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ABSTRACT 47 

 48 

Background: To provide quantitative evidence of the use of polygenic risk scores (PRS) for 49 

systematically identifying individuals for invitation for full formal cardiovascular disease 50 

(CVD) risk assessment. 51 

 52 
 53 

Methods: 108,685 participants aged 40-69, with measured biomarkers, linked primary care 54 

records and genetic data in UK Biobank were used for model derivation and population 55 

health modelling. Prioritisation tools using age, PRS for coronary artery disease and stroke, 56 

and conventional risk factors for CVD available within longitudinal primary care records 57 

were derived using sex-specific Cox models. Rescaling to account for the healthy cohort 58 

effect, we modelled the implications of initiating guideline-recommended statin therapy 59 

after prioritising individuals for invitation to a formal CVD risk assessment. 60 

 61 

Results: 1,838 CVD events were observed over median follow up of 8.2 years. If primary 62 

care records were used to prioritise individuals for formal risk assessment using age- and 63 

sex-specific thresholds corresponding to 5% false negative rates then we would capture 65% 64 

and 43% events amongst men and women respectively. The numbers of men and women 65 

needed to be screened to prevent one CVD event (NNS) are 74 and 140 respectively. In 66 

contrast, adding PRS to both prioritisation and formal assessments, and selecting thresholds 67 

to capture the same number of events resulted in a NNS of 60 for men and 90 for women. 68 

 69 

Conclusion: The use of PRS together with primary care records to prioritise individuals at 70 

highest risk of a CVD event for a formal CVD risk assessment can more efficiently prioritise 71 

those who need interventions the most than using primary care records alone. This could 72 

lead to better allocation of resources by reducing the number of formal risk assessments in 73 

primary care while still preventing the same number CVD events.   74 

 75 

  76 

77 
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INTRODUCTION 78 

 79 

Cardiovascular disease (CVD) remains a major cause of morbidity and mortality worldwide.1 80 

Identifying individuals at a high risk of CVD in order to manage and implement interventions 81 

to reduce risk of CVD remains an important aim.2,3 Prediction tools utilising the risk factor 82 

levels of individuals to estimate a 5 or 10 year risk  of CVD have been developed to aid 83 

clinical decision making and are recommended by healthcare guidelines across the world.3–84 

10 However, recent studies have debated the clinical value and cost effectiveness of national 85 

risk assessment programmes.11–17 In line with this, recent guidelines have made 86 

recommendations to better utilise existing primary care records to improve the 87 

stratification of high-risk individuals prior to formal CVD risk assessments18. However, few 88 

strategies or tools to systematically identify such individuals have been recommended. 89 

Proposals have also been recommended to prioritise individuals using CVD-based polygenic 90 

risk scores (PRS); such PRS have been shown to be independent of other CVD risk factors, 91 

offering improved stratification with high concordance between categories of polygenic risk 92 

and future CVD risk across the life course, and to improve discriminatory performance when 93 

used to supplement existing CVD risk scores.19–21.  However, no studies have quantified the 94 

impact PRS would have for prioritisation.  95 

 96 

Therefore, to investigate the benefits of PRS to systematically prioritise individuals at high 97 

risk of CVD, we compare systematically prioritising individuals using a PRS based 98 

prioritisation tool against current guidelines recommendations of using a prioritisation tool 99 

based on longitudinal primary care records.22–26 100 

  101 

 102 

103 
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METHODS 104 

 105 

UK Biobank data source 106 

Data from UK Biobank (UKB) were used to derive each CVD risk tool (prioritisation and 107 

formal assessment) and to model the implications of prioritising individuals for formal 108 

assessment. UKB is a prospective cohort study with detailed baseline information, genetic 109 

data and linked primary care record data available for 177,359 individuals in England 110 

recruited between 2006 and 201027. Genetic data was sequenced using a genome wide 111 

array of approximately 826,000 markers with imputation to approximately 96 million 112 

markers.27 Primary care data was provided from the The Phoenix Partnership, Egton Medical 113 

Information Systems and Vision GP system suppliers28. Data were linked with secondary 114 

care admissions from Hospital Episode Statistics (HES) and mortality records from the Office 115 

for National Statistics (ONS). For this study, primary care records were restricted to those 116 

measured between the 1st April 2004, the introduction of the Quality and Outcomes 117 

