
 

1 
 

Identifying trends in SARS-CoV-2 RNA in wastewater to infer changing COVID-19 incidence: Effect of 

sampling frequency 

Elana M. G. Chan1, Lauren C. Kennedy1, Marlene K. Wolfe2, Alexandria B. Boehm1* 

 

1 Department of Civil and Environmental Engineering, Stanford University, Stanford, California 94305, 

United States 

2 Gangarosa Department of Environmental Health, Rollins School of Public Health, Emory University, 

Atlanta, Georgia 30322, United States 

* Corresponding author: aboehm@stanford.edu 

 

Abstract 
SARS-CoV-2 RNA concentrations in wastewater solids and liquids are correlated with reported incident 
COVID-19 cases. Reporting of incident COVID-19 cases has changed dramatically with the availability of 
at-home antigen tests. Wastewater monitoring therefore represents an objective tool for continued 
monitoring of COVID-19 occurrence. One important use case for wastewater data is identifying when 
there are sustained changes or trends in SARS-CoV-2 RNA concentrations. Such information can be used 
to inform public health messaging, testing, and vaccine resources. However, there is limited research on 
best approaches for identifying trends in wastewater monitoring data. To fill this knowledge gap, we 
applied three trend analysis methods (relative strength index (RSI), percent change (PC), Mann-Kendall 
(MK) trend test) to daily measurements of SARS-CoV-2 RNA in wastewater solids from a wastewater 
treatment plant to characterize trends. Because daily measurements are not common for wastewater 
monitoring programs, we also conducted a downsampling analysis to determine the minimum sampling 
frequency necessary to capture the trends identified using the “gold standard” daily data. The PC and 
MK trend test appear to perform similarly and better than the RSI in terms of early warning signaling for 
increasing and decreasing trends, so we only considered the PC and MK trend test methods in the 
downsampling analysis. Using an acceptable sensitivity and specificity cutoff of 0.5, we found that a 
minimum of 4 samples/week and 5 samples/week is necessary to detect trends identified by daily 
sampling using the PC and MK trend test method, respectively. If a higher sensitivity and specificity is 
needed, then more samples per week would be needed. Public health officials can adopt these trend 
analysis approaches and sampling frequency recommendations to wastewater monitoring programs 
aimed at providing information on how incident COVID-19 cases are changing in the contributing 
communities.   
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1.0 Introduction 

Public health departments have closely monitored cases of coronavirus disease 2019 (COVID-19) in their 

communities throughout the pandemic. Hospitals, healthcare providers, and laboratories are required 

to report incident laboratory-confirmed cases of COVID-19—hereafter referred to as incident clinical 

cases—to public health departments under state disease reporting laws [1]. This information allows 

health departments to track disease occurrence and may then be used to inform nonpharmaceutical 

interventions, such as mask mandates and social distancing, and education and outreach campaigns for 

testing and vaccines. Clinical test seeking behavior has changed dramatically with the availability of 

vaccines and at-home antigen tests [2], and results from the latter are not reported to health 

departments [2]. As a result, incident clinical case data may presently suffer from vast under-reporting 

relative to earlier in the pandemic and be less useful for tracking COVID-19 infections.  

Wastewater-based epidemiology (WBE) uses concentrations of infectious disease markers in 

wastewater to track disease occurrence in the contributing community. It has been recommended by 

the World Health Organization (WHO) since 2003 for poliovirus monitoring in regions where polio is 

endemic [3]. The COVID-19 pandemic brought heightened attention to WBE which is currently in use 

globally for COVID-19 monitoring [4,5]. Specifically, RNA concentrations of severe acute respiratory 

syndrome coronavirus 2 (SARS-CoV-2) in primary wastewater settled solids are well-correlated with 

incident clinical COVID-19 cases in the same sewershed [6–8]. A recent study suggests that wastewater 

concentrations of SARS-CoV-2 RNA are also well-correlated with COVID-19 prevalence, which was 

estimated from randomized nasal swab sampling, more so than incident clinical cases because case data 

are prone to reporting biases such as underreporting of asymptomatic cases [9]. In addition, trends in 

wastewater concentrations of SARS-CoV-2 RNA were found to precede trends in incident clinical cases in 

communities [10–17]. WBE may therefore be a more reliable and objective tool than incident clinical 
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case data for continued monitoring of COVID-19 because wastewater captures both symptomatic and 

asymptomatic individuals and does not depend on test seeking behavior or testing availability.  

