XGBoost model (Figure 4), 

shows that there is a significant number of peripheral blood markers associated with ischemic stroke, which 

are overlooked from CHA2DS2-VASc.  

Discussion 

Comparison of the performance of ML models for prediction of AF or ischemic stroke in patients with AF 

We assessed six ML models in total for prediction of AF (XGBoost, LightGBM, RF, DNN, penalised LR) or 

ischemic stroke in patients with AF (XGBoost, LightGBM, RF, DNN, SVM, penalised LR) and employed SHAP 

analysis to rank features for predictive importance in a model. To the best of our knowledge, this is the first 

study using ML models to predict AF and ischemic stroke occurrence in AF patients in UKB. SHAP analysis was 

successful in the visualisation of non-linear relationships between the features used for prediction and the 

outcome. Additionally, the direction of the SHAP values for the top 20 features is in agreement with what has 

been reported so far in the literature. We found that the ensemble learning models LightGBM (best for AF 

prediction) and XGBoost (best for prediction of ischemic stroke in patients with AF) achieved higher AUROCs 

compared to the other examined models, suggesting that these models have better generalisation. In the case 

of models for AF prediction, DeLong’s test showed that penalised LR model had a lower AUROC compared to 

all other models and these differences were statistically significant (e.g., pvalue=1.38E-32 with LightGBM), 

indicating that ML models capture useful information by modeling non-linear associations. However, we 

cannot exclude that the performance of the examined ML models in this study may differ when applied to 

another dataset. For this reason, validation in datasets with different patient characteristics will be required 

in order to generalise these findings.  

AF results 

Advancing age has been shown to be one of the most important risk factors for AF [3, 4, 57-60] which in our 

LightGBM model for AF prediction was ranked as the second most important feature. The third most important 

feature in our model was the AF SCORE, a set of 94 genome-wide variants associated with AF and explaining 

42% of the heritability in Europeans [27], which as expected had a positive impact on the model output, i.e. 

the higher the AF score the higher the risk of developing AF. Thus, our results endorse the likely clinical utility 

of an AF score in disease prediction [61]. However, an optimised AF score for prediction in multi-ethnic 

populations such as the UK population will be required prior to considering clinical use. Interestingly, standing 

height was ranked as the fourth most significant feature in our best performing model for AF prediction.  

Greater height has been identified as a risk factor for AF in several studies [2, 9, 62-64] and in both males [10, 
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65] and females [65, 66]. Some studies report that taller people have greater heart chamber size [9, 10, 63, 

65, 66], meaning a larger left atrial size, which may be potential explanation albeit not a very robust one as AF 

is driven by left atrial stretch and fibrosis. Two other anthropometric traits, weight and waist circumference, 

ranked just below standing height. Obesity is associated with increased risk of left atrial enlargement, atrial 

fibrosis, electrical derangements of the atria, impaired diastolic function, inflammation and accumulation of 

pericardial fat, which are all key mechanisms in the pathogenesis of AF [10, 62, 65, 66]. The ranking of sex as 

the 7th most significant feature in the model is also in agreement with epidemiological studies reporting sex 

differences in AF, males are at higher risk which is in agreement with our results, along with the 

electrophysiologic properties of the atria and structural remodelling[59, 60]. Our analysis also found that 

participants with lower albumin levels (feature ranked 9th) had an increased risk of AF. This is in agreement 

with findings in two recent studies: Liao et.al. [67] found that albumin was inversely associated with risk of AF 

in the Atherosclerosis Risk in Communities (ARIC) study and the meta-analysis from Wang et al. [68] revealed 

that an increase in albumin level decreased the risk of AF. However, low albumin levels are associated with 

poor health overall and therefore we cannot exclude confounding. Among the remaining 20 most significant 

features in the model it is worth noting that (i) direct bilirubin (13/20) has been reported as an important 

independent risk factor for AF development in both thyrotoxic patients and a study in postoperative cardiac 

surgery[69, 70], (ii) urate (14/20) has been reported to increase the risk of AF [71] and be causally associated 

to AF through MR analysis in Koreans [72], and (iii) the positive effect of increased testosterone (17/20) on 

risk of AF has been reported in males but not in females in the ARIC study [73]. Finally, only two of the 20 top 

features have some conflicting data in the literature. FEV-1 levels (16/20) has an increased risk of AF as shown 

in other studies [74] but the Korean National Health and Nutritional Examination Survey reported an adverse 

association between FEV-1 and AF development [75] whereas triglycerides (20/20) contribute to increased 

risk of AF, but a study in Chinese participants showed no evidence of association between triglycerides and 

incidence of AF [76].  

AF & Ischemic stroke results 

In our study, the XGBoost model was the best in predicting stroke in AF patients (AUROC 0.631) and showed 

that it performs better, albeit marginal this result was statistically significant (pvalue 2.20E-06 for DeLong’s 

test), than CHA2DS2-VASc. Unexpectedly, the genetic risk score for stroke (STROKE score [28]) was not among 

the top 20 features of our model although ischemic stroke is highly heritable [77, 78]. In the top 20 most 

significant features, medium to high feature values of HbA1c ranked third after sex and was associated with 

increased risk of stroke in AF patients. This is in agreement with the Clalit Health Services electronic medical 

records database from Israel, where participants with diabetes and AF were found to have an increased risk 

of stroke when their HbA1C levels were ranging from medium to high [79]. The fourth most significant feature 

was albumin which ranked 9th in the AF prediction model suggesting a stronger relationship with ischemic 

stroke in AF patients than AF per se. A study in Japanese, has reported lower albumin levels to be associated 

with an increased risk of ischemic stroke in both sexes independently of AF status [80]. Four other blood 

biomarkers, creatinine, alkaline phosphatase, LDL cholesterol, and Lipoprotein A (Lp(a)) ranked among the top 

20 features (6th,7th,10th, and 17th respectively). These results are in agreement with the China National Stroke 

Registry reporting an association between high levels of alkaline phosphatase with recurrent stroke [81] and 

the Copenhagen General Population Study showing that high levels of Lp(a) were associated with increased 

risk of ischemic stroke [82, 83]. It is worth noting that the association of Lp(a) to increased risk of ischemic 

stroke although true for all examined ancestries it varies in strength e.g. higher in African than European 

Americans [84]. Interestingly, the use of creatinine as marker for increased risk of ischemic stroke in AF 

patients has not been previously reported and will merit further investigation. Lastly, the 20th feature 

identified from the SHAP analysis – time spent watching television – could be considered as a surrogate marker 

for luck of sleep and physical inactivity. A study by Katzmarzyk et. al. [85], showed that physical inactivity 
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increases the risk of stroke risk whereas a study in UKB, showed a dose-response joint association of sleep 

scores and physical inactivity with ischemic stroke mortality [86]. 

In summary, we present ML models for the prediction of AF and stroke in AF patients (XGBoost) respectively 

that have the potential for clinical use but validation in further independent studies is required. Importantly, 

the models will need to be validated across all ancestries as some features vary by ethnicity e.g., Lp(a) and AF 

genetic score. Our results endorse the incorporation of a number of routinely measured blood biomarkers 

whereas they support the inclusion of a genetic score only in the model for AF prediction.  
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