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SEIR model fitting and parameters 

For most of the parameters required in this model, the suitable range of their values were identified from 
published figures in the literature and modelers assumptions. Then the parameters were fit to the 
reported deaths, ICU and non-ICU hospitalizations, and hospital admissions in the city of Chicago, USA. 
For this study, we took only the portion from 2020 Feb 13 to 2020 July 29 of previous work (1). The fitting 
was done by running the model repeatedly using different combination of values sampled from the initial 
range identified. Data for fitting were obtained from the Illinois Department of Public Health. 

For the fitting purpose, some parameters were allowed to vary over time via stepwise changes: 
transmissibility, detection rate of asymptomatic, presymptomatic, mild and severe symptomatic, fraction 
of people developing critical illness, fatality rate and time to recovery from critical illness. The change 
points for these parameters are determined based on data in Chicago, or on regular interval (e.g., twice 
per month for transmission rates). More information about the model fitting and calibration process can 
be found in (1). 

Table S1 details the fitted or assumed values for the model parameters. These values are then used for all 
simulations in this study, which used the model state in 2020 July 30 as starting point. From this point 
onwards, we assume the same values for all time varying parameters (using the “final” values in Table S1) 
except for the transmission rate. We altered the transmission rate as described in the main text to produce 
different levels of transmission hike. 

Table S1. Estimates used to simulate SARS-CoV-2 transmission from 2020 Feb 13 to 2020 July 29 after 
model fitting. All values were fitted unless specified in the remark. 

Parameter Estimate Remark 

Fraction symptomatic 0.59 (2) 

Fraction of asymptomatic 0.41 Compliment of fraction 
symptomatic 

Probability of severe symptom given 
symptomatic 

0.08 (3) 

Probability of mild symptom given 
symptomatic 

0.92 Compliment of severe 
probability 

Detection rate of mild symptomatic 
infections (time varying) 

Initial: 0.001 
Final: 0.15 

Calculated from line list data as 
described in (4) 
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Detection rate of severe infections (time 
varying) 

Initial: 0.01 
Final: 0.55 

Calculated from Line List data 
as described in (4) 

Probability of critically ill given severe (time 
varying) 

Initial: 0.49 
Final: 0.15 

(5) 

Probability of death given critical (time 
varying) 

Initial: 0.20 
Final: 0.18 

Calculated from case fatality 
ratio in (6) and probability of 
critical. 

Time exposed to infectious (either pre-
symptomatic or asymptomatic) 

3.7 days (7) 

Time pre-symptomatic to mild or severe 
symptoms 

3.4 days (7,8) 

Time to detection and isolation for severe 
symptomatic 

2 Assumed 

Time to hospitalization from severe 
symptoms 

4.1 days (9) 

Time to critical from hospitalization 5.6 days (10) 

Time to deaths from critical 5.5 days (11) 

Recovery rate of asymptomatic infections 9 days Assumed to be the same as 
mild symptomatic 

Recovery rate mild symptomatic infections 9 days (12) 

Recovery rate of hospitalized but not critical 
cases (time varying) 

Initial: 5.8 days 
Final: 4.7 days 

(9) 

Recovery rate of critical cases 9.7 days (12) 

Reduced infectiousness when isolated 0.01 Fitted 

Reduced infectiousness when 
asymptomatic 

0.8 Assumed 

Transmission rate (from susceptible to 
exposed) 

Initial: 1.05 
Final: 0.12 

Fitted 

 

Supplemental results and discussions figures 

Effects of triggering criteria on timeliness in raising the alarm of each indicator 

For sentinel surveillance and hospital admissions indicators, we chose to trigger the alarm (for imposing 
mitigations) when the derived Rt exceeded 1.05 for 5 consecutive simulation days. This is based on our 
preliminary work that the threshold has relatively low rate of false alarm, and yet could trigger mitigations 
early enough to prevent a transmission surge. 
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In Fig. S1, we compare the quality of raising alarm using three different criteria, Rt exceeding 1.05 for 3, 5 
and 7 consecutive days. False alarm rate reduces, and the median day of triggering actions increases, 
when more consecutive days are needed. We found both 5 and 7 consecutive days acceptable. 

 

Figure S1. The cumulative distribution of the day of triggering alarm, when the threshold was set to 3, 5 
or 7 consecutive days of indicators derived Rt exceeding 1.05. Simulations are conducted on a population 
of 2.5 million experiencing a moderate transmission hike, with 200 stochastic realizations per indicator.  

 

Timeliness advantage of sentinel surveillance persists when detection of mild cases leads to isolation 

Results in the main text assumed that detecting mild symptomatic cases does not lead to isolating 
behavior and hence lowered infectiousness. However, people who test positive for SARS-CoV-2 are 
probably more likely to isolate, and thus a sentinel surveillance system with greater sampling effort may 
reduce transmission just by detecting more infections. This may affect the overall timeliness results.  

We modified the model such that the detection probability for mildly symptomatic cases was fixed at 30% 
and detection probability of asymptomatic and presymptomatic infections was fixed at 5%. We assumed 
the sentinel surveillance system could achieve a maximum of 20% sampling effort, which would 
correspond to the case where 2/3rd of the detected mildly symptomatic cases were captured in the 
surveillance system. 

In the model that included isolation, the timeliness advantage of sentinel surveillance with 20% sampling 
effort over hospital admissions remained unchanged. The median lead time was 6 days, and the 90th-
percentile was 9 days, similar to previous simulations where detected mildly symptomatic cases did not 
isolate (Figure S2). 
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Figure S2. The cumulative distribution of the day on which criteria to trigger alarm was met, using sentinel 
surveillance with 20% sampling effort or hospital admissions as indicator, if detected cases isolate. 
Simulations are conducted on a population of 2.5 million experiencing a moderate transmission hike, with 
500 stochastic realizations per indicator.  

 

Efficiency of hospital admissions increases when stochastic realizations with false alarms are removed 

As a whole, we showed that hospital admissions averted less deaths per extra mitigation day. This is 
attributable to false alarms. The efficiency of hospital admissions is similar or slightly higher than sentinel 
surveillance if we remove the stochastic realizations with false alarms for hospital admissions (Figure S3). 
However, hospital admissions with similar efficiency as sentinel surveillance averted substantially less 
overall deaths, highlighting the disadvantage of additional operational latency. 
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Figure S3. Deaths averted and additional days spent in mitigation for using sentinel surveillance or hospital 
admissions indicators as the trigger for imposing mitigation measures, under three wave strengths in a 
population of 2.5 million, compared with using hospital occupancy. In contrast to Figure 4, stochastic 
realizations with false alarms when using hospital admissions (~80 out of 500) were excluded from this 
analysis. (A) Mean and 90% confidence interval of deaths averted and additional days of mitigation, from 
~420 stochastic realizations per indicator. (B) Average deaths averted per average additional day in 
mitigation for each indicator and its relationship with false alarm rate. False alarm rate is the proportion 
of simulations in which action is taken before the transmission hike. 
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