However, there is still uncertainty about how to appropriately interpret WBE data and use it to aid 

public health decision-making [18–20]. Accurately interpreting SARS-CoV-2 RNA concentrations as 

increasing, decreasing, or plateauing is important for guiding pandemic response efforts. Yet there has 

been limited work on how to actively monitor trends in epidemiology [21]. Common trend metrics (e.g., 

simple moving averages, rates of change) provide little attention to the statistical significance and 

stability of trends and can be misleading or confusing [17,21,22]. Standardized trend analysis methods 

that are robust and easily interpretable are needed to appropriately identify trends. Trend analysis of 

time-series data is conducted in other disciplines, such as finance [23], and could be adapted to 

interpret WBE data. Predicting the stock market in real time is desirable to traders similar to how 

predicting the course of disease occurrence is useful to public health decision makers, and both price 

data and WBE data have stochastic elements [23]. One goal of this study was to test different trend 

analysis methods for application to WBE.  

When analyzing time-series data for trends, a large number of observations provides greater statistical 

power [24], and high frequency (e.g., daily) data has previously been identified as ideal for WBE to most 

accurately identify trends [25]. However, daily sampling and processing of wastewater can be 

challenging to implement [18,20], and many facilities across the United States only collect samples once 

per week [26,27]. Previous studies found that sampling wastewater at least twice per week is needed to 

detect correlations between wastewater SARS-CoV-2 RNA concentrations and incident clinical cases 

[6,28,29], but these studies collected data over a limited duration of time (at most six months) or did not 

include daily data in the analysis. In addition, the authors examined the correlation between wastewater 

SARS-CoV-2 RNA concentrations and incident clinical cases to come to their conclusions. Research is 
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needed to investigate how frequently wastewater should be sampled if the goal of WBE is to correctly 

identify trends in wastewater concentrations of SARS-CoV-2 RNA.  

In this study, we used daily measurements of SARS-CoV-2 RNA in wastewater from a wastewater 

treatment plant between November 2020 and September 2022 to (i) compare three different trend 

analysis methods for characterizing trends in wastewater SARS-CoV-2 RNA concentrations and (ii) 

evaluate the performance of each method using data sampled at a lower frequency than one time per 

day. This dataset is ideal because it spans nearly two years of the pandemic, including three major 

waves (Delta, BA.1 Omicron, and BA.2 + BA.5 Omicron). These waves differ in magnitude and shape, so 

this dataset can be used to examine how trend analysis methods respond across a variety of disease 

dynamics. This dataset is also ideal for a downsampling analysis because it can be downsampled to all 

possible sampling frequencies (1 sample/week to 6 samples/week). We identify robust trend analysis 

methods and recommend sampling frequencies that can be used by WBE programs to provide insight 

about the disease burden of COVID-19 in the contributing population.  

2.0 Methods 

2.1. Wastewater data  

The San José-Santa Clara Regional Wastewater Facility serves 1.4 million residents and over 17,000 

businesses throughout Silicon Valley (Fig 1 in S1 Text). The wastewater treatment plant is the largest 

advanced wastewater treatment plant in the western United States and treats 110 million gallons of 

wastewater per day on average with a capacity of 167 million gallons per day [30]. 

Daily sampling from the wastewater facility began on November 15, 2020, and we used data through 

September 15, 2022, for this study (n = 670 days). Sampling and processing details, including quality 

assurance and quality control metrics, are registered in protocols.io [31–33] and have been described 
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previously by Kim et al. [34] and Wolfe et al. [35]. For this analysis, we used concentrations of the SARS-

CoV-2 RNA N gene in gene copies per gram of dry weight normalized by concentrations of pepper mild 

mottle virus (PMMoV) in gene copies per gram of dry weight (N/PMMoV). PMMoV is used as a marker 

of wastewater fecal strength [36,37]. There were no non-detects for either the N gene or PMMoV in the 

dataset. Data between November 15, 2020, and March 31, 2021, have been previously published by 