Framework (QOF) and UKB baseline survey. To assess the impact of PRS as a prioritisation 118 

tool and compare with primary care records, analysis was restricted to individuals with 119 

complete genetic data necessary for calculating the PRS, at least one primary care record 120 

before baseline survey and without prior CVD or statin initiation. Individuals contributing to 121 

the PRS derivation were also excluded. 122 

 123 

CPRD data source  124 

Data from the Clinical Practice Research Datalink (CPRD) were used for estimating the 125 

average risk factor values and rescaling of 10-year risks (described in later sections.) The 126 

CPRD database is a large UK primary care database containing  primary care records28 with 127 

linked information from HES and mortality records from the ONS. The most recent 5 years 128 

available primary care records were extracted for 870,486 individuals who were still alive 129 

and without prior CVD on the 1st January 2014 and had no statins throughout follow-up until 130 

31st May 2019, the end of data availability (Supplementary figure 1). 131 

132 
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Outcomes 133 

CVD was defined as the first ever incident of fatal or non-fatal events of coronary heart 134 

disease (including angina and myocardial infarction) ischaemic heart disease and stroke 135 

(code lists provided in Supplementary table 1), appearing in the linked HES and ONS 136 

databases during follow up. 137 

 138 

Risk factors 139 

Two PRS for coronary artery disease (CAD) and stroke, constructed using a meta-score 140 

approach and external summary statistics from large genome wide association studies20,29, 141 

were used as independent variables. Conventional risk factors (as those in the QRISK2 142 

scores4) were selected: age, sex, ethnicity, Townsend score, smoking status (current 143 

smoker), history of diabetes (type 1 or type 2 or history of diabetes medication), family 144 

history of CVD, history of chronic kidney disease (stages 4 and 5), history of atrial fibrillation 145 

status, history of blood pressure treatment, history of rheumatoid arthritis, total and high 146 

density lipoprotein (HDL) cholesterol, systolic blood pressure (SBP), body mass index (BMI), 147 

and age interactions with Townsend score, history of diabetes, family history of CVD, history 148 

of atrial fibrillation, history of blood pressure treatment, SBP and BMI.  149 

 150 

Statistical modelling 151 

Sex-specific Cox models were used to derive three different prioritisation tools for 152 

estimating 10-year CVD prioritisation risk. First, we derived a prioritisation tool with linear 153 

predictors of baseline age, CAD PRS20 and stroke PRS29. Age interactions were considered 154 

but were not statistically significant at the 5% level. Second, we derived a prioritisation tool 155 

with predictors utilising longitudinal primary care records. To handle missing values, the tool 156 

was derived in two stages: in the first stage, we used sex-specific multivariate mixed effects 157 

regression models on longitudinal risk factor measurements for SBP, total and HDL 158 

cholesterol and BMI to estimate current risk factor values (Web appendix 1); in the second 159 

stage, we derived sex-specific Cox models with the estimated current risk factor values for 160 

SBP, total and HDL cholesterol and BMI, and the most recent primary care measurements 161 

for the remaining QRISK2 risk factors.  Third, we derived a prioritisation tool with both PRS 162 

and primary care records, using the two-stage approach described above with the addition 163 

of linear predictors for the CAD PRS and stroke PRS in the second stage Cox models. For 164 
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each of these three tools, the model is used to identify individuals crossing a minimum 10-165 

year risk threshold to be invited for a formal assessment.   166 

 167 

Sex-specific Cox models were used to derive two formal risk assessment models for 168 

predicting 10-year formal assessment CVD risk using risk factor measurements observed at 169 

UKB baseline survey. First, we re-derived a model based on QRISK2 predictors and second, 170 

we derived a model based on QRISK2 predictors enhanced with the CAD PRS and stroke PRS.  171 

 172 

All models were validated using 10-fold cross validation and prognostic ability was 173 

quantified using Harrell’s C-index to measure discrimination and the net reclassification 174 

improvement (NRI).  175 

 176 

Population Health Modelling 177 

Population health modelling was conducted to compare the population health impact of 1) 178 

prioritising using a primary care records-based tool followed by a formal assessment with 179 

conventional risk factors, 2) prioritising using a PRS and age-based tool followed by a formal 180 

assessment with conventional risk factors and PRS and 3) prioritising using both PRS and 181 

primary care records, followed by a formal assessment with conventional risk factors and 182 

PRS. (Figure 1). Due to UKB being a cohort of healthier individuals than the UK primary care 183 

population, we rescaled all estimated 10-year CVD risks so that the distribution of risks 184 

estimated were using age-group- and sex- specific level risk factors obtained from CPRD and 185 

the published QRISK2 score to better reflect CVD risk assessment programme in the general 186 

population. (Web appendix 2, supplementary table 2). Details of the rescaling method has 187 

been described elsewhere.30,31 188 

 189 

A hypothetical population of 100,000 individuals (50,000 men and women) from the United 190 

