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AT A GLANCE COMMENTARY (200/200 words) 9 

 10 

Scientific Knowledge on the Subject:  11 

Emphysema may have unidentified treatment targets due to a distinct 12 

pathophysiology from other forms of COPD. Blood-based biomarkers may facilitate the 13 

identification of emphysema in smokers and reveal key therapeutic targets. Differential gene 14 

expression and protein analyses have uncovered some of the molecular underpinnings of 15 

emphysema. However, no studies have assessed the alternative splicing mechanisms and 16 

analyzed data from the recently developed high throughput panels. In addition, although 17 

emphysema has been associated with low body mass index (BMI), it is still unclear how BMI 18 

affects the transcriptome and proteome of the disease. Finally, the effectiveness of multi-19 

omic biomarkers in determining the severity of emphysema has not yet been investigated. 20 

 21 

What This Study Adds to the Field:  22 

We performed whole-blood genome-wide RNA sequencing and plasma SomaScan 23 

proteomic analyses in a large, well-phenotyped cohort of smokers. In addition to confirming 24 

earlier findings, our differential gene expression, alternative splicing, and protein analyses 25 
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 4 

identified novel emphysema biomarkers. Our mediation analysis detected varying degrees of 1 

transcriptomic and proteomic mediation due to BMI and assisted in differentiating whether 2 

pathways are primarily affected by emphysema or BMI. Finally, our supervised machine 3 

learning emphysema prediction modeling demonstrated the utility of incorporating multi-4 

omic data.  5 

 6 

Keywords: Emphysema; Biomarkers; Transcriptomics; Proteomics; Prediction 7 
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 5 

ABSTRACT 1 

 2 

Rationale: Emphysema is a key component of COPD with important prognostic 3 

implications. Identifying blood-based biomarkers of emphysema will facilitate early 4 

diagnosis and possible development of targeted therapies. 5 

 6 

Objectives: Discover blood transcriptomic and proteomic biomarkers for chest computed 7 

tomography-quantified emphysema in smokers and develop predictive biomarker panels.  8 

 9 

Methods: Emphysema blood biomarker discovery was performed using differential gene 10 

expression, alternative splicing, and protein association analyses in a training set of 2,370 11 

COPDGene participants with available whole blood RNA sequencing, plasma SomaScan 12 

proteomics, and clinical data. Validation was conducted in a testing set of 1,016 COPDGene 13 

subjects. Since body mass index (BMI) and emphysema often co-occur, we performed a 14 

mediation analysis to quantify the effect of BMI on gene and protein associations with 15 

emphysema. Predictive models were also developed using elastic net to predict quantitative 16 

emphysema from cell blood count, RNA sequencing, and proteomic biomarkers. Model 17 

accuracy was assessed by area under the receiver-operator-characteristic-curves (AUROC) 18 

for subjects stratified into tertiles of emphysema severity.  19 

 20 

Measurements and Main Results: 4,913 genes, 1,478 isoforms, 386 exons, and 881 21 

proteins were significantly associated with emphysema (FDR 10%). 75% and 77% of genes 22 

and proteins, respectively, were mediated by BMI. The significantly enriched biological 23 

pathways were involved in inflammation and cell differentiation, differing between the most 24 

All rights reserved. No reuse allowed without permission. 
(which was not certified by peer review) is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity. 

The copyright holder for this preprintthis version posted October 26, 2022. ; https://doi.org/10.1101/2022.10.25.22281458doi: medRxiv preprint 

https://doi.org/10.1101/2022.10.25.22281458


 6 

and least BMI-mediated genes. The cell blood count plus protein model achieved the highest 1 

performance with an AUROC of 0.89.  2 

 3 

Conclusions: Blood transcriptome and proteome-wide analyses reveal key biological 4 

pathways of emphysema and enhance the prediction of emphysema.  5 

 6 

Abstract word count: 246/250 7 

 8 
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 7 

INTRODUCTION 1 

Chronic obstructive pulmonary disease (COPD) is a leading cause of morbidity and 2 

mortality (1). Emphysema, a major COPD phenotype, has been independently associated 3 

with an increased risk for cardiovascular disease, lung cancer, and mortality (2-4). While 4 

some progress has been made in treating COPD, much work remains in identifying 5 

therapeutic targets specifically for emphysema (5). Furthermore, timely diagnosis calls for a 6 

blood-based predictive model as it may identify emphysema in subjects where computed 7 

tomography (CT) scans are not clinically indicated. An emphysema blood biomarker would 8 

also overcome the issues of radiation exposure and false positive findings associated with CT 9 

scans (6, 7). In addition, early disease biomarkers and a stronger understanding of the 10 

molecular bases of emphysema are needed to develop novel personalized therapies to 11 

improve the prognosis of affected individuals (2, 8, 9).  12 

Previous transcriptomic studies have identified emphysema-associated genes (such as 13 

COL6A1, CD19, PTX3, and RAGE) and biological processes (such as innate and adaptive 14 

immunity, inflammation, and tissue remodeling) (7, 10-14). However, most studies to date 15 

have not evaluated emphysema-associated alternative splicing mechanisms. Alternative 16 

splicing, the regulatory process in which multi-exon human genes are expressed in multiple 17 

transcript isoforms, has been implicated in the pathophysiology of several lung diseases such 18 

as asthma, pulmonary fibrosis, pulmonary arterial hypertension, and COPD (15-21). Protein 19 

levels have also been studied for potential emphysema biomarker identification and it was 20 

found that sRAGE, ICAM1, CCL20, and adiponectin levels in blood and eotaxin levels in 21 

bronchoalveolar lavage fluid are associated with emphysema severity (22-25), though the 22 

protein panels used for these studies included fewer proteins than more recently developed 23 

panels (26, 27). Finally, previous research that used blood-based emphysema prognostic 24 

models had small sample sizes and only tested one -omic modality at a time (22, 26-29).  25 
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 8 