Wolfe et al. [35] and are publicly available through the Stanford Digital Repository 

(https://doi.org/10.25740/bx987vn9177) [38]. Data between January 1, 2022, and April 12, 2022, have 

been previously published by Boehm et al. [39] and are publicly available through the Stanford Digital 

Repository (https://doi.org/10.25740/cf848zx9249) [40]. The remaining data (April 1, 2021–December 

31, 2021, and April 13, 2022–September 15, 2022) have not been previously published. All data used in 

this study are available publicly through the Stanford Digital Repository 

(https://doi.org/10.25740/yg713sw8276) [41]. Since the pre-analytical and analytical methods used for 

measuring the SARS-CoV-2 RNA N gene and PMMoV are registered and previously described in peer-

reviewed publications, they are not repeated herein.  

2.2. Trend analysis methods  

We considered three metrics for identifying trends in N/PMMoV over time: relative strength index (RSI), 

percent change (PC), and the Mann-Kendall (MK) trend test. RSI is a common technical indicator used in 

finance for trend analysis [42], PC is used by the United States Centers for Disease Control (CDC) to 

report trends for the National Wastewater Surveillance System (NWSS) [43], and the MK trend test is a 

statistical test used to evaluate the existence of a monotonic trend in time-series data [44–46]. As 

described below, the RSI informs about the stability of a trend and PC and the MK trend test inform 

about the statistical significance of a trend. All calculations were conducted in R (version 4.1.3) [47]. 
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Data and R code are available publicly through the Stanford Digital Repository 

(https://doi.org/10.25740/yg713sw8276) [41]. 

The RSI is a momentum indicator used in technical trading systems that measures the speed and 

direction of price changes over a specified time period [42]. The RSI is calculated using the relative 

strength (RS) which is the ratio of the average increase (gain) and decrease (loss) of closing prices over 

the look-back period (typically 14 days) (Equation 1) [42]. Refer to the S1 Text for further details. The RSI 

ranges from 0 to 100; values above 70 and below 30 signify an overbought and oversold market, 

respectively [42]. Here we calculated the RSI of the 7-day right-aligned moving average (MA) of 

N/PMMoV using a 14-day look-back period. Using the raw, or unaltered, N/PMMoV data resulted in a 

highly variable RSI that was unlikely to be useful (Fig 2 in S1 Text). Previous work that applied the RSI to 

incident clinical case data early in the pandemic also calculated the RSI of smoothed input data [21]. 

Based on previously published work [21,42,48], we interpreted RSI values above 70, 80, and 90 as 

upward, likely upward, and very likely upward trends, respectively. We interpreted RSI values below 30, 

20, and 10 as downward, likely downward, and very likely downward trends, respectively (Table 1).  

𝑅𝑆𝐼 = 100 −
100

1+𝑅𝑆
, where 𝑅𝑆 =

𝑎𝑣𝑒𝑟𝑎𝑔𝑒 𝑔𝑎𝑖𝑛

𝑎𝑣𝑒𝑟𝑎𝑔𝑒 𝑙𝑜𝑠𝑠
  (1) 

Table 1. Trend classification criteria for each trend analysis method 

Trend Classification Relative Strength Index Percent Change Mann-Kendall Test 

Very likely upward RSI ≥ 90 99% lower CI > 0 p ≤ 0.01, τ > 0 

Likely upward 90 > RSI ≥ 80 95% lower CI > 0 0.01 < p ≤ 0.05, τ > 0 

Upward 80 > RSI ≥ 70 90% lower CI > 0 0.05 < p ≤ 0.1, τ > 0 

No Trend 70 > RSI > 30 all CIs intersect 0 p > 0.1 

Downward 30 ≥ RSI > 20 90% upper CI < 0 p ≤ 0.01, τ < 0 

Likely downward 20 ≥ RSI > 10 95% upper CI < 0 0.01 < p ≤ 0.05, τ < 0 

Very likely downward 10 ≥ RSI 99% upper CI < 0 0.05 < p ≤ 0.1, τ < 0 

CI = Confidence Interval 
RSI = Relative Strength Index 
PC = Percent Change 
MK = Mann-Kendall 
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The second trend analysis method we investigated was PC. Specifically, we used the formula that the 

