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Abstract 

Wastewater monitoring has shown promise in providing an early warning for new COVID-19 

outbreaks, but to date, no approach has been validated to reliably distinguish signal from noise 

in wastewater data and thereby alert officials to when the data show a need for heightened 

public health response. We analyzed 62 weeks of data from 19 sites participating in the North 

Carolina Wastewater Monitoring Network to characterize wastewater metrics before and around 

the Delta and Omicron surges. We found that, on average, wastewater data identified new 

outbreaks four to five days before case data (reported based on the earlier of the symptom start 

date or test collection date). At most sites, correlations between wastewater and case data were 

similar regardless of how wastewater concentrations were normalized, and correlations were 

slightly stronger with county-level cases than sewershed-level cases, suggesting that officials 

may not need to geospatially align case data with sewershed boundaries to gain insights into 

disease transmission. Wastewater trend lines showed clear differences in the Delta versus 

Omicron surge trajectories, but no single wastewater metric (detectability, percent change, or 

flow-population normalized viral concentrations) adequately indicated when these surges 

started. After iteratively examining different combinations of these three metrics, we developed 

a simple algorithm that identifies unprecedented signals in the wastewater to help clarify 

changes in communities’ COVID-19 burden. Our novel algorithm accurately identified the start 

of both the Delta and Omicron surges in 84% of sites, potentially providing public health officials 

with an automated way to flag community-level COVID-19 surges. 
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Introduction 

Wastewater monitoring has emerged as a promising tool to measure SARS-CoV-2 and other 

population health markers in communities (1, 2). The method yields objective, anonymous data 

on the nearly 80% of U.S. households connected to a sewer system (3). For COVID-19, this 

approach also overcomes biases and shortcomings in clinical testing data stemming from 

several factors, including reliance on healthcare seeking behavior, unequal access to diagnostic 

tests (4–6), delays in clinical test result reporting (7), lack of routine testing of asymptomatic 

individuals, who account for 40% to 45% of COVID-19 infections (8), and imprecise case 

attribution due to reporting by permanent residence rather than residence at the time of testing 

(9). Further, as a population-level data source, wastewater provides a more cost-effective way 

to detect the presence of new viral variants circulating in a community compared to individual 

testing and sequencing (10). Going forward, wastewater data may become a valuable 

independent signal of COVID-19 infections as the shift to at-home testing further reduces public 

health officials’ visibility into community infections. 

 

A recent survey conducted to assess the role of wastewater data in pandemic management 

revealed that one of the features of greatest interest to public health officials is the potential of 

wastewater monitoring to raise an early warning for SARS-CoV-2 entry or spread in a 

community (11). However, the “lead time” advantage of wastewater data remains difficult to 

pinpoint, in part because it may vary across different phases of a disease outbreak. Early in the 

pandemic, studies comparing trends in wastewater viral concentrations with trends in clinical 

case counts reported lead times ranging from two days (12, 13) to two to three weeks (14, 15). 

More recent research has shown that using the specimen collection date rather than reporting 

date for case data shortens the wastewater lead time (16), and that when clinical tests are 

widely available and widely used, wastewater and clinical data are well-aligned, with no lead-

time advantage of one over the other (6). The variability in reported lead times stems from a 

combination of biological early detection in wastewater (“latent” factors) and reporting lags in the 

clinical tests (“pragmatic” factors) (17, 18). Further, site to site differences in lead times can 

arise from differences in laboratory analytical methods, sewer infrastructure (including sewage 

travel time), and testing behaviors in the population. 

 

Importantly, the early warnings that wastewater data can provide come not only from its 

potential to be a leading indicator, but also from the ability to monitor a much broader swath of 

the population than is typically tested clinically. However, population-level data are only useful to 

the extent that public health officials can interpret the data and use it to inform pandemic 

response (11). While states have implemented different approaches to alerting officials to 

changes in COVID-19 risk based on the wastewater data (19), there is a dearth of research 

validating these approaches, and at present, no algorithms or metrics have been identified to 

reliably distinguish signal from noise in wastewater data.  

 

To help fill these knowledge gaps, we analyzed longitudinal data from the statewide North 

Carolina Wastewater Monitoring Network (NCWMN) to demonstrate how states can better use 

wastewater data to get early warnings of new outbreaks and variant-based surges. We first 

compared wastewater viral concentrations to reported county- and sewershed-level case counts 
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to assess the lead-time advantage of wastewater data. In doing so, we examined how results 

varied across sites with different wastewater treatment plant (WWTP) service population sizes, 

and whether different approaches to normalizing wastewater viral concentrations (to adjust for 

sample-to-sample differences in wastewater flow rate, the size of the contributing population, 

and lab assay sensitivity) meaningfully altered our findings. We then characterized spatial and 

temporal patterns in wastewater metrics leading up to surges resulting from the Delta and 

Omicron variants. Lastly, we developed and validated a multi-metric algorithm to distinguish 

signal from noise in the wastewater data and identify the start of the Delta and Omicron surges 

in each site. 

 

Results  

We analyzed data from 1,783 wastewater samples collected from January 3, 2021 to March 15, 

2022 from 19 WWTPs in 16 counties, along with clinical case data from these counties. The 

WWTPs included in our analysis span the state from west to east (Figure S1) and vary in 

service population size, covering 3,500 and 550,000 people, or 5% to 60% of the county’s 

resident population (Table 1). The frequency and timeframe of wastewater sample collection 

varied by site. 