We used whole-blood genome-wide RNA sequencing (RNA-seq) and plasma 1 

SomaScan proteomic data from a well-phenotyped cohort of current and former smokers of 2 

the COPDGene study to determine the associations of genes, alternative splicing, and 3 

proteins with CT-quantified emphysema. Given the high clinical correlation between 4 

emphysema and BMI (30), we also performed a mediation analysis to understand the 5 

influence of BMI on emphysema-associated genes and proteins. Finally, we developed 6 

machine learning predictive models for emphysema using transcriptomic and proteomic 7 

biomarkers. We hypothesized that transcriptomic and proteomic characterization of smokers 8 

would elucidate emphysema pathobiology and yield novel disease biomarkers. We also 9 

hypothesized that most differentially expressed genes and proteins would be mediated by 10 

BMI and enriched for a distinct set of biological processes relative to genes not mediated by 11 

BMI. Lastly, a multi-omic prediction model might distinguish between smokers with low and 12 

high emphysema severity. Some of these results have been previously reported as an abstract 13 

(31).  14 

 15 

METHODS 16 

 17 

Study description 18 

 Participants were recruited from the COPDGene study (NCT00608764, 19 

www.copdgene.org), a longitudinal study investigating the genetic basis of COPD. The 20 

COPDGene population consists of 10,371 non-Hispanic white and African-American 21 

smokers 45-80 years old, with at least ten pack-years of lifetime cigarette smoking history 22 

(32). Subjects had varying degrees of COPD severity, as measured by the Global Initiative 23 

for Chronic Obstructive Lung Disease (GOLD) grading system. COPDGene obtained 5-year 24 

follow-up data and is currently obtaining 10-year follow-up data of available subjects. 25 
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 9 

Questionnaires, chest CT scans, and spirometry have been gathered at 21 clinical facilities in 1 

the United States. In addition, whole blood genome-wide RNA-seq and plasma proteomic 2 

measurements were obtained from a subset of subjects at their 5-year follow-up visit (Visit 3 

2). Each center acquired institutional review board approval and written informed consents. 4 

In our analyses, we used the COPDGene Visit 2 data, which included RNA-seq and 5 

SomaScan plasma proteomic data. 6 

 7 

Emphysema quantification 8 

 Using the Thirona software (www.thirona.eu), radiologic emphysema was quantified 9 

as the Hounsfield units (HU) at the 15th percentile of CT density histogram at total lung 10 

capacity, corrected for the inspiratory depth variations (adjusted Perc15 density) (33, 34). 11 

 Adjusted Perc15 density values are reported as the HU + 1,000. The lower the adjusted 12 

Perc15 values are, i.e., the closer to -1,000 HU, the more CT-quantified emphysema is 13 

present.  14 

 15 

Training and testing samples 16 

We randomly partitioned our studied cohort into training and testing samples 17 

comprising 70% and 30% of the subjects, respectively.  All association and mediation 18 

analyses, as well as prediction model training, were conducted in the training data. Validation 19 

was carried out in the testing sample.  20 

 21 

RNA isolation, library preparation, filtering, and normalization 22 

 Illumina sequencers were utilized to obtain gene, isoform, and exon counts from total 23 

blood RNA isolated from Visit 2 participants. Genomic features with very low expression 24 

(average counts per million (CPM) < 0.2 or number of subjects with CPM < 0.5 less than 50) 25 
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 10

or extremely highly expressed genes (number of subjects with CPM > 50,000 less than 50) 1 

were filtered out prior to applying trimmed mean of M values normalization from edgeR 2 

(v3.24.3), which accounts for differences in sequencing depth (35). Counts were transformed 3 

to log2 CPM values and quantile-normalized to further remove systematic noise from the 4 

data.  5 

 6 

Protein measurements and filtering 7 

 At Visit 2, plasma samples were assayed for 4,979 proteins in 6,018 COPDGene 8 

participants using the SomaScan Human Plasma 5.0K assay, a multiplex aptamer-based assay 9 

(SomaLogic, Boulder, Colorado) (36). The SomaScan data was standardized per the 10 

SomaLogic protocol to control for inter-assay variation between analytes and batch 11 

differences between plates. Samples with low volume, failed hybridization control, or failed 12 

dilution scale were removed. Protein counts were also transformed to log2 CPM values. 13 

 14 

RNA-seq differential expression, usage, and protein association analyses 15 

We used the limma-voom linear modeling approach (as implemented in limma 16 

v3.38.3) to test for the associations between emphysema and whole blood RNA transcripts 17 

(37, 38). The diffSplice function from limma was used to test for differential usage of 18 

isoforms and exons. While differential expression refers to the change in the absolute 19 

expression levels of a feature, differential usage captures alternative splicing and refers to the 20 

change in the relative expression levels of the isoforms/exons within a given gene. The 21 

associations of the SomaScan proteins with emphysema were tested using multivariable 22 

linear modeling. In the emphysema “primary” model, we adjusted for age, race, sex, pack-23 

years of smoking, current smoking status, forced expiratory volume in one second (FEV1), 24 

cell blood count (CBC) proportions, CT scanner model, and library preparation batch for 25 
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RNA-seq / clinical center for proteins. The validation rate in the testing sample was 1 

determined based on a threshold P-value < 0.1 and a consistent direction of effect in the 2 

training and testing datasets. In the emphysema plus BMI model performed on just genes and 3 

proteins (“sensitivity analysis”), we added BMI to the list of covariates. To select biomarkers 4 

for inclusion in the prediction model, we ran additional models only adjusted for the CT 5 

scanner model and library preparation batch for RNA-seq / clinical center for proteins. 6 

Multiple comparisons were corrected with the Benjamini-Hochberg method using a threshold 7 

of significance of a false discovery rate (FDR) of 10% (39).   8 

 9 

Mediation analysis 10 

We conducted a mediation analysis to distinguish how much of the effect of 11 

emphysema on gene expression acted through BMI (referred to as the indirect effect) and 12 

how much of the effect of emphysema directly influenced gene expression (referred to as the 13 

direct effect). The medflex R package v0.6-7 was employed (40).  The analysis was 14 

performed both on the genes and proteins with statistically significant total effects (the sum 15 

of the indirect and direct effects) from the emphysema model without BMI adjustment. A 16 

mediated proportion representing the ratio of the indirect effect over the total effect was 17 

computed for each gene.  18 

 19 

Gene set enrichment analyses 20 

The biological enrichment of the gene sets derived from the gene expression, 21 

transcript usage, and protein association analyses was evaluated using the topGO (v2.33.1) 22 

weight01 algorithm, which accounts for the dependency in the Gene Ontology (GO) topology 23 