United States CDC uses to calculate trends in wastewater SARS-CoV-2 RNA levels for the NWSS 

(Equation 2). The slope is calculated from a least-squares linear regression of log10-transformed values of 

the raw N/PMMoV data versus day because wastewater SARS-CoV-2 RNA concentrations are log-

normally distributed [43]. The CDC uses a 15-day look-back period to calculate the slope [43]; here we 

used a 14-day look-back period for consistency and because 14 days represents an integer multiple of 

one week. For each slope estimate, we extracted the 90%, 95%, and 99% confidence intervals (CIs) to 

calculate the 90%, 95%, and 99% CIs for each PC estimate. We interpreted PC values greater than 0 for 

the 90%, 95%, and 99% upper CIs as upward, likely upward, and very likely upward trends, respectively. 

We interpreted PC values less than 0 for the 90%, 95%, and 99% lower CIs as downward, likely 

downward, and very likely downward trends, respectively (Table 1).  

𝑃𝐶 = (10𝑠𝑙𝑜𝑝𝑒 − 1) × 100  (2) 

Lastly, the MK trend test is a nonparametric test that evaluates whether there is a monotonic trend in a 

time-series dataset [44–46]. Previous work that applied the MK trend test to incident clinical COVID-19 

case data explored 5, 7, and 14-day look-back periods to identify statistically significant trends in COVID-

19 case rates [22]. Here we applied the MK trend test to raw N/PMMoV data and used a 14-day look-

back period to be consistent with the look-back periods used for RSI and PC. Log-transformation of the 

raw N/PMMoV values was not necessary because the MK trend test is nonparametric. We interpreted 

positive values of the test statistic, tau (τ), with p ≤ 0.1, p ≤ 0.05, and p ≤ 0.01 as upward, likely upward, 

and very likely upward trends, respectively. We interpreted negative τ values with p ≤ 0.1, p ≤ 0.05, and 

p ≤ 0.01 as downward, likely downward, and very likely downward trends, respectively (Table 1). 
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2.3. Application of trend analysis methods to wastewater data 

First, we applied each trend analysis method to daily N/PMMoV measurements. Heatmaps were 

generated to visualize the trend classifications in Table 1 over the entire analysis period (November 15, 

2020–September 15, 2022). Moreover, we created separate heatmaps for three major COVID-19 waves 

that occurred during our analysis period. Here, a wave is defined as a substantial rise and eventual 

decline in N/PMMoV concentrations caused by one or more SARS-CoV-2 variants as described by Wolfe 

et al. [49] and Boehm et al. [39] for this wastewater treatment plant. During the analysis period, the 

three waves that occurred were caused by the following SARS-CoV-2 variants: Delta, BA.1 Omicron, and 

BA.2 + BA.4 + BA.5 Omicron. Note that the BA.4 Omicron mutation was very rare during the latter wave 

[50,51], so we will herein refer to the BA.2 + BA.4 + BA.5 Omicron wave only as the BA.2 + BA.5 Omicron 

wave. The separate heatmaps allowed us to evaluate the performance, which is subjectively and 

qualitatively described, of the trend analysis methods during different phases of the pandemic.  

Next, we downsampled the daily dataset and reapplied the PC and MK trend test methods. We did not 

consider the RSI method in the downsampling analysis because the RSI performed the poorest in the 

trend analysis using daily data (presented below). We created a downsampled dataset for all possible 

sampling combinations encompassing sampling frequencies between 2 samples/week and 6 

samples/week (N = 119) (Table 2). Note that it is not possible to calculate PC or conduct the MK trend 

test using a 14-day look-back period and 1 sample/week frequency because these methods require at 

least three measurements, so we did not consider any 1 sample/week sampling combinations in our 

analysis. The total number of possible downsampling combinations N was calculated using Equation 3 

where f is the number of samples collected per week (f = 2 for 2 samples/week, f = 3 for 3 

samples/week, etc.). Seven was used in the numerator of the binomial coefficient because there are 

seven days in a week. For example, there are 21 unique pairs of days for a 2 samples/week sampling 
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frequency. We did not impute missing N/PMMoV values for days designated as non-sampling days 

during the downsampling process (i.e., we kept missing data as missing in the downsampled datasets).  