 

Table 1. Characteristics of North Carolina wastewater treatment plants analyzed  

Site name County 
County 

population 

WWTP service 
population  

(percent of county) 
Sampling 
timeframe 

Number 
of 

samples 

Laurinburg Scotland  34,823  15,527 (45%) 6/16/21–3/14/22 72 

Tuckaseigee Jackson  43,938  13,296  (30%) 1/3/21–3/14/22 94 

Marion McDowell  45,756  8,459 (18%) 6/16/21–3/14/22 73 

Beaufort Carteret  69,473  3,500 (5%) 1/4/21–3/15/22 123 

Roanoke Rapids Halifax  69,493  14,320 (21%) 6/18/21–3/15/22 73 

City of Wilson Wilson  81,801  49,384 (60%) 6/18/21–3/14/22 71 

Chapel Hill – Carrboro Orange  148,476  78,141 (53%) 1/5/21–3/15/22 117 

Greenville Pitt  180,742  89,616 (50%) 1/4/21–3/15/22 121 

Wilmington City (North) New Hanover  234,473  58,361 (25%) 1/4/21–3/15/22 114 

New Hanover County (North) New Hanover  234,473  67,743 (29%) 1/21/21–3/15/22 114 

South Durham Durham  321,488  108,105 (34%) 1/5/21–3/15/22 118 

Fayetteville – Rockfish  Cumberland  335,509  151,589 (45%) 6/18/21–3/8/22 73 

MSD of Buncombe County Buncombe  378,608  173,000 (46%) 6/18/21–3/15/22 69 

Winston Salem – Salem  Forsyth  382,295  178,000 (47%) 6/18/21–3/15/22 70 

Greensboro – North Buffalo Guilford  537,174  135,821 (25%) 6/17/21–3/15/22 75 

Charlotte 1 Mecklenburg  1,110,356  68,685 (6%) 1/4/21–3/14/22 111 

Charlotte 2 Mecklenburg  1,110,356  182,501 (16%) 1/3/21–3/14/22 113 

Charlotte 3 Mecklenburg  1,110,356  120,000 (11%) 5/31/21–3/14/22 74 

Raleigh Wake  1,111,761  550,000 (49%) 1/5/21–3/15/22 108 

Note: Analyses were limited to sites with sustained monitoring around the Delta and Omicron surges. Sites are 

ordered by ascending county population size. 

MSD = Metropolitan Sewerage District; WWTP = wastewater treatment plant. 

 

Early warning potential: wastewater versus clinical data 

To examine the lead-time advantage of wastewater data, we compared trends in wastewater 

viral concentrations (normalized by flow rate and service population size) with trends in clinical 

case counts (recorded based on the symptom start date or test specimen collection date, 
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whichever was earlier). We examined correlations with both county-level and sewershed-level 

case counts. Although neither comparison is perfect, we prioritized the former, recognizing that 

wastewater data may capture the infections of not just those who reside in sewershed, but also 

those who are unsewered but travel to sewered areas for work or recreation.  

 

We found that rises in wastewater viral concentrations leading up to the Delta and Omicron 

surges generally coincided with the timing of rises in county-level case counts (Figure 1a,1b). 

However, around the Omicron surge, wastewater viral concentrations peaked more quickly than 

case count data in most sites (Figure 1b). 

 

  

All rights reserved. No reuse allowed without permission. 
(which was not certified by peer review) is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity. 

The copyright holder for this preprintthis version posted October 27, 2022. ; https://doi.org/10.1101/2022.09.19.22280095doi: medRxiv preprint 

https://doi.org/10.1101/2022.09.19.22280095


5 

Figure 1. Trends in wastewater viral concentrations and COVID-19 case counts  

a) Delta surge     b) Omicron surge 

Note: Wastewater viral concentrations (based on the arithmetic means of the N1 and N2 concentrations) were 

normalized by flow rate and service population size. County-level case counts are based on 7-day rolling averages. 

Vertical lines mark the start of each surge (based on visual inspection of wastewater trend lines). Sites are ordered by 

ascending county population size. 

LOD = limit of detection; MSD = Metropolitan Sewerage District. 

 

In most sites, correlations between flow-population normalized wastewater viral concentrations 

and case counts (both county-level and sewershed-level) were strengthened when we lagged 
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the case data—that is, when we compared wastewater concentrations on day x with case 

counts on day x+lag (Figure 2, Table 2, Table S1)—suggesting that wastewater tends to be a 

leading indicator. In 12 of 19 sites, the lead time that maximized the correlation with county-level 

case counts was 4 to 7 days but ranged from -1 day (indicating that the wastewater data lagged 

the case data) to 12 days across all sites (Table 2).  

 

Figure 2. Correlations between COVID-19 case counts and wastewater viral 

concentrations, by wastewater normalization method 

Note: Correlations were calculated between wastewater viral concentrations (the arithmetic means of the N1 and N2 

concentrations), normalized using different approaches, and the 7-day rolling average of county-level case counts. 

Sites are ordered by ascending county population size.  
BCoV = Bovine coronavirus; PMMoV = Pepper mild mottle virus. 
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Table 2. Correlations between wastewater viral concentrations and lagged case counts 

Site Name  

Spearman rank correlation (lead time that maximized the correlation) 

Overall 
(county-

level cases) 

Pre-Delta 
(1/1/2021 to 
4/5/2021) 

Delta surge  
(31 days before 
start of surge to 
peak of surge) 

Omicron surge 
(31 days before 
start of surge to 
peak of surge)  

Overall  
(sewershed- 
level cases) 

Average (across 19 sites) 0.80 0.76 0.84 0.86 0.79 

Laurinburg 0.78   (2) n/a 0.87   (-9) 0.78    (1) 0.74   (1) 

Tuckaseigee 0.85   (6) 0.93    (7) 0.94   (-5) 0.89    (7) 0.82   (8) 

Marion 0.84   (4) n/a 0.81 (-13) 0.91    (1) 0.83   (4) 

Beaufort 0.55  (-1) 0.54 (-14) 0.42  (14) 0.94   (-2) 0.47  (-2) 

Roanoke Rapids 0.73   (3) n/a 0.84  (-1) 0.72    (0) 0.74   (3) 

City of Wilson 0.81   (2) n/a 0.78  (-3) 0.66    (1) 0.80   (0) 

Chapel Hill – Carrboro 0.88   (4) 0.79    (9) 0.88  (-1) 0.83    (1) 0.87   (4) 

Greenville 0.88   (4) 0.79    (9) 0.87   (1) 0.84    (3) 0.87   (6) 

Wilmington City (North) 0.83   (6) 0.73   (-5) 0.91   (2) 0.83    (0) 0.78   (5) 

New Hanover County (North) 0.64 (12) 0.71 (-12) 0.90   (6) 0.94    (6) 0.64 (13) 

South Durham 0.78   (4) 0.77    (8) 0.75   (7) 0.94   (-1) 0.77   (5) 

Fayetteville – Rockfish  0.80   (7) n/a 0.81 (11) 0.77    (0) 0.80   (8) 