(41). GO enrichment analysis was also conducted on the top 250 most mediated (i.e., with the 24 

lowest significant indirect effect FDR) and least mediated (i.e., with the lowest significant 25 
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 12

direct effect FDR and mediated proportions between -1.2 and 0.2) genes and proteins. We 1 

only reported GO pathways with at least three significant genes and an adjusted P-value < 2 

0.005. 3 

 4 

Development of predictive models  5 

 6 

To predict CT-quantified emphysema, we constructed supervised elastic net models. 7 

Elastic net offers several well-known benefits, including the ability to account for multi-8 

collinear features and avoid overfitting (42). The outcome variable was the adjusted Perc15 9 

density. The predictors were the RNA-seq and proteins that reached statistical significance in 10 

the transcriptomic and proteomic association analyses (adjusted only for the scanner model 11 

and library preparation batch or clinical center). We first used CBC with either genes, 12 

isoforms, or exons as predictors. The highest-performing RNA-seq data type was utilized to 13 

build a second set of prediction models (CBC only, CBC + RNA-seq, CBC + proteins, and 14 

CBC + RNA-seq + proteins) with or without readily available clinical variables (age, BMI, 15 

sex, and race). The outcome and the predictors were centered and scaled. The models were 16 

trained using 10-fold cross-validation, minimizing the mean squared error (MSE) (43) on the 17 

left-out fold. After model training on the continuous emphysema variable, we classified 18 

subjects into tertiles of adjusted Perc15 density. We evaluated the predictive performances of 19 

the models using R2 for the continuous emphysema and the area-under-receiver-operator-20 

characteristic curve (AUROC) for the model accuracy to distinguish those in the highest and 21 

lowest tertiles of emphysema severity. We compared AUROCs with the DeLong test using 22 

the pROC R package (44). Finally, predictors were ranked by the absolute values of their 23 

coefficients from the regression model. 24 

 25 
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Statistical analysis 1 

Data were reported as mean with standard deviations or counts with percentages. 2 

Continuous variables were tested with Kruskal-Wallis and categorical variables with chi-3 

square. Upregulated versus downregulated genes as well as positive versus negative signs of 4 

the protein coefficients are provided with respect to their relationships with adjusted Perc15 5 

density (i.e., they have opposite directions for their associations with emphysema).  6 

 7 

Additional methods are available in the Supplement.  8 

 9 

RESULTS 10 

 11 

Subject characteristics 12 

 3,386 subjects from COPDGene Visit 2 with complete RNA-seq, protein, and clinical 13 

data necessary were included in our analyses (Figure 1). As shown in Table 1, the included 14 

subjects were mostly non-Hispanic whites with a balanced representation by sex, a mean age 15 

of 65, a mean BMI of 29, and a mean of 41 pack-years of smoking. The subjects’ 16 

characteristics did not significantly differ between the training and testing data, which 17 

consisted of 2,370 and 1,016 subjects, respectively. A comparison of subjects with and 18 

without missing data showed that the two groups were largely similar in characteristics 19 

(Table E1). A schematic overview of the analyses performed is illustrated in Figure 2. 20 

 21 

Differential gene expression analysis 22 

We performed differential gene expression (DGE) analysis on the gene level RNA-23 

seq counts obtained from the 2,370 subjects of the training dataset. 4,913 out of 19,177 genes 24 

reached significance at 10% FDR for CT-quantified emphysema (Table E2). 2,339 genes 25 
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were up-regulated, and 2,574 were down-regulated (Figure 3A). The GO enrichment analysis 1 

performed on the differentially expressed genes identified 44 significantly enriched 2 

biological processes, including neutrophil degranulation, regulation of NF-kappaB (NF-κB) 3 

signaling, viral transcription, T cell proliferation, and regulation of tumor necrosis factor 4 

(TNF)-mediated signaling pathway (Table 3, E3). 5 

 6 

Differential isoform and exon usage analyses 7 

 We next performed differential isoform usage (DIU) and differential exon usage 8 

(DEU) analyses on the training dataset to investigate the changes in relative isoform and exon 9 

levels within single parent genes. Out of 78,837 isoforms and 209,707 exons tested, 1,478 10 

isoforms and 368 exons reached significance (FDR 10%), respectively (Table 2).  The 11 

differentially used isoforms (DUIs) mapped to 1,209 individual genes; 45% of these genes 12 

(542/1,209) were also identified in the DGE analysis (Table E4). The differentially used 13 

exons (DUEs) mapped to 251 genes (Table E6); 68% of these genes (171/251) were also 14 

differentially expressed. 788 isoforms and 142 exons were up-regulated. 690 isoforms and 15 

244 exons were down-regulated (Figure 3B, 3C). The GO enrichment analyses performed on 16 

the DUIs and DUEs yielded 35 and 13 significantly enriched biological processes, 17 

respectively. Top processes included autophagy of the mitochondrion, regulation of NF-κB 18 

signaling, negative regulation of wingless-related integration site (WNT) signaling, and viral 19 

transcription (Table 3, E5, E7).  20 

 21 

Protein association analysis 22 

 We tested 4,979 proteins measured with the SomaScan v2 panel in the training dataset 23 

using multivariate linear regression modeling. 18% (881/4,979) of the evaluated proteins 24 

were associated with emphysema (FDR 10%) (Table E8, Figure E1). From the GO 25 

All rights reserved. No reuse allowed without permission. 
(which was not certified by peer review) is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity. 