𝑁 = ∑ (7
𝑓

) =6
𝑓=2 ∑ (

7!

𝑓!(7−𝑓)!
)6

𝑓=2   (3) 

Table 2. Number of sampling combinations for each downsampling frequency 

Downsampling Frequency Number of Sampling Combinations 

2 samples/week 21 

3 samples/week 35 

4 samples/week 35 

5 samples/week 21 

6 samples/week 7 

Number of sampling combinations = 7 choose f, where f is the number of samples collected per week.  

To evaluate the impact of using downsampled data for the PC and MK trend test methods, we calculated 

the sensitivity and specificity for each trend analysis method for each downsampled dataset using the 

daily dataset as the validation dataset for each method (Fig 1). Sensitivity was defined as the probability 

of a downsampled dataset to correctly identify when a trend was identified using the daily dataset (i.e., 

correctly identify true positives); specificity was defined as the probability of a downsampled dataset to 

correctly identify when no trend was identified using the daily dataset (i.e., correctly identify true 

negatives). Because the trend methods classify two distinct trend types (upward versus downward), we 

calculated upward sensitivity and downward sensitivity separately (Fig 2). For the sensitivity 

calculations, an upward trend includes “very likely upward”, “likely upward”, and “upward” trend 

classifications and a downward trend includes “very likely downward”, “likely downward”, and 

“downward” trend classifications from Table 1.  
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Fig 1. Process for sensitivity and specificity calculations. Each method was (i) applied to the daily dataset and (ii) 
applied to each downsampled dataset (N = 119). Then for each method separately, the trend analysis results from 
each downsampled dataset were validated with the trend analysis results from the daily dataset 

 

Fig 2. Definitions and equations used to calculate upward sensitivity, downward sensitivity, and specificity. Here 
an upward trend includes “very likely upward”, “likely upward”, and “upward” trends and a downward trend 
includes “very likely downward”, “likely downward”, and “downward” trends. 
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3.0 Results 

We used three different trend analysis methods to characterize trends in wastewater SARS-CoV-2 RNA 

concentrations: the relative strength index (RSI) used in finance [42], the percent change (PC) method 

used by the United States CDC [43], and the nonparametric Mann-Kendall (MK) trend test [44–46]. The 

SARS-CoV-2 RNA dataset contained visual periods of increase, decrease, and stability in N/PMMoV 

concentrations, allowing us to evaluate the trend analysis methods throughout different COVID-19 

waves. We then reapplied the PC and MK trend test methods to downsampled data to investigate the 

impact of using data sampled at a frequency of less than once per day. 

3.1. Trend analysis methods applied to daily data 

Using the daily dataset, wastewater SARS-CoV-2 RNA trends were classified each day as increasing, 

decreasing, or stable using three trend analysis methods (RSI, PC, MK trend test) (Fig 3A). Excluding the 

wave at the start of the dataset, three major waves occurred during our analysis period. The Delta wave 

was a relatively small wave (roughly identified as starting the second week of June 2021 and ending the 

first week of September 2021) (Fig 3B), the BA.1 Omicron wave was a relatively large wave with rapid 

onset (roughly identified as starting the third week of December 2021 and ending the fourth week of 

January 2022) (Fig 3C), and the BA.2 + BA.5 Omicron wave was a relatively large wave with gradual onset 

(roughly identified as starting the first week of April 2022 and ending the second week of September 

2022) (Fig 3D). Daily N/PMMoV measurements with a 7-day moving average are shown above each 

heatmap for reference. 
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Fig 3. N/PMMoV with a 7-day moving average (MA) and corresponding trend classifications from relative strength index (RSI), percent change (PC), and the 
Mann-Kendall (MK) trend test using daily data. (A) Entire analysis period, (B) Delta wave, (C) BA.1 Omicron wave, and (D) BA.2 + BA.5 Omicron wave. Dates in 
panel A are given as “month year”; dates in all other panels are given as “day month”. “No Data” indicates that not enough N/PMMoV measurements were 
available yet to conduct the trend analysis method.
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All three methods identified periods of increase, decrease, and no change in the wastewater 

concentrations. The PC and MK trend test methods identified an increasing trend sooner than the RSI at 

the start of the Delta and BA.2 + BA.5 Omicron wave. Specifically, PC and the MK trend test identified an 

increasing trend 16 and 17 days, respectively, before the RSI at the start of the Delta wave and 26 and 