MSD of Buncombe 0.87  (-1) n/a 0.94   (0) 0.94    (8) 0.86   (0) 

Winston Salem – Salem 0.87   (2) n/a 0.93  (-2) 0.96   (-8) 0.87   (1) 

Greensboro – North Buffalo 0.81   (6) n/a 0.83  (-3) 0.89    (3) 0.79   (4) 

Charlotte 1 0.84   (5) 0.72    (3) 0.87  (-6) 0.89 (-12) 0.85   (6) 

Charlotte 2 0.78   (6) 0.76    (4) 0.89  (-2) 0.90    (1) 0.81   (8) 

Charlotte 3 0.82   (6) n/a 0.86  (-3) 0.78   (-5) 0.82 (10) 

Raleigh 0.90   (6) 0.88    (2) 0.90 (12) 0.96    (3) 0.88   (1) 

Note: Correlations were calculated between wastewater viral concentrations (the arithmetic means of the N1 and N2 

concentrations, normalized by the flow rate and service population size) and the 7-day rolling average of case counts. 

aggregated to the county level (unless otherwise specified). The number in parenthesis identifies the lag that 

maximized the correlation (among a range of lags tested from -14 to 14 days). All correlation coefficients were 

statistically significant (p < 0.05). We did not define a separate pre-Omicron period because of potential overlap with 

the Delta surge period. Sites are ordered by ascending county population size. 

MSD = Metropolitan Sewerage District; n/a = not available (no wastewater samples were collected in the timeframe).  

 

In analyses to examine the generalizability of our findings, we found the following: 

• The lead-time advantage of wastewater data was somewhat shortened when compared 

to sewershed-level case counts than county-level case counts, and wastewater viral 

concentrations were slightly less correlated with sewershed-level case counts than 

county-level case counts (averaging 0.79 versus 0.80 and ranging from 0.47 to 0.87 

versus 0.55 to 0.90, respectively), though differences were not meaningful (Table 2).  

• Restricting the data to periods around the Delta and Omicron surges (that is, excluding 

periods of low case counts prior to the Delta surge) generally increased the strength of 

the correlation between wastewater data and case counts, though differences in the 

strength of correlation varied by site and pandemic phase (Table 2). The lead-time 

advantage of wastewater data also fluctuated greatly across sites within a period, and 

across periods within a site. For example, in Wilmington City (North), wastewater 

concentrations lagged case counts during the pre-Delta period (with a -5-day lead time 

maximizing the correlation), lead case counts during the Delta surge (with a 2-day lead 
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time maximizing the correlation) and were aligned with case counts during the Omicron 

surge (with neither source leading the other). Around the Delta surge, the correlation 

averaged 0.84 across sites (range: 0.42 to 0.94), was slightly higher around the Omicron 

surge, averaging 0.86 across sites (range: 0.66 to 0.96). 

• The average correlation between wastewater viral concentrations and sewershed-level 

case counts was higher among sites with WWTPs that served larger populations (r = 

0.84 among plants serving 144,000 to 550,000 people) than smaller populations (r = 

0.75 among plants serving 3,500 to 32,500 people).  

• Normalizing wastewater viral concentrations did not substantially impact the lead-time 

advantage of the wastewater data, and in most sites, different normalization approaches 

yielded a similar level of correlation with case counts across the range of lead and lag 

times examined (Figure 2). However, in some sites (including Tuckaseigee, Raleigh, 

Roanoke Rapids, and MSD of Buncombe County), the correlation between county-level 

case counts and wastewater viral concentrations was diminished when the wastewater 

concentrations were normalized by pepper mild mottle virus (PMMoV) concentrations 

rather than by flow rate and WWTP service population size; flow rate, WWTP service 

population size, and bovine coronavirus (BCoV) recovery rate; or unnormalized.  

 

Patterns in wastewater metrics leading up to the Delta and Omicron surges  

Historical trends in wastewater viral concentrations captured the differing trajectories of the 

Delta and Omicron surges. On average, the time from the start of the Delta surge (based on 

visual inspection of site-specific low-population normalized wastewater trend lines) to its peak 

was 55 days but ranged from 21 days (in Fayetteville – Rockfish) to 144 days (in Beaufort, the 

smallest site included in statewide surveillance, which had some of the noisiest wastewater data 

over time). During the Omicron surge, wastewater viral concentrations rose more quickly and 

drastically; the average time from the start of the surge to its peak was only 18 days and ranged 

from 0 days (in Charlotte 1, where the peak was represented by a single-sample spike followed 

by a steady decline thereafter) to 42 days (in New Hanover County (North)). Generally, at the 

start of the Delta and Omicron surges, the percent increase in wastewater viral concentrations 

was much higher in smaller sites (based on county population or sewershed population size) 

than in larger sites. Below, we describe wastewater metrics around these surges in more detail. 

 

Delta surge 

The rise and fall of wastewater viral concentrations just before and at the start of the Delta surge 

varied greatly across the 19 sites (Figure 1). In the month before the surge began, 58% of 

samples had detectable concentrations, and wastewater viral concentrations were rising in 

some sites and falling in others, yielding an average percent change of 5% (Table 3). In the 10-

day window before the start of the Delta surge, 69% of samples had detectable wastewater viral 

concentrations, and concentrations increased by an average of only 3%. At the start of the Delta 

surge at each site, wastewater metrics changed drastically. All samples had detectable 

concentrations, and viral concentrations increased by an average of 706%. In absolute terms, 

flow-population normalized viral concentrations increased from an average of 1.3 million and 1.2 

million viral copies per person per day in the 31-day and 10-day period before the start of the 
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surge, respectively, to an average of 7.1 million viral copies per person per day across sites at 

the start of the surge. 