The copyright holder for this preprintthis version posted October 26, 2022. ; https://doi.org/10.1101/2022.10.25.22281458doi: medRxiv preprint 

https://doi.org/10.1101/2022.10.25.22281458


 15

enrichment analyses performed on the proteins, we found 17 significantly enriched biological 1 

processes (Table E9). The top enriched pathways were related to complement activation, 2 

classical pathway, and WNT-signaling. Figure 4 summarizes the overlap of the biomarkers 3 

and GO terms between DGE, DIU, DEU, and protein analyses, showing that over 90% of the 4 

total reported biomarkers and GO terms are unique to each individual analysis.  5 

 6 

Validation analyses 7 

 We analyzed 1,016 subjects with RNA-seq and proteomic data in the testing samples 8 

to provide independent validation of the emphysema biomarkers identified in the training 9 

sample. We observed that the effect sizes were highly correlated between training and testing 10 

DGE, DEU, and protein analyses (Pearson’s r = 0.80, 0.86, and 0.88, respectively). A lower 11 

correlation (r = 0.29) was observed in the DIU analysis. We further determined whether 12 

biomarkers were validated by using a threshold of (testing) P-value < 0.1 coupled with 13 

whether the training and testing data had a consistent direction of effect. 46% (2,252/4,913), 14 

30% (449/1,478), 60% (233/368), and 47% (416/881) of the DGE, DIU, DEU, and protein 15 

biomarkers, respectively, were validated (Tables E2, E4, E6, and E8). 16 

 17 

Mediation analysis 18 

  Since severe emphysema is often associated with low BMI, we performed sensitivity 19 

analyses that also adjusted for BMI in our transcriptomic and proteomic analyses. We 20 

observed that 96% (4,728/4,913) of the differentially expressed genes and 80% (703/881) of 21 

the proteins (Figure E2) associated with emphysema from the primary analysis were no 22 

longer significant after adjustment for BMI, suggesting that BMI mediates many of the 23 

emphysema-associated transcriptomic and proteomic changes. BMI may therefore be 24 

involved in the causal pathway linking genes and proteins to emphysema. To investigate this, 25 
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we performed mediation analysis to compare the direct effect of emphysema on genes and 1 

proteins and the indirect effect of emphysema on genes and proteins that are mediated by 2 

BMI, as visualized by the directed acyclic graph (DAG) in Figure 2. The analyses were 3 

performed on the 4,913 differentially expressed genes and proteins from the association 4 

analyses without BMI adjustment. We found that 70% of genes (3,456/4,913) and 61% of 5 

proteins (537/881) showed evidence of mediation with a significant indirect effect and no 6 

significant direct effect. 229 genes and 138 proteins had significant direct and indirect effects, 7 

234 genes and 103 proteins had significant direct effects only, and 994 genes and 103 8 

proteins had no significant effect in the mediation analysis (Tables E12 and E13).  9 

 The top 250 most and least mediated genes and proteins were analyzed for shared and 10 

unique biological pathways. Most of the pathways significantly enriched for the least 11 

mediated genes were related to the immune response, such as interferon-gamma production 12 

and chemokine-mediated signaling pathway. The pathways significantly enriched for the 13 

most mediated genes included immune and iron-related pathways such as iron ion 14 

homeostasis and the protoporphyrinogen IX (PPIX) metabolic process (Table E14). No 15 

pathways were enriched for the top 250 and bottom 250 mediated proteins at the P-value < 16 

0.005 threshold. 17 

 18 

Prediction 19 

 To develop predictive models for emphysema using blood biomarkers, we performed 20 

association analyses in the training dataset, adjusting only for technical factors (CT scanner 21 

model and library preparation batch for transcriptomic or clinical center for proteomic). 22 

13,066 genes, 4,254 isoforms, 2,263 exons, and 1,719 proteins reached significance (FDR 23 

10%). To evaluate whether gene expression data was more informative at the gene, isoform, 24 

or exon level, we trained three models in the training sample (CBC + gene, CBC + isoform, 25 
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and CBC + exon). The AUROC were 0.80, 0.70, and 0.76, respectively (Table E17 and 1 

Figure E4). Accordingly, we focused on gene-level quantifications exclusively for the 2 

subsequent models. CBC, CBC + gene, CBC + protein, and CBC + gene + protein elastic net 3 

models were run along with a set of models also using clinical predictors. The adjusted 4 

Perc15 density was then classified into tertiles (Figure E3), and the ability of the predictive 5 

models to distinguish subjects in the highest and lowest tertiles was assessed in the testing 6 

sample.   7 

The model using only CBC achieved an AUROC of 0.64. Adding genes to this model 8 

improved the performance to an AUROC of 0.80 (DeLong P-value 0.05). However, the 9 

performance was even better when the protein data was added to the CBC-only model 10 

(AUROC 0.89, DeLong P-value 0.05). Adding both gene and protein data to CBC gave an 11 

AUROC of only 0.87, suggesting that gene data do not provide additional predictive 12 

information to the protein data. Figure 5 summarizes the model results, and Table E15 13 

summarizes each model's AUROC, alpha, and L1 parameters. Each elastic net model 14 

repeated with clinical predictors had a higher AUROC than the corresponding models 15 

without. However, they did not impact the ranking of the model performances (i.e., CBC + 16 

protein remained the highest-performing model) (Figure E5). 17 

Ranked by absolute beta coefficients, the top-10 predictors of the all-inclusive model 18 

included sRAGE (soluble receptor for advanced glycation end products) and biomarkers that 19 

have not been previously connected to emphysema: MIR124-1HG (MIR124-1 Host Gene) 20 

and PSMP (PC3-secreted microprotein) (Figure 6).  21 

 22 

DISCUSSION 23 

 In this study, we performed the largest blood transcriptomic and proteomic profiling 24 

of CT-quantified emphysema to date, including investigations into the alternative splicing 25 
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mechanisms of emphysema. We uncovered thousands of biomarker associations. The 1 

biological relevance of these findings was assessed through GO pathway analyses, which 2 

demonstrated enrichment for inflammatory pathways such as neutrophil degranulation as 3 

well as those involved in cell differentiation such as NF-κB and WNT signaling. The 4 

mediation analysis revealed that 70% of differentially expressed genes and 61% of associated 5 

proteins in our emphysema cohort are mediated through BMI, shedding light on distinct 6 

biological pathways associated with the mediated or non-mediated genes and proteins. We 7 

also showed that prediction models using blood biomarkers achieve high accuracy in 8 

discriminating between smokers with substantial versus mild emphysema.  9 

 A growing but limited number of studies have examined emphysema biomarkers and 10 

biological pathways. The extracellular matrix (ECM), NF-κB, transforming growth factor 11 

beta (TGF-ß), B cell antigen receptor (BCR), and oxidative phosphorylation pathways are 12 

among the most reported in these studies (10, 45, 46). However, although researched from 13 

various sources, including peripheral blood, lung tissue, and sputum, most identified 14 

pathways and biomarkers originate from studying a single 'omics modality at a time (22, 27, 15 