Kingdom was created; the population age structure was obtained using data from the ONS 191 

in 201532 and the number of expected CVD events was calculated using age-group and sex-192 

specific incidence rates from CPRD (Supplementary table 3). A policy of statin initiation for 193 

individuals at ≥10% predicted 10-year formal assessment CVD risk as currently 194 

recommended by National Institute for Health and Care Excellence (NICE) guidelines and a 195 

20% reduction in CVD risk were assumed.33,34 The population health impact for each of the 196 
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three prioritisation tools was modelled using age- and sex-specific prioritisation thresholds 197 

in two ways. First, we selected prioritisation thresholds to limit the formal CVD risk 198 

assessment false negative rate to 5%. Second, we selected prioritisation thresholds for the 199 

PRS based prioritisation tools to identify the same number of events that would have been 200 

identified if prioritising with primary care records only (with prioritisation thresholds 201 

corresponding to 5% false negative rates). We determined the thresholds by varying the 202 

false negative rates and chose the rate that best matched the number of events identified. 203 

 204 

Summary metrics were estimated for: the number needed to screen (NNS) to prevent one 205 

CVD event, the number of CVD events identified and the number needed to invite (NNI) to 206 

prevent one CVD event. We assumed 100% statin compliance and a 50% invitation uptake 207 

of a formal assessment if inviting all individuals35,36. We further assumed an increased 208 

invitation uptake of 55% if individuals were prioritised for an invitation to a formal 209 

assessment.  210 

 211 

In sensitivity analyses, we repeated population-health analyses including all individuals, 212 

including those without a primary care record for any one of SBP, HDL, total cholesterol or 213 

BMI, where those without a record were all invited for formal assessment (Supplementary 214 

table 3). We also repeated analyses assuming that only 50% of individuals treated with 215 

statins were compliant with treatment. 216 

 217 

Analyses were conducted in R x64 3.6.1 (R Foundation for Statistical Computing, Vienna, 218 

Austria). This study follows the RECORD statement (Web Appendix 3)37 219 

220 
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RESULTS 221 

 222 

Population characteristics 223 

For our primary analysis, we identified a subset of 108,685 (60%) individuals in UKB with 224 

genetic data and a primary care record for at least one of SBP, HDL, total cholesterol and 225 

BMI, necessary for the in-person comparison of using either polygenic risk scores or primary 226 

care records as a prioritisation method (Supplementary figure 2). All individuals had 227 

complete information for the conventional risk factors necessary to calculate a 10-year 228 

formal CVD risk at baseline survey.  229 

 230 

The mean age at baseline was 56.2 years (SD 8.0) for men and 56.1 years (SD 7.8) for 231 

women. During mean of follow-up of 8.2 years, there were 1,838 incident cardiovascular 232 

events (Table 1). Compared to the measurements observed at the UKB baseline survey, the 233 

measurements recorded in primary care records were lower for SBP and total cholesterol 234 

and although similar for current smoking status and history of diabetes, were less 235 

concordant for the remaining disease statuses. The mean time between the first available 236 

primary care record and baseline survey was 3.8 years (95% CI: 2.3, 4.5) for men and 3.8 237 

years (95% CI: 2.8, 4.7) for women.  238 

 239 

Model performance and comparison  240 

Hazard ratios (HRs) in the prioritisation tools and formal assessment models, for the same 241 

predictors, were similar (Supplementary table 4-5). HRs for the CAD and stroke PRS were 242 

higher among men than in women and remained consistent with and without the inclusion 243 

of conventional risk factors.  244 

 245 

All models had good discriminatory performance with higher performance in women. The C-246 

index for the PRS + age prioritisation tool in men (C-index = 0.663, 95% CI: 0.649, 0.678) was 247 

slightly lower than the primary care records prioritisation tool (C-index = 0.684, 95% CI: 248 

0.670, 0.699) (Table 2), however the difference in performance was greater in women. The 249 

greatest discriminatory performance was observed in the model using both conventional 250 

risk factors with PRS in both men (C-index = 0.716, 95% CI: 0.702, 0.730) and in women (C-251 

index = 0.742, 95% CI: 0.722, 0.762). Using conventional risk factors with PRS also improved 252 
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the classification of high and low risk individuals compared to using conventional risk factors 253 

only in both men (NRI = 0.0262, 95% CI: 0.0072, 0.0458) and in women (NRI = 0.0265, 95% 254 