 

While wastewater metrics averaged across all 19 sites clearly changed at the start of the Delta 

surge (which was based on site-specific start dates, rather than a given calendar date), we 

found that no single metric could reliably identify the start of the surge at each site. Instead, 

considering multiple metrics in combination and in the context of historical trends was helpful to 

identify the start of the surge. We also found that the percent change can be a misleading metric 

when a site has low wastewater concentrations that hover around the limit of detection (LOD), 

since a 3- to 6-fold increase may still result in a relatively low concentration. Indeed, focusing on 

percent change alone resulted in false positives in some sites, but false negatives in others. For 

example, in Laurinburg, wastewater concentrations increased by a larger percent in the month 

prior to the start of the surge (103%) than in the 10 days leading up to the surge (17%). Visual 

inspection of the trend line shows that the higher percent increase in the month prior was driven 

by a single sample that was followed by a sustained period of lower concentrations. In Raleigh, 

the percent increase in the wastewater viral concentration at the start of the Delta surge was not 

very high (at 19%), but in absolute terms, the viral concentration at the start of the surge hit a 

level that had not been seen for more than 7 weeks. Further, the percent increase occurred 

after a period in which wastewater concentrations were either declining or below the LOD.  

 

Omicron surge 

Patterns in wastewater metrics around start of the Omicron surge varied from patterns around 

the Delta surge, likely because Delta infections had not fully waned by the time the Omicron 

variant first surfaced in the state. In the month before the Omicron surge began, 98% of 

samples had detectable concentrations (compared to 58% prior to the Delta surge), and 

wastewater viral concentrations increased by an average of 77% (Table 3). In the 10-day period 

before the start of the Omicron surge, 94% of samples had detectable concentrations, and 

wastewater viral concentrations increased by an average of only 43%. The declining wastewater 

viral concentrations that many sites saw during this period (compared to the month prior) likely 

reflects a waning of Delta infections before the start of the Omicron surge. At the start of the 

Omicron surge, the wastewater metrics again changed drastically. All samples had detectable 

concentrations and wastewater viral concentrations increased by an average of 768%. On 

absolute terms, flow-population normalized viral concentrations increased from an average of 

8.4 million and 9.7 million viral copies per person per day in the 31-day and 10-day period 

before the Omicron surge, respectively, to an average concentration of 68.9 million viral copies 

per person per day across sites at the start of the surge.  
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Table 3. SARS-CoV-2 wastewater concentration metrics leading up to surges 

 Percent change in normalized wastewater viral concentrations  

 Delta surge Omicron surge 

Site Name  

Average 
over prior 

month  

Average 
over prior 
10 days 

Value at 
start of 
surge 

Average 
over prior 

month  

Average 
over prior 
10 days 

Value at 
start of 
surge 

Average (across 19 sites) 5% 3% 706% 77% 43% 768% 

Laurinburg 103% 17% 1665% 51% -8% 1108% 

Tuckaseigee undef -76% undef 8% 16% undef 

Marion 75% 163% 1198% 70% 1% 2,530% 

Beaufort undef undef undef 27% 27% 129% 

Roanoke Rapids undef undef undef 152% -42% 3,034% 

City of Wilson 16% -29% 2075% 26% 11% 3,465% 

Chapel Hill – Carrboro -66% -13% undef 123% 150% 311% 

Greenville -29% 81% 354% 61% 148% 110% 

Wilmington City (North) 62% 29% 267% 44% 11% 226% 

New Hanover County (North) -67% n/a 669% 32% -85% 150% 

South Durham -77% undef 513% 23% 14% 80% 

Fayetteville – Rockfish  252% -9% 800% 81% 34% 108% 

MSD of Buncombe undef undef undef 522% -31% 207% 

Winston Salem – Salem -46% -57% 596% 27% 18% 188% 

Greensboro – North Buffalo -61% undef undef 61% 99% 131% 

Charlotte 1 -57% -29% 501% 30% 208% 575% 

Charlotte 2 38% -55% 215% 61% n/a 597% 

Charlotte 3 -13% 26% 303% 53% n/a 701% 

Raleigh -75% n/a 19% 91% 159% 181% 

 

Normalized wastewater viral concentrations  
(copies per person per day, in millions) 

 

 Delta surge Omicron surge 

Site Name  

Average 
over prior 

month  

Average 
over prior 
10 days 

Value at 
start of 
surge 

Average 
over prior 

month  

Average 
over prior 
10 days 

Value at 
start of 
surge 

Average (across 19 sites) 1.25 1.20 7.06 8.44 9.68 68.94 

Laurinburg 3.52 2.32 16.94 10.35 8.41 101.60 

Tuckaseigee 0.94 0.30 4.09 4.39 2.36 50.61 

Marion 1.64 1.04 19.60 4.07 5.65 150.83 

Beaufort 0.37 0.45 4.45 8.83 15.82 45.63 

Roanoke Rapids 0.36 0.37 3.43 11.97 8.18 32.68 

City of Wilson 2.30 3.89 31.15 8.25 6.00 57.03 

Chapel Hill – Carrboro 0.30 0.64 2.23 4.47 9.41 42.78 

Greenville 1.50 1.45 8.48 3.99 4.65 20.05 

Wilmington City (North) 0.77 1.18 5.78 6.07 3.88 16.29 

New Hanover County (North) 0.23 n/a 2.30 4.86 3.40 16.57 

South Durham 0.51 0.84 5.17 3.23 4.64 10.08 

Fayetteville – Rockfish  3.01 1.25 8.78 4.80 11.17 25.66 

MSD of Buncombe 0.16 0.22 1.68 5.85 8.05 24.74 

Winston Salem – Salem 0.58 0.43 3.02 7.37 9.97 28.71 

Greensboro – North Buffalo 0.26 0.17 2.06 8.14 18.50 59.65 

Charlotte 1 0.77 0.38 2.27 10.70 20.35 137.34 

Charlotte 2 2.38 1.59 5.02 14.48 n/a 183.10 

Charlotte 3 3.48 3.13 6.90 22.82 n/a 174.09 

Raleigh 0.33 0.73 0.87 13.57 47.10 132.33 

Note: Wastewater viral concentrations are based on mean of N1 and N2 concentrations, normalized by the flow rate 

and service population size. The percent change was calculated as the sample-to-sample change in the normalized 

wastewater viral concentrations. Values are reported from 31 days before the identified start of the surge (based on 

visual inspection of normalized wastewater trend lines) to the start of the surge at that site. 

MSD = Metropolitan Sewerage District; n/a = not available (no samples were collected in the timeframe shown); 

undef = undefined (prior samples had concentrations below the limit of detection that were not precisely quantified).  
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An algorithm to distinguish signal from noise in wastewater viral concentrations 

Given our findings that no single metric summarizing wastewater viral concentrations 

(detectability, percent change, or normalized viral concentrations) reliably identified the start of 

the Delta and Omicron surges, we iteratively tested different sets of logic, based on multiple 

wastewater metrics, in combination to identify the start of the Delta and Omicron surges more 

accurately.  