12 days, respectively, before the RSI at the start of the BA.2 + BA.5 Omicron wave. All three methods 

first identified an increasing trend at the start of the BA.1 Omicron wave within one day of each other. 

The PC and MK trend test also identified decreasing trends at the end of the waves prior to the RSI, in 

most cases over a week in advance of the RSI. Given the apparent tendency of the PC and MK trend test 

methods to identify changing conditions in advance of the RSI and that the PC and MK trend test are 

more rigorous than the RSI because they require some measure of statistical significance and hypothesis 

testing, the RSI method was not further included in the downsampling analysis portion of the study.  

3.2. Downsampling analysis 

For each downsampled dataset, wastewater SARS-CoV-2 RNA trends were classified each day as 

increasing, decreasing, or stable using the PC and MK trend test methods. Then for each method, the 

trend analysis results from each downsampled dataset were validated using the trend analysis results 

from the daily dataset by calculating upward sensitivity (ability to correctly identify an upward trend), 

downward sensitivity (ability to correctly identify a downward trend), and specificity (ability to correctly 

identify no trend). For both PC and the MK trend tests, upward and downward sensitivities were poor at 

low sampling frequencies but improved as sampling frequency increased. Using a median sensitivity 

better than chance (0.5) as an acceptable cutoff, PC achieved acceptable upward and downward 

sensitivity with at least 4 samples/week (Fig 4, Table 3). The MK trend test achieved acceptable upward 

and downward sensitivity with at least 5 samples/week (Fig 4, Table 3). Specificity was similar—and very 

high—at all sampling frequencies for both methods. A key limitation, however, is that the sensitivity and 
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specificity values cannot be compared between methods because we validated each method with itself 

so their validation datasets differ (Fig 1)
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Fig 4. Upward sensitivity, downward sensitivity, and specificity of each downsampled dataset for the percent change and Mann-Kendall trend test methods. 
Results are aggregated by sampling frequency.
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Table 3. Upward sensitivity, downward sensitivity, and specificity of downsampled data for percent change and 
Mann-Kendall methods.  

PERCENT CHANGE (PC) 
Sampling Frequency 

(sampling combinations) 
2 samples/week 

(n = 21) 
3 samples/week 

(n = 35) 
4 samples/week 

(n = 35) 
5 samples/week 

(n = 21) 
6 samples/week 

(n = 7) 
Sensitivity 

(upward trend) 
0.28 

(0.13) 
0.46 

(0.08) 
0.60 

(0.07) 
0.72 

(0.06) 
0.80 

(0.03) 
Sensitivity 

(downward trend) 
0.21 

(0.09) 
0.38 

(0.12) 
0.52 

(0.11) 
0.67 

(0.08) 
0.79 

(0.06) 
Specificity 
(no trend) 

0.91 
(0.03) 

0.90 
(0.02) 

0.92 
(0.02) 

0.93 
(0.02) 

0.96 
(0.01) 

MANN-KENDALL (MK) TREND TEST 
Sampling Frequency 

(sampling combinations) 
2 samples/week 

(n = 21) 
3 samples/week 

(n = 35) 
4 samples/week 

(n = 35) 
5 samples/week 

(n = 21) 
6 samples/week 

(n = 7) 
Sensitivity 

(upward trend) 
0.23 

(0.10) 
0.29 

(0.11) 
0.50 

(0.10) 
0.71 

(0.07) 
0.87 

(0.04) 
Sensitivity 

(downward trend) 
0.18 

(0.10) 
0.26 

(0.10) 
0.44 

(0.11) 
0.56 

(0.10) 
0.79 

(0.07) 
Specificity 
(no trend) 

0.92 
(0.02) 

0.95 
(0.02) 

0.95 
(0.02) 

0.95 
(0.02) 

0.95 
(0.02) 

Median is provided with standard deviation (SD) in parentheses. 