47). Furthermore, the alternative splicing mechanisms of emphysema have not been 16 

examined extensively. Our investigations examined the blood genes, isoforms, exons, and 17 

proteins, confirming many of the known emphysema-associated pathways and revealing 18 

additional ones that may also be at play.  19 

Systemic inflammation and immunological dysfunction due to noxious particle 20 

exposure potentiate alveolar damage in emphysema and increase susceptibility to viral 21 

infections (47-52). Our pathway analysis identified neutrophil degranulation and the TNF 22 

pathway, both emphysema-related inflammatory signals previously implicated in COPD and 23 

murine models of emphysema (53-56). Additionally, our pathway analysis revealed T cell 24 

proliferation, which aligns with studies that have correlated the number of T cells with the 25 
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level of alveolar damage in COPD (57). Due to its enhancement of degranulation and 1 

cytokine release, the C5 complement factor has been linked to emphysematous changes (58, 2 

59). Although we did not look into particular complement components, our pathway analysis 3 

revealed that the classical complement pathway is enriched for emphysema. C5 can be 4 

activated through the classical pathway, supporting its putative role in emphysema.  5 

NF-κB promotes innate immune and T cell differentiation, suppresses apoptosis, and 6 

enhances pro-inflammatory genes (60). Higher amounts of the NF-κB p65 subunit protein 7 

have been found in sputum samples and bronchial biopsies of COPD patients compared to 8 

controls (61, 62) and have been implicated in emphysema pathogenesis (63, 64). This is 9 

supported by our data. Our pathway analysis also corroborates prior literature on the possible 10 

role of mitochondrial autophagy (mitophagy) in emphysema (65, 66). The canonical WNT 11 

signaling pathway, which maintains tissue homeostasis and regulates cell differentiation and 12 

apoptosis (67), is a known activator of mitochondrial biogenesis (68). According to prior 13 

research, WNT signaling is inactive in emphysematous lung tissue (69, 70), as supported by 14 

its downregulation in our analysis.  15 

 Severe emphysema is known to be associated with low BMI, muscle wasting, and 16 

cachexia (71-73). Most of the transcriptomic and proteomic associations with emphysema in 17 

our study were sensitive to the adjustment for BMI, suggesting that BMI may be involved in 18 

the causal pathways underlying these associations. According to a recent study, COPD 19 

patients' cachexia may be influenced by impaired heme biosynthesis, which leads to excess 20 

iron accumulation and oxidative tissue damage (74). Interestingly, the PPIX metabolic 21 

pathway, which is directly involved in heme biosynthesis (75), and iron ion homeostasis were 22 

enriched in our top 250 most mediated genes. On the other hand, the top 250 least mediated 23 

genes (i.e., those less influenced by BMI) were more involved with immune response-related 24 

than iron-related pathways. 25 
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CT scan is the best currently available non-invasive method for detecting emphysema. 1 

However, CT has several drawbacks, including increased costs, radiation exposure, and high 2 

rates of unrelated false-positive findings (76). Accurate risk prediction tools that use the best 3 

available data sources to stratify patients based on their specific risk profiles could help with 4 

more efficient early and targeted interventions. Until recently, such prediction models were 5 

only created using data from a single 'omics type with or without standard clinical features 6 

(77-80). As the first study to utilize gene, alternative splicing, and protein predictors 7 

combined with CBC, we developed models that could classify upper and lower tertiles of 8 

emphysema severity with reasonable accuracy. While alternative splicing predictors were 9 

worth exploring, gene data had a higher AUROC and the highest number of features selected. 10 

While genes outperformed clinical and CBC features, protein predictors yielded the best 11 

AUROC across all models.  12 

 From the top 10 predictors of the CBC + gene + protein model, sRAGE, which 13 

minimizes tissue injury and inflammation, has consistently been recognized as a candidate 14 

emphysema biomarker (7, 12, 81, 82). Even though its function is not fully known, PSMP 15 

has been implicated in inflammation and cancer development (77). The putative role and 16 

function of PSMP in emphysema require further investigation. Also not previously connected 17 

to emphysema, MIR124-1HG is involved in the sensory perception of sound by modulating 18 

inner ear stem cell growth (83). Bayat et al. concluded that COPD patients had more hearing 19 

loss than control patients (84). However, the speculated mechanisms leading to hearing 20 

impairment, such as brain hypoxia (85) and increased inflammatory cytokines (86), require 21 

further investigation. Another study found that miR-124 (microRNA of MIR124-1HG host 22 

gene) regulates the sensory region of the cochlea by targeting inhibitors of the WNT 23 

signaling pathway (83).  24 
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This study has several strengths. Our findings come from a large, well-phenotyped 1 

cohort of smokers. This is the first study that, to our knowledge, has looked at alternative 2 

splicing mechanisms in emphysema in addition to differential gene expression and protein 3 

association analyses. As a result, we were able to contrast the various biological pathway 4 

enrichments, discovering new emphysema mechanisms and support existing ones. 5 

Additionally, we performed validation analyses of our reported biomarkers. In order to 6 

understand how BMI impacts emphysema, we also conducted a mediation analysis that 7 

allowed us to assess the contribution of the most and least mediated genes and proteins to the 8 

enriched biological pathways. Finally, our multi-omic approach model enabled us to 9 

construct prediction models that accurately discriminate between more severe and less severe 10 

emphysema.   11 

This study also has several limitations. CBC quantifications do not capture the 12 

variability of the immune cell subpopulations, which limits the ability to localize these effects 13 

to specific cell types. Our results could, therefore, partially be due to cell subpopulations not 14 