 

Figure 3 describes the logical criteria that best distinguished signal from noise in the wastewater 

data to identify a surge start date that aligned with our gold standard start date (based on visual 

inspection of trends in site-specific flow-population normalized wastewater viral concentrations).  

 

Figure 3. An algorithm to flag community-level surges using wastewater data  

 

After applying to logical criteria to identify all wastewater samples for which an alert was 

flagged, we selected the earliest flagged sample within each period of interest (that is, after the 

Delta variant was first identified in the state, and after the Omicron variant was first identified in 

the state, based on retrospective sequencing of clinical samples) to determine the 

algorithmically identified Delta and Omicron surge start dates. We then compared the 

algorithmically identified start dates with the start dates we had identified based on visual 

inspection of trends to assess performance (Table 4).  

 

  

Criterion 1: Was the wastewater concentration (normalized by flow rate and service population size)  

         higher than any concentration measured over the past month? 

 

Flag as a community-level surge if:  

[Criteria 1 and 2.1 and 4] OR [Criteria 1 and 2.2 and 4] OR [Criteria 3 and 4] were met 

 

Criterion 4: Was the sample at least the fourth to be collected in the period of interest? 

Criterion 2.1: Did the concentration represent a 100% increase or more from the previous sample? 

Criterion 2.2: Did the concentration represent a percent increase that was higher than any observed 

            over the past month? 

 

Criterion 3: Did the wastewater concentration become detectable after one month of      

        concentrations below the limit of detection? 
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Table 4. Surge start dates based on visual inspection of trends versus a novel algorithm 

Site Name 

Delta surge 
start date 

(algorithm) 

Delta surge start 
date (visual 
inspection) 

Omicron surge 
start date 

(algorithm) 

Omicron surge 
start date (visual 

inspection) 

Laurinburg 07/19/2021 07/19/2021 12/27/2021 12/27/2021 

Tuckaseigee 07/05/2021ϯ 07/18/2021ϯ 12/31/2021ϯ 12/17/2021ϯ 

Marion 07/05/2021 07/05/2021 12/29/2021 12/29/2021 

Beaufort 06/07/2021 06/07/2021 12/29/2021 12/30/2021 

Roanoke Rapids 07/09/2021 07/09/2021 12/16/2021 12/16/2021 

City of Wilson 07/06/2021ϯ 08/10/2021ϯ 12/28/2021 12/28/2021 

Chapel Hill – Carrboro 06/25/2021ϯ 07/23/2021ϯ 12/21/2021 12/21/2021 

Greenville 06/07/2021ϯ 07/23/2021ϯ 12/28/2021ϯ 12/03/2021ϯ 

Wilmington City (North) 06/29/2021ϯ 07/20/2021ϯ 12/21/2021 12/21/2021 

New Hanover County (North) 06/25/2021 06/25/2021 12/14/2021 12/14/2021 

South Durham 06/29/2021 06/29/2021 12/21/2021 12/21/2021 

Fayetteville – Rockfish  07/09/2021 07/09/2021 12/21/2021ϯ 12/03/2021ϯ 

MSD of Buncombe 06/29/2021 06/29/2021 12/24/2021 12/24/2021 

Winston Salem – Salem 07/27/2021 07/27/2021 12/28/2021 12/28/2021 

Greensboro – North Buffalo 07/13/2021ϯ 07/09/2021ϯ 12/17/2021ϯ 12/21/2021ϯ 

Charlotte 1 07/02/2021 07/02/2021 12/17/2021ϯ 01/07/2022ϯ 

Charlotte 2 07/09/2021 07/09/2021 01/03/2022 01/03/2022 

Charlotte 3 06/18/2021ϯ 06/28/2021ϯ 12/17/2021ϯ 01/03/2022ϯ 

Raleigh 06/24/2021 06/24/2021 12/16/2021ϯ 01/06/2022ϯ 

ϯ Denotes differences in the surge start date when based on the algorithm versus visual inspection of wastewater 

trend lines (normalized by flow rate and service population size).  

 

Summarizing the alignment between the two approaches, and thus the performance of the 

algorithm (Table 5), we found the following:  

• The algorithmically identified surge start date coincided with the visually identified start 

date (1 day) in 12 of 19 sites during the Delta surge and in 12 of 19 sites during the 

Omicron surge—i.e., in 24 of the 38 classification periods.  

• The algorithm performed better than visual inspection, picking up smaller perturbations in 

wastewater viral concentrations that were unprecedented but not visually obvious, in 4 sites 

during the Delta surge and 4 sites during the Omicron surge. The early warning ranged from 

10 to 28 days during the Delta surge and 4 to 21 days during the Omicron surge. Notably, in 

Charlotte 3, the algorithm identified an Omicron surge start date that was just before a two-

week gap in wastewater monitoring around the winter holidays—in other words, it would 

have provided officials with an early warning of the surge, based on an unprecedented value 

that may not have been obvious at the time based on visual inspection of the trend line. 

• The algorithm had unclear performance in 2 sites during the Delta period (by 35 and 46 

days), but no sites during the Omicron period. In both sites (Greenville and City of Wilson), 

the algorithm flagged a single sample with an elevated viral concentration that was followed 

by several samples with lower concentrations. Here, it’s unclear if the flagged “blip” reflects 

a false alarm (i.e., underlying variability in wastewater measurements that was not 

associated with a change in cases) or a micro-surge (i.e., an actual increase in cases that 

simply did not result in sustained community transmission). 
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• The algorithm missed the start of the surge for 1 site during the Delta period (by 4 days) 

and 3 sites during the Omicron period (by 14 to 25 days). The missed start during the Delta 

period occurred because the sample collected at the true start of the surge had a detectable 

viral concentration that was preceded by 2.5 weeks of concentrations below the LOD (not 

the 1-month period required in criterion 3). In two of the three sites where the start of the 

Omicron surge was missed, the true start of the surge occurred between 0-4 days after the 

Omicron variant was first known to have entered the state (and so the sample did not meet 

the requirements of criterion 4), while in the third site, the percent change metric was 

undefined at the true start of the surge because the prior sample had a concentration below 

the LOD (and so the sample did not trigger criteria 2.1 or 2.2).  