4.0 Discussion 

We applied three different trend analysis methods to daily measurements of SARS-CoV-2 RNA from the 

San Jose sewershed between November 15, 2020, and September 15, 2022. We then created 

downsampled datasets representing all possible sampling combinations and reapplied the PC and MK 

trend test methods to each downsampled dataset. We evaluated the performance of each method 

conducted with downsampled data by calculating sensitivity and specificity, using the results from each 

method conducted with daily data as a validation dataset. 

The PC and MK trend test methods appeared to provide more early warning signaling of upward and 

downward trends compared to the RSI when conducted using daily data. The PC method is currently 

used at the national level by the United States CDC for the NWSS [43], and a trend analysis of incident 

clinical COVID-19 cases found that the MK trend test was both intuitive and accurate [22]. These two 

methods are also more rigorous than the RSI method because they require some measure of statistical 

significance and hypothesis testing to classify trends (Table 1). It is important to note, however, that we 
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could not quantitatively evaluate the accuracy of each method because there is no true validation 

dataset to identify when upward, downward, or no trends in SARS-CoV-2 RNA concentrations truly did 

occur. Even a potential validation dataset based on clinical case data is subject to biases from test 

seeking behavior and availability or delays due to reporting. We only had the benefit of hindsight to 

qualitatively compare the three methods which, in practice, would be applied to incoming wastewater 

data in real time.  

The trend analysis methods presented here report trends based on the likelihood of a trend. 

Alternatively, health departments could report trends based on the duration over which a trend occurs 

instead of the likelihood of a trend. A study by Holst et al. classified trends in wastewater SARS-CoV-2 

RNA concentrations as sustained increase, increase, plateau, decrease, or sustained decrease [25]. 

Sustained versus unsustained trends were differentiated based on the number of samples over which a 

statistically significant slope occurred (five samples for sustained trends and three samples for 

unsustained trends) [25]. Although beyond the scope of this study, the criteria used to classify trends 

could be amended to consider the duration over which trends occur.  

Our downsampling analysis suggests that a minimum sampling frequency of 4 samples/week and 5 

samples/week is necessary to detect trends that were identified by daily sampling using the PC and MK 

trend test, respectively. This is based on an acceptable median sensitivity and specificity better than 

chance (0.5). Previous studies that examined correlations between wastewater SARS-CoV-2 RNA 

concentrations and incident clinical COVID-19 cases found that collecting a minimum of 2 samples/week 

was necessary to detect significant correlations [6,28,29]. Our results suggest that collecting only 2 

samples/week is not sufficient to detect trends identified by daily sampling using a 14-day look-back 

period when wastewater SARS-CoV-2 RNA concentrations are analyzed independently from incident 

clinical cases. We also conducted the downsampling analysis using a 21-day look-back period for each 

method and found similar results (i.e., a minimum sampling frequency of 3 samples/week and 4 
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samples/week is necessary to detect trends identified by daily sampling using PC and the MK trend test, 

respectively).  

The PC and MK trend test methods appear to report similar trends for most days in the study period, but 

the PC method requires fewer samples per week than the MK trend test method to detect trends 

identified in the daily data with acceptable sensitivity and specificity. Therefore, the PC method may be 

preferred by WBE programs with potential budget constraints. According to our analysis, the PC method 

can still provide sufficient trend information using 4 samples/week. Further analysis could investigate 

which four-day sampling combinations tend to have an upward sensitivity, downward sensitivity, and 

specificity all above 0.5 (i.e., days clustered together versus days evenly spaced throughout the week). 

Additionally, WBE programs could adopt an adaptive approach such that sampling frequency is 

increased when there is a strong need to know the current trend (e.g., when COVID-19 incidence is 

suspected to be high or increasing).  

Our analysis has some limitations. First, we applied the three trend analysis methods to wastewater 

data from one sewershed. The sewershed is large, so it is possible that the trend analysis methods may 

perform differently or that the downsampling results may differ in a smaller sewershed with more day-

to-day variability in SARS-CoV-2 RNA concentrations. Furthermore, there were no days in our analysis 

period in which the N gene was below the limit of detection. It remains unclear how each trend analysis 

method performs or how the downsampling results may be affected by brief or prolonged periods in 

which the N gene concentration is below detection levels.  