represented in the CBC quantifications. Future studies may address this by using single-cell 15 

data. Next, the mediation analysis is based on the following assumptions: no unmeasured 16 

confounding of the emphysema-BMI-gene expression/protein level relationship, no 17 

measurement error for the exposure or mediator, and the arrows in the DAG are correctly 18 

specified. However, the specification of the DAG is reasonable based on prior medical 19 

knowledge. In addition, while mediation and subsequent pathway analyses were able to 20 

detect interesting biological pathways that may be involved in disease pathogenesis, such 21 

analyses are only hypothesis-generating and require functional confirmation. Lastly, the large 22 

sample size for our primary analysis reduces the risk of false positive associations, but further 23 

validation of these results in comparable cohorts will provide greater confidence in these 24 

associations. 25 
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 1 

CONCLUSION 2 

 Collectively, our transcriptomic and proteomic analyses illustrated the inflammatory 3 

and cell differentiation pathways leading to emphysematous changes in addition to 4 

identifying novel biomarkers predictive of emphysema. While not ready to be used for 5 

clinical practice, our prediction model opens the possibility of assessing emphysema severity 6 

in the clinical setting using a minimally invasive blood sample. This could inform patient 7 

enrollment in clinical trials and minimize radiation exposure. Future work is required to 8 

compare blood and lung tissue biomarkers, understand how they change as emphysema 9 

progresses, and evaluate the impact of implementing the developed predictive models to 10 

personalize and improve patient care.  11 

 12 

 13 
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Table 1. Characteristics of subjects in the training and testing datasets in COPDGene Visit 2. 

  
Training  

(N = 2,370) 
Testing  

(N = 1,016) 
P-value 

Age 65.07 (8.78) 65.42 (8.85) 0.28 
Sex, % male 51.35% 49.80% 0.41 
Race, % NHW 72.87% 76.18% 0.04 
BMI 28.94 (6.33) 28.70 (6.01) 0.31 
Smoking pack-years 41.65 (25.72) 41.23 (25.90) 0.66 
Current Smoker 858 (36.20%) 346 (34.06%) 0.23 

FEV1 (mL) 2.22 (0.84) 2.21 (0.85) 0.75 

FEV1, % predicted 80.57 (24.35) 80.52 (24.33) 0.95 
FVC (mL) 3.20 (0.95) 3.19 (0.96) 0.88 
Bronchodilator responsiveness 
(FVC, % predicted) 2.99 (9.67) 3.25 (10.65) 0.50 
Adjusted Perc15 density 85.96 (24.8) 85.72 (24.91) 0.79 
% Segmental airway wall thickness 49.70 (8.37) 49.54 (8.37) 0.62 
Gas trapping 19.81 (18.37) 19.78 (18.59) 0.97 
Pi10 2.24 (0.57) 2.23 (0.56) 0.54 
GOLD grade  
                                          PRISm  
                                                   0  
                                                   1 
                                                   2 
                                                   3 
                                                   4 

299 (12.62%) 
996 (42.03%) 
232 (9.79%) 

425 (17.93%) 
209 (8.82%) 
84 (3.54%) 

120 (11.81%) 
415 (40.85%) 
100 (9.84%) 

187 (18.41%) 
95 (9.35%) 
35 (3.44%) 

0.89 

Exacerbation frequency 152 (14.96%) 356 (15.03%) 0.73 
Severe exacerbation frequency 185 (7.81%) 78 (7.68%) 0.90 
SGRQ score 24.94 (24.35) 24.40 (23.11) 0.55 
MMRC dyspnea score  
                                                   0  
                                                   1 
                                                   2 
                                                   3 
                                                   4 

1294 (54.60%) 
284 (11.98%) 
276 (11.65%) 
361 (15.23%) 
155 (6.54%) 

562 (55.31%) 
133 (13.09%) 
117 (11.52%) 
144 (14.17%) 

60 (5.91%) 

0.78 

CAD 199 (8.40%) 74 (7.28%) 0.28 
Diabetes 383 (16.16%) 143 (14.07%) 0.12 
Hypertension 1136 (47.93%) 508 (50.00%) 0.27 
Continuous variables are expressed as means and standard deviations. Categorical variables are expressed as 
absolute values and/or percentages. Participant characteristics reported here are from Visit 2, when 'omics 
data were obtained. 
 
Adjusted Perc15 density: Hounsfield units at the 15th percentile of CT density histogram at total lung 
capacity, corrected for the inspiratory depth (per convention, adjusted Perc15 density values are reported as 
the HU + 1000); Bronchodilator responsiveness  (FVC, % predicted):  Percentage of subjects with post-
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bronchodilator increase in FVC of at least 12% from baseline; CAD: Coronary Artery disease; Exacerbation 
history: At least one COPD exacerbation (acute worsening of respiratory symptoms that required systemic 
steroids and/or antibiotics) in the previous year; FEV1: Forced expiratory volume in one second; GOLD: 
Global Initiative for Chronic Obstructive Lung Disease; GOLD 0: Normal spirometry (defined as post-
bronchodilator FEV1/FVC ≥ 0.7 and FEV1 ≥ 80% predicted); GOLD 1: FEV1/FVC < 0.70 and post-
bronchodilator FEV1 ≥ 80% predicted; GOLD 2: FEV1/FVC < 0.70 and post-bronchodilator FEV1 50-79% 
predicted; GOLD 3: FEV1/FVC < 0.70 and post-bronchodilator FEV1 30-49% predicted; GOLD 4: 
FEV1/FVC < 0.70 and post-bronchodilator FEV1 < 30% predicted; MMRC: Modified medical research 
council dyspnea scoring system; Pi10: Square root of the wall area of a hypothetical airway of a 10-mm 
internal perimeter; PRISm: Preserved Ratio Impaired Spirometry (defined as FEV1/FVC ≥ 0.70 but with 
FEV1 < 80% predicted); Race: Self-reports as either non-Hispanic white (NHW) or African American; 
Severe exacerbation history: COPD exacerbation requiring an emergency department visit or hospital 
admission; SGRQ: St. George’s Respiratory Questionnaire. 
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Table 2. Top 5 differentially expressed genes (DGE), differentially used isoforms (DIU), and 

differentially used exons (DEU) associated to adjusted Perc15 density.  