 

Table 5. Performance of algorithm versus manual identification of variant-related surges 

Period 
Comparable  

(accurate start) 
Superior  

(early warning) 

Unclear  
(false alarm or 
micro-surge) 

Inferior  
(missed surge) 

Delta (n=19) 63% 21% 11% 5% 

Omicron (n=19) 63% 21% 0% 16% 

Both surges (n=38) 63% 21% 5% 11% 

Note: Rows may not sum to 100% due to rounding error. Predictive value of the algorithm (grey-shaded columns) 

was calculated by combining sites where algorithm had identical or superior performance to manual identification. 

 

Overall, our algorithm accurately identified or provided an early warning for the start of the Delta 

and Omicron surges in 32 of 38 classification periods, yielding a predictive value of 84%. The 

predictive value increased to 89% if we presume that in the two sites with unclear performance, 

the algorithm flagged micro-surges (rather than false alarms). When we based calculations on 

unnormalized wastewater viral concentrations instead of flow-population normalized 

concentrations, algorithm performance was slightly weakened: the algorithm missed the start of 

the surge in 6 of the 38 classification periods (versus 4 when based on flow-population 

normalized concentrations). 

 

The criteria shown in Figure 3 are listed in general order of importance. Criterion 3 was useful in 

smaller sites (like Beaufort) where many samples were below the limit of detection. Criterion 4 

was implemented to establish a baseline level of noise and thereby reduce false alarms, though 

in some sites, it led to a missed start date (note: the 4-sample cut-off corresponded to an 

observation period of at least 8 days in North Carolina). Finally, for the one-month period 

referenced, we found that use of a 33- to 34-day window optimized the algorithm’s performance, 

though performance was still good when we applied a 28- to 32-day window. 

 

Discussion 

The findings from our analysis of data from North Carolina’s statewide wastewater monitoring 

program validate the use of wastewater monitoring to assess patterns in community 

transmission of COVID-19. Temporal trends in wastewater viral concentrations aligned well with 

trends in reported case counts, and wastewater data reflected the differing trajectories of the 

Delta and Omicron surges. Wastewater data appeared to be a leading indicator in most sites, 

identifying community outbreaks an average of four to five days before (county- and sewershed-
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level) clinical case data overall, and one to two days before the major variant-based surges. 

Notably, we observed an uptick in the wastewater data fully one week before the first Omicron 

case was announced in the state (20), and in different parts of the state (in Greenville and 

Fayetteville – Rockfish, rather than Charlotte). We also found that no single wastewater metric 

adequately identified the Delta or Omicron surge. However, by looking at the proportion of 

samples with detectable levels, the percent change in smoothed wastewater viral 

concentrations, and absolute wastewater viral concentrations together, we were able to sharpen 

focus around changing community risk profiles. 

 

The results of our analyses provide several practical insights for how public health officials can 

use wastewater data. First and foremost, we were able to develop a multi-metric algorithm that 

reliably distinguished signal from noise to accurately identify the start of both the Delta and 

Omicron surges in 84% of sites. At present, NCWMN weekly wastewater reports include two 

metrics: percentiles (based on the magnitude of wastewater viral concentrations) and percent 

change (over a 15-day period). For those unfamiliar with wastewater data, such metrics can be 

difficult to interpret, as they do not provide a basis for understanding when public health officials 

should take action to curb COVID-19 transmission. Indeed, as we note above, percent change 

was often misleading, as several sites saw a 100% increase or more in wastewater 

concentrations (the highest classification, coded in red on the statewide dashboard) when viral 

concentrations were quite low and hovering around the LOD. The algorithm we developed helps 

fill this gap, and because it is based on logic that can be easily implemented with spreadsheet 

software, it can be readily incorporated into existing dashboards to alert officials to when 

wastewater data signals a need for heightened public health response. Further, based on 

ongoing analyses, our algorithm shows promise to generalize outside of North Carolina and 

accurately flag variant-based surges in other states.  

 

Second, we found that correlations were similar when we compared wastewater viral 

concentrations to county-level versus sewershed-level case counts, which aligns with findings 

from Duvallet et al (21). Our results suggest that officials can make valid comparisons in near 

real time with county-level case data and may not need to geospatially align wastewater data 

with WWTP sewersheds to gain insights into disease transmission patterns. This finding is 

important because many WWTPs lack shapefiles delineating the geospatial boundaries of their 

service populations, and the analytic processing needed to restrict case count data to the 

sewershed can be cumbersome and infeasible for public health agencies that lack staff with 

expertise in geospatial methods.  

 

Third, given that the lead-time advantage of wastewater data fluctuated greatly across sites 

within a period (possibly due to differences in WWTP size or clinical test result turnaround time) 

and across periods within a site (possibly due to changes in the number of people getting 

tested, and in transmissibility and infection characteristics as circulating variants changed), 

wastewater data analysis and reporting may need to be tailored to site features (such as WWTP 

service population size), the overall infection rate, and the characteristics of the circulating 

pathogen or variant. Developing processes for adaptive wastewater metric development and 

refinement can help public health officials stay on top of new threats as they arise. 
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Our findings also extend the literature in several ways. Whereas previous reports from statewide 

wastewater programs have focused more on urban communities with large WWTPs (16, 21), 

North Carolina's statewide program includes rural communities with small WWTPs (the smallest 

of which serves 3,500 people). The underrepresentation of small WWTPs may explain why 

Duvallet et al found no relationship between the strength of correlation between PMMoV 

normalized wastewater and clinical case data and WWTP service population size (21). Our 

finding that normalizing wastewater levels did not substantially alter correlations between 

wastewater and case data aligned with some previous studies, but not others. In two previous 

analyses that included data from several sites, findings were similar to our study (16, 21). But in 

past analyses that largely focused on data from a single site, correlations between wastewater 

and case data were improved after normalizing wastewater concentrations (22, 23).  