Second, our trend methods only report trend directions; they do not describe the magnitude of trends. 

For example, a small percent increase (e.g., <1%) would be classified as an upward trend if the lower CI 

is above 0% and a large percent increase (e.g., >10%) would be classified as no trend if the lower CI is 

below 0% according to our trend classification criteria—even though the magnitude of the latter trend is 
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larger. The CDC does not consider statistical significance and only considers magnitude when classifying 

trends using the PC approach. Specifically, the CDC classifies trends into five categories based on the 

magnitude of the PC estimate over the last 15 days: large decrease (-100% or less), decrease (-99% to -

10%), stable (-9% to 9%), increase (10% to 99%), and large increase (100% or more) [52]. However, 

categorizing PC trends based on magnitude alone can be misleading when wastewater SARS-CoV-2 

concentrations are low or around the limit of detection [17]. If public health departments want to report 

both the significance and magnitude of trends, the criteria in Table 1 could be modified such that the 

value of the PC or tau estimate must be both significant and above or below a certain threshold. The RSI 

only describes trend stability; it does not have an associated statistical significance and does not provide 

insight about the magnitude of a trend.  

Third, trend analysis methods only describe whether wastewater SARS-CoV-2 RNA concentrations are 

increasing, decreasing, or remaining stable. Trend analysis methods do not describe the abundance of 

SARS-CoV-2 RNA and whether the quantity is high, medium, or low. Trends could be reported alongside 

thresholds to better contextualize the current state of the pandemic. High, medium, and low thresholds 

could be constructed based on relative concentrations (e.g., percentage of the maximum concentration 

during a recent wave or past time frame) or absolute concentrations. Future work is needed to 

determine how best to construct thresholds and which cutoff values to use to differentiate high versus 

medium versus low SARS-CoV-2 RNA quantities.  

Notwithstanding these limitations, our analysis is highlighted by several strengths. Our analysis period 

spans nearly two years, so we were able to explore how each trend analysis method performed in 

response to three distinct COVID-19 waves. In particular, two of our trend analysis approaches (PC and 

the MK trend test) addressed the statistical significance of trends, which is currently not typically 

reported alongside trends [22], because we categorized trends for these methods based on statistical 

significance. In contrast, the United States CDC categorizes trends on the NWSS dashboard based only 
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on trend magnitude and not whether the observed trend is statistically significant [52]. Additionally, our 

dataset contained daily SARS-CoV-2 RNA measurements which was ideal for a downsampling analysis. 

We were able to downsample this dataset to test all 119 possible sampling combinations ranging from 2 

samples/week to 6 samples/week which allowed us to observe the full range of sensitivity and 

specificity values and, in turn, improve confidence in our sampling frequency recommendations.  

During the COVID-19 pandemic, it has been demonstrated that WBE is a useful tool for public health 

monitoring, and the per capita cost of wastewater sampling is significantly lower than the per capita 

cost of individual clinical testing [53]. WBE has also been shown to be useful for monitoring the 

occurrence of other diseases [54–56]. We expect the analyses performed herein to be useful for 

interpreting wastewater monitoring data for COVID-19 and other infectious disease markers.  

5.0 Conclusion 

We compared three trend analysis methods for characterizing trends in SARS-CoV-2 RNA concentrations 

in wastewater. Based on daily data from the San Jose wastewater treatment plant, the PC and MK trend 

test appear to perform similarly and better than the RSI in terms of early warning signaling. Additionally, 

both the PC and MK trend test are inference-based methods so can be used to classify trends in a 

standard, statistically sound manner. When using the PC method to classify trends, our downsampling 

analysis suggests that a minimum sampling frequency of 4 samples/week is necessary to detect trends 

identified by daily sampling (5 samples/week using the MK trend test method). WBE programs can 

adopt our trend analysis approaches and sampling frequency recommendations to better inform public 

health departments how COVID-19 cases are changing, especially as rates of clinical testing continue to 

decline.   
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