  

  
ID 

HUGO  
Gene Name 

Log Fold  
Change 

Average Log 
Expression 

FDR 

DGE 

ENSG00000160179 ABCG1 -0.007 4.907 4x10-19 

ENSG00000138772 ANXA3 0.006 4.825 8x10-17 

ENSG00000164674 SYTL3 -0.004 5.212 8x10-17 

ENSG00000253981 ALG1L13P -0.006 2.721 3x10-15 

ENSG00000169877 AHSP 0.012 4.573 6x10-15 

DIU 

ENST00000432854 DBNL 0.017 -1.701 1x10-20 

ENST00000483180 NFKBIZ -0.015 -1.759 2x10-13 

ENST00000357428 USP33 0.013 -2.868 7x10-13 

ENST00000315939 WNK1 0.012 2.770 5x10-12 

ENST00000339486 RIOK3 0.008 8.065 5x10-12 

DEU 

360147 PSMA1 -0.004 1.511 1x10-7 
413338 FRY 0.004 1.744 2x10-7 
450397 CCNDBP1 -0.004 2.388 3x10-7 
514701 VMP1 0.002 4.936 1x10-6 
510631 ATP6V0A1 0.003 2.087 4x10-6 

Adjusted Perc15 density: Hounsfield units at the 15th percentile of CT density histogram at total lung 
capacity, corrected for the inspiratory depth (per convention, adjusted Perc15 density values are reported 
as the HU + 1000). The lower the Perc15 values are, i.e., the closer to -1,000 HU, the more CT-quantified 
emphysema is present. 
 
For the DGE, DIU, and DEU analyses performed in the training and testing samples, the covariates used 
were age, race, sex, pack-years of smoking, current smoking status, forced expiratory volume in one 
second (FEV1), CBC cell count proportions, library preparation batch, and CT scanner model. False 
discovery rate (FDR) was used for multiple testing corrections.  
 
Genes and isoforms are represented by their Ensembl Gene ID and Ensembl Transcript ID, respectively. 
Exonic part IDs with genomic positions are available in Supplemental Table E2. HUGO Gene Name 
corresponds to the unique gene identified by the Ensembl Gene ID (DGE), and the gene associated with 
the isoform or exon (DIU and DEU). Log fold change values indicate change per unit increase in adjusted 
Perc15. Positive log fold change values represent upregulated genes, while negative ones correspond to 
downregulated ones with respect to adjusted Perc15 density (i.e., they have opposite signs for their 
associations with emphysema). Average log expression is the average of the log-transformed counts of 
the gene in analyzed subjects. A threshold of FDR 10% was applied. 
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Table 3. Selected top 5 gene ontology (GO) biological processes enriched in differentially expressed genes (DGE), differentially used 

isoforms (DIU), and differentially used exons (DEU) associated to adjusted Perc15 density. GO terms were selected based on potential 

biological relevance to emphysema.      

  

GO.ID GO Term 
Total number 

of genes in  
category 

Number of 
adjusted Perc15 

density-associated  
genes in category 

Adjusted  
P-value 

DGE 

GO:0006614 SRP-dependent cotranslational protein targeting to membrane 99 72 2x10-21 

GO:0006413 Translational initiation 185 97 2x10-19 

GO:0000184 Nuclear-transcribed mRNA catabolic process, nonsense-mediated decay 120 77 5x10-14 

GO:0019083 Viral transcription 174 87 3x10-13 

GO:0043312 Neutrophil degranulation 466 212 9x10-12 

GO:0002181 Cytoplasmic translation 98 44 7x10-7 

GO:0051092 Positive regulation of NF-kappaB transcription factor activity 144 70 3x10-6 

GO:0046718 Viral entry into host cell 111 58 6x10-6 

GO:0042102 Positive regulation of T cell proliferation  84 47 1x10-5 

GO:0010803 Regulation of tumor necrosis factor-mediated signaling pathway 51 25 2x10-5 

DIU 

GO:0006413 Translational initiation 176 35 2x10-5 

GO:0045070 Positive regulation of viral genome replication 32 13 3x10-5 

GO:0043044 ATP-dependent chromatin remodeling 63 13 7x10-5 

GO:0090263 Positive regulation of canonical WNT signaling pathway 107 26 7x10-5 
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GO:0018105 Peptidyl-serine phosphorylation 209 45 1x10-4 

GO:0032092 Positive regulation of protein binding 59 17 1x10-4 

GO:0006614 SRP-dependent cotranslational protein targeting to membrane 94 23 2x10-4 

GO:0000184 Nuclear-transcribed mRNA catabolic process, nonsense-mediated decay 118 28 2x10-4 

GO:0090263 Positive regulation of transcription by RNA polymerase II 690 106 3x10-4 

GO:0019083 Viral transcription 172 31 5x10-4 

GO:0019079 Viral genome replication 103 23 5x10-4 

DEU 

GO:0006413 Translational initiation 181 13 0 

GO:0006995 Cellular response to nitrogen starvation 9 3 0.001 
GO:1904667 Negative regulation of ubiquitin protein ligase activity 9 3 0.001 
GO:1901991 Negative regulation of mitotic cell cycle phase transition 182 8 0.002 
GO:0006614 SRP-dependent cotranslational protein targeting to membrane 94 8 0.002 
GO:0000422 Autophagy of mitochondrion 72 8 0.002 
GO:0071560 Cellular response to transforming growth factor beta stimulus 133 9 0.002 
GO:0045722 Positive regulation of gluconeogenesis 11 3 0.002 
GO:0043124 Negative regulation of I-kappaB kinase/NF-kappaB signaling 38 5 0.002 
GO:0050821 Protein stabilization 142 10 0.002 

Adjusted Perc15 density: Hounsfield units at the 15th percentile of CT density histogram at total lung capacity, corrected for the inspiratory depth (per convention, adjusted 
Perc15 density values are reported as the HU + 1000). The lower the Perc15 values are, i.e., the closer to -1,000 HU, the more CT-quantified emphysema is present. 
 