 

There are a few limitations and assumptions that may have impacted our findings. First, 

because NCDHHS was not conducting wastewater-based variant monitoring at the time of this 

analysis, we could not confirm that observed rises in wastewater viral concentrations were due 

to the Delta or Omicron variants. However, when we dug further into wastewater data from the 

one site where we had variant monitoring in place—Jackson County—we saw that the date 

when wastewater variant sequencing results first detected the Delta variant, on July 5, coincided 

with our algorithmically-identified Delta surge start date (per Table 4). A second consideration is 

that the correlation results we present might be sensitive to our use of a 7-day rolling average to 

summarize clinical case counts. We chose this approach to smoothing to eliminate cyclic 

patterns in the case data, whereby no cases were recorded on weekends, and instead those 

cases were reflected in each Monday’s count. In sensitivity analyses, we found that the strength 

of correlation between wastewater viral concentrations and raw daily case counts (with no 

smoothing) was virtually unchanged, but that the lead time that maximized the correlation was 

attenuated to 2 to 3 days, on average, when no smoothing was applied. Finally, because 

wastewater monitoring takes place in only a minority of the 100 counties across the state, with 

sampling occurring twice weekly, on average (based on standards for participation in the 

Centers for Disease Control and Prevention’s National Wastewater Surveillance System), 

wastewater data are not yet granular enough to assess patterns in geographic spread, 

particularly with threats that transmit rapidly, like the Omicron variant. More research is needed 

to determine optimal sampling schemes for sentinel public health warnings.  

 

The algorithm we introduce here is part of a broader effort to translate wastewater lab results 

into meaningful information that can directly inform public health management. By considering 

patterns across multiple wastewater metrics in combination, we were able to distinguish signal 

from noise in wastewater data and automate the identification of the start of two very different 

COVID-19 surges due to different viral variants. Our algorithm gives public health officials a 

timely way to assess the need for action, and the logical criteria we lay forth provide a 

framework for states to finetune the alert algorithm to their data.  
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Materials and Methods 

Wastewater data 

In January 2021, the North Carolina Department of Health and Human Services (NCDHHS) 

launched the NCWMN to pilot routine wastewater monitoring for SARS-CoV-2, as one of eight 

initial states funded by the Centers for Disease Control and Prevention’s National Wastewater 

Surveillance System. The NCWMN, which expanded the work of the NC Wastewater Pathogen 

Research Network (24), was funded by the state legislature at University of North Carolina 

(UNC) system institutions in 2020, and has grown to include 25 sites, with plans for continued 

expansion in Fall 2022. Nineteen sites were actively part of the network when this analysis was 

conducted. Wastewater samples collected through NCWMN, based on twice-weekly 24-hour 

time- or flow-weighted composite sampling at centralized WWTPs, were sent to a UNC 

laboratory for digital PCR analysis. Detailed UNC wastewater testing methods have been 

previously published (25). 

 

Predating the pilot and prior to NCDHHS’ expansion to include sites in the underserved rural 

mountainous part of the state, Mathematica had launched wastewater monitoring in Western 

North Carolina, with funding from Dogwood Health Trust, which was provided through the 

Jackson County Department of Public Health. Wastewater samples were collected by the 

Tuckaseigee Water & Sewer Authority (TWSA) and tested by the University of Wisconsin-

Milwaukee’s School of Freshwater Sciences (UWM). A detailed description of UWM’s 

wastewater sample preparation and testing procedures can be found in previous publications 

(16, 26). After a four-week feasibility study in summer 2020 (not included in the current 

analysis), TWSA began collecting weekly samples (n = 116) beginning in mid-December 2020 

from the largest of three WWTPs in the county using time-weighted (hourly) composite 

sampling. In August 2021, NCDHHS provided supplemental funding to increase sampling in 

Jackson County to occur twice weekly, and the site was included in the NCWMN.  

 

From November 2021 onwards, NCDHHS supported all wastewater monitoring in Jackson 

County, and wastewater sample analysis was transitioned from UWM to UNC from January 13, 

2022 – February 28, 2022. The procedures used for wastewater sample processing and 

analysis were largely aligned across the UNC and UWM labs, with two main exceptions (beyond 

differences in the reagents used by the labs): (1) UNC pasteurized samples prior to analysis, 

while UWM did not, and (2) UNC used a two-step process to quantify the SARS-CoV-2 virus, 

while UWM used a one-step PCR process (which, based on UWMN’s optimization processes, 

yielded increased assay sensitivity, but did not affect the estimated viral concentrations). To 

assess the impact of these differences, NCDHHS conducted an inter-lab validation study prior 

to the transition. Over the 8-week validation period, a moderate level of agreement was 

observed between the two labs. The Spearman rank correlation coefficient comparing the 

average of the N1 and N2 concentrations between the two labs was 0.76, and the ratio of the 

log-transformed average of the N1 and N2 wastewater viral concentrations ranged from 0.91 to 

1.25. Since March 2022, UNC has been analyzing all samples collected through the NCWMN.  

 

Reported case-based surveillance data 

For comparison with wastewater viral concentrations, we downloaded reported case counts 

All rights reserved. No reuse allowed without permission. 
(which was not certified by peer review) is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity. 

The copyright holder for this preprintthis version posted October 27, 2022. ; https://doi.org/10.1101/2022.09.19.22280095doi: medRxiv preprint 

https://doi.org/10.1101/2022.09.19.22280095


17 

from the publicly available NC COVID dashboard (https://covid19.ncdhhs.gov/dashboard/data-

behind-dashboards), which records cases based on the test specimen collection date or 

indicated date of symptom start, whichever was earlier. We downloaded county-level daily new 

case counts, as well as sewershed-level case rates—that is, the number of daily new cases per 

10,000 people among those who reside within the boundaries of the sewersheds (WWTP 

service regions) that NCDHHS monitors. Prior to calculating sewershed-level case rates, 

NCDHHS set sewershed-level case counts between 1 and 4 to a value of 2, to meet NCDHHS 

Division of Public Health data suppression guidelines. To estimate sewershed-level case counts 

for each WWTP, we multiplied the sewershed-level case rates by the size of the population 

served by that WWTP. 

 

Statistical methods 

The wastewater viral concentrations we analyzed represent the arithmetic mean of N1 and N2 

viral concentrations. Prior to analysis, we cleaned indicator variables for whether N1 or N2 

concentrations were below the limit of detection (LOD) using information on the actual N1 and 

N2 concentrations and the N1 and N2 LOD thresholds reported by the labs. We then derived a 

composite indicator for whether both the N1 and N2 concentrations were below the LOD for a 

given wastewater sample (versus whether at least one target had a concentration above the 

LOD). We excluded from our analysis five wastewater samples that were flagged as having 

quality control issues. We normalized wastewater viral concentrations by flow rate and service 

population size (27) to create an interpretable metric in the units of genome copies per person 

per day (note: for one sample with a missing flow rate, we carried forward the flow rate from the 

previous sample). 

 

To assess the lead-time advantage of wastewater data, we calculated the correlation between 

flow-population normalized wastewater viral concentrations and case counts after lagging and 

leading the case counts by up to 14 days in either direction (for example comparing a 

wastewater measurement on a given day with clinical case counts measured x days before and 

after that wastewater sample was collected). Specifically, we calculated a Spearman rank 

correlation coefficient between the two data sources across the sampling period for each site. 

For these analyses, we applied a 7-day rolling average to new daily case counts to avoid cyclic 

gaps in the data arising from the fact that case counts are not reported on weekends. We also 

used single-value imputation to (1) set wastewater measurements below the LOD (which were 

reported as 0 by the UNC lab) to a value equal to the LOD divided by the square root of 2, and 

(2) set sewershed-level case counts that were missing to a count of 0. For WWTPs that serve 

multiple counties, we summed county-level case counts across the relevant counties covered by 

the WWTP for comparison with the site-level wastewater viral concentrations.  

 

To assess the generalizability of our findings, we examined how the correlation between 

wastewater viral concentrations and clinical case counts varied in several ways. We first 

compared correlations with both county-level and sewershed-level case counts. Next, because 

long periods with low infection rates could unduly influence the measured relationship between 

the wastewater and clinical case data, we repeated the correlation analyses after restricting the 

data to periods around each major surge, defined as 31 days prior to the start of each surge 

All rights reserved. No reuse allowed without permission. 
(which was not certified by peer review) is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity. 

The copyright holder for this preprintthis version posted October 27, 2022. ; https://doi.org/10.1101/2022.09.19.22280095doi: medRxiv preprint 

https://covid19.ncdhhs.gov/dashboard/data-behind-dashboards
https://covid19.ncdhhs.gov/dashboard/data-behind-dashboards
https://doi.org/10.1101/2022.09.19.22280095


18 

(defined by visual inspection of the wastewater trend line, as described below) through the peak 

of that surge (based on when the maximum wastewater concentration or 7-day rolling average 

of clinical case counts occurred, whichever was later). We also assessed how correlations 

differed when wastewater data were generated from large and small WWTPs, defined based on 

quartiles of the WWTP’s service population size. Lastly, we examined how results changed after 

applying different normalization approaches to the wastewater data, including normalizing by (1) 

flow rate and service population size, (2) flow rate, service population size, and BCoV recovery 

rate, and (3) PMMoV, a human biomarker that serves a proxy for how many people contributed 

to the sewer system (28).  

 

For analyses characterizing wastewater metrics around the Delta and Omicron surges, we 

reported the absolute magnitude of flow-population normalized viral concentrations, sample-to-

sample percent changes in those concentrations (calculated only for samples with detectable 

concentrations), and the proportion of samples with a concentration above the LOD. We 

summarized wastewater metrics on the start date of each surge, during a 10-day window prior 

to the start of each surge, and during a one-month (31-day) window prior to the start of each 

surge. We identified the start of the Delta and Omicron surges by conducting a visual 

assessment of the wastewater trend lines for each site. When plotting the trend lines, we 

narrowed the time series to periods around the surges by identifying when each variant was 

known to have first entered North Carolina, based on the retrospective sequencing of clinical 

samples (29)—from April 5, 2021 onwards for the Delta variant, and from November 29, 2021 

onwards for the Omicron variant. 

 

Finally, given our findings from the analyses described above, we developed an algorithm to 

distinguish signal from noise (underlying variability) and thereby establish an automated way to 

identify the start of the Delta and Omicron surges. To do so, we considered a combination of 

several metrics, including the absolute magnitude of flow-population normalized wastewater 

viral concentrations, sample-to-sample percent changes in those concentrations, and changes 

in detectability in those concentrations. To assess the performance of our algorithm, we 

compared algorithmically identified surge start dates with the start dates we had identified based 

on visual inspection. We then iteratively calculated the performance of different combinations of 

logical criteria to optimize the algorithm. For these analyses, traditional epidemiologic measures 

such as sensitivity and the true negative rate are undefined, since all sites had a surge (that is, 

there was no known negative period, since even prior to entry of the Delta variant, micro-surges 

in wastewater viral concentrations were observed around holidays and community events). 

Instead, we assessed the performance of our algorithm by classifying the number of sites for 

which the algorithm identified a start date that was (1) within 1 day of the start date identified 

through visual inspection (accurate performance), (2) earlier than the visually identified start 

date (early warning, micro-surge, or false alarm), or (3) later than the visually identified start 

date (inferior performance). For sites where the algorithm identified an earlier start date, we re-

examined the wastewater trend lines in post-hoc fashion to try to explain why an earlier start 

date was selected. If we found that the algorithm was picking up smaller perturbations in 

wastewater viral concentrations that were unprecedented but not visually obvious, and which 

were then closely followed by larger increases, we considered the algorithm to have provided an 
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early warning for the surge (i.e., superior performance). If the algorithm flagged the start of a 

smaller surge (that is, a series of elevated concentrations that did not reach the levels measured 

during the main surge), we considered that the algorithm may have flagged a micro-surge 

(which could have arisen if there were infected individuals shedding viral particles into the 

sewershed, but whose infections did not lead to widespread community transmission). Lastly, if 

the algorithm flagged a start date that represented a single or short-term blip that occurred well 

before precipitous rise and was followed by a period of steady or declining concentrations, we 

considered that the algorithm likely raised a false alarm (though even in these cases, that single 

blip could represent a small community outbreak that simply did not lead to widespread or 

sustained transmission). Based on these criteria, we classified algorithmic performance overall 

(across both surges) and within each variant-based surge. We also examined how performance 

changed when we based the algorithm on unnormalized wastewater viral concentrations. 
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