For the DGE, DIU, and DEU analyses, covariates used were age, race, sex, pack-years of smoking, current smoking status, forced expiratory volume in one second (FEV1), 
CBC cell count proportions, library preparation batch, and CT scanner model. False discovery rate (FDR) was used for multiple testing corrections.  
 
For the GO analyses, we only reported the GO pathways with at least 3 significant genes. Enriched GO terms were identified using the weighted Fisher’s test P-values < 0.005. 
Selected GO terms with the lowest P-values in the DGE, DIU, and DEU analyses are listed. Total number of genes in category refers to all genes studied that fall under the GO 
term. The number of adjusted Perc15-associated genes in category refers to the genes that reached significance (FDR 10%) in the DGE, DIU, and DEU analyses.   
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Table 4. Mediated proportions and direct, indirect, and total effects of the top 5 most and least mediated differentially expressed genes 

significantly associated to adjusted Perc15 density.  

 

Ensembl Gene ID 
HUGO Gene 

Name 
Mediated  

Proportion 

Direct Effect Indirect Effect Total Effect 
 

Beta 
Coefficient 

 

 
FDR 

 

 
Beta 

Coefficient 
 

 
FDR 

 

 
Beta 

Coefficient 
 

 
FDR  

 

Most mediated 
genes (genes 

with significant 
indirect effect) 

ENSG00000160179 ABCG1 0.822 -0.001 0.324 -0.005 1x10-31 -0.006 2x10-18 

ENSG00000169877 AHSP 0.882 0.001 0.559 0.009 4x10-31 0.011 7x10-15 

ENSG00000118113 MMP8 1.054 -0.001 0.859 0.010 4x10-26 0.009 1x10-9 

ENSG00000158578 ALAS2 0.912 0.001 0.724 0.008 1x10-24 0.009 3x10-11 

ENSG00000119326 CTNNAL1 0.928 0.000 0.795 0.006 3x10-24 0.007 1x10-10 

Least mediated 
genes (genes 

with significant 
direct effect) 

ENSG00000189430 NCR1 -0.124 -0.004 1x10-4 4x10-4 0.318 -0.003 2x10-6 

ENSG00000179841 AKAP5 0.129 -0.004 0.002 -7x10-4 0.199 -0.005 8x10-9 

ENSG00000165071 TMEM71 0.094 -0.001 0.002 -1x10-4 0.374 -0.001 5x10-8 

ENSG00000170298 LGALS9B -0.065 -0.005 0.002 3x10-4 0.642 -0.005 1x10-5 

ENSG00000162909 CAPN2 -0.217 0.001 0.002 -2x10-4 0.128 0.001 5x10-5 

Mediation analysis was performed to distinguish how much of the effect of emphysema on gene expression acted through BMI (referred to as the indirect effect) and how 
much of the effect of emphysema directly influenced gene expression (referred to as the direct effect). Covariates: BMI, sex, age, race, pack-years of smoking, current 
smoking status, and forced expiratory volume in one second (FEV1).  
 
Mediated proportions of top 5 genes are listed along with the coefficients and false discovery rates (FDR) of their direct, indirect, and total effects. Mediated proportion is 
defined as the ratio of indirect effect to the sum of the indirect and direct effects. Genes are sorted in order of decreasing FDR for the total effect.  
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FIGURE LEGENDS 

 

Figure 1. COPDGene Visit 2 participant flow diagram. Abbreviations: NHW = Non-

Hispanic White, AA = African-American, FEV1 = Forced expiratory volume during the first 

second, CBC = Cell blood count. 

Figure 2. Study overview figure. Abbreviations: CT = Computed tomography, BMI = Body 

mass index, CBC = Cell blood count. 

Figure 3. (A) Volcano plot of differentially expressed genes without BMI adjustment. (B) 

Volcano plot of differentially used isoforms without BMI adjustment. (C) Volcano plot of 

differentially used exons without BMI adjustment. Genes significantly associated with 

adjusted Perc15 density, therefore differentially used, appear above the red line marked at a 

threshold of 10% false discovery rate (FDR). Genes that are up-regulated are in blue and 

those that are down-regulated are in red. Isoforms/exons that are not differential used are gray 

and appear below the threshold line. Adjusted Perc15 density: Hounsfield units at the 15th 

percentile of CT density histogram at total lung capacity, corrected for the inspiratory depth 

(per convention, adjusted Perc15 density values are reported as the HU + 1000). 

The lower the Perc15 values are, i.e., the closer to -1,000 HU, the more CT-

quantified emphysema is present. Upregulated versus downregulated genes are reported with 

respect to adjusted Perc15 density (i.e., they have opposite directions for their associations 

with emphysema). 

Figure 4. (A) Number of significant genes associated with adjusted Perc15 density from the 

differential gene expression (DGE), differential isoform usage (DIU), differential exon usage 

(DEU), and protein association analyses. (B) Number of significant enriched gene ontology 

(GO) terms from the DGE, DIU, DEU, and protein association analyses. Adjusted Perc15 

density: Hounsfield units at the 15th percentile of CT density histogram at total lung capacity, 
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corrected for the inspiratory depth (per convention, adjusted Perc15 density values are 

reported as the HU + 1000). The lower the Perc15 values are, i.e., the closer to -1,000 HU, 

the more CT-quantified emphysema is present. Upregulated versus downregulated are 

reported with respect to adjusted Perc15 density (i.e., they have opposite directions for their 

associations with emphysema). 

Figure 5. The receiver operating characteristic curves for all four models from the elastic net 

prediction. The models compared are CBC (cell blood count) only, CBC plus gene, CBC plus 

protein, and CBC plus gene plus protein. The table summarizes the pairwise DeLong P-

values of the models, in which significant differences in model performance (P-values < 

0.05) are marked. 

Figure 6. Top 10 predictors sorted in descending order by the absolute magnitude of their 

beta-coefficients from the elastic net model using CBC (cell blood count), gene, and protein 

data. The horizontal lines represent the magnitude of the coefficient for each feature. All 

predictors were centered and scaled. 
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