CI: 0.0065, 0.0502) (Supplementary table 6). 255 

 256 

The estimated 10-year risks between the primary care records only prioritisation tool and 257 

the formal assessment model using conventional risk factors were highly correlated 258 

(correlation coefficient = 0.75 for men and 0.80 for women). In contrast, the estimated 10-259 

year risks between the PRS + age prioritisation tool and the formal assessment model using 260 

conventional risk factors and PRS were less highly correlated (correlation coefficients = 0.67 261 

for men and women), and the estimated 10-year risks between the PRS and primary care 262 

records based prioritisation tool and the formal assessment model using conventional risk 263 

factors with PRS were more highly correlated (correlation coefficients = 0.82 for men and 264 

women) (Table 3). Rescaled 10-year risk estimates between all models were similar 265 

(Supplementary figure 3).  266 

 267 

Population health modelling  268 

In a representative population of 100,000 individuals aged 40 to 69, we estimated that there 269 

would be 3,573 men and 1,808 women who would experience a CVD event over the next 10 270 

years. If conventional risk factors were used as a formal risk assessment model on the whole 271 

population, then 2,426 (67.9%) of those men and 801 (44.3%) of those women would have 272 

been identified as being at high risk, i.e. conventional risk factors ≥ 10% 10-year CVD risk 273 

(Figure 2, supplementary table 7). Assuming 50% of individuals accepted the invitation for a 274 

formal assessment and statin therapy would be initiated on all individuals with a 10-year 275 

formal CVD assessment risk greater than 10%, and no other preventive interventions 276 

implemented, the NNS to prevent one CVD event in men and women would be 103 (95% CI: 277 

100, 107) and 312 (95% CI: 288, 334), and the NNI to prevent one CVD event in men and 278 

women would be 206 (95% CI: 199, 213) and 624 (95% CI: 576, 668) respectively.   279 

 280 

If the primary care records-based prioritisation tool, using age- and sex-specific 281 

prioritisation thresholds corresponding to 5% false negative rates, was used to prioritise 282 

formal assessment (with conventional risk factors) in the population, then 2,335 (65.3%) 283 

men and 785 (43.4%) women with CVD events over the next 10 years would be classified at 284 

 . CC-BY 4.0 International licenseIt is made available under a 
perpetuity. 

 is the author/funder, who has granted medRxiv a license to display the preprint in(which was not certified by peer review)preprint 
The copyright holder for thisthis version posted October 22, 2022. ; https://doi.org/10.1101/2022.10.20.22281120doi: medRxiv preprint 

https://doi.org/10.1101/2022.10.20.22281120
http://creativecommons.org/licenses/by/4.0/


 
 

 11 

high risk (Figure 2, supplementary table 7). The NNS to prevent one event would reduce to 285 

74 (95% CI: 72, 77) in men and 140 (95% CI: 130, 150) in women (28.2% and 55.1% 286 

reduction respectively). The NNI to prevent one event would be 135 (95% CI: 130, 141) in 287 

men and 255 (95% CI: 235, 274) in women (34.5% and 59.1% reduction respectively) 288 

 289 

If conventional risk factors enhanced with PRS was used as a formal risk assessment model 290 

on the whole population, then 2,457 (68.8%) of those men and 844 (46.7%) of those women 291 

would have been identified as being at high risk (Figure 2, supplementary table 8). The NNS 292 

to prevent one CVD event in men and women would be 102 (95% CI: 98, 106) and 296 (95% 293 

CI: 273, 315), and the NNI to prevent one CVD event in men and women would be 204 (95% 294 

CI: 197, 211) and 592 (95% CI: 545, 631) respectively.   295 

 296 

If the PRS + age prioritisation tool, using age- and sex-specific prioritisation thresholds 297 

corresponding to 5% false negative rates, was used to prioritise formal risk assessment (with 298 

the same conventional risk factors with PRS) in the population, then 78.8% of men and 299 

74.8% of women would be prioritised and, amongst them, 2,356 (65.9%) men and 813 300 

(45.0%) women with CVD events over the next 10 years would be classified at high risk 301 

(Figure 2, supplementary table 8). This equates to a 3.7%-4.1% reduction compared to a 302 

formal risk assessment using conventional risk factors with PRS on the whole population. 303 

However, the NNS to prevent one event would also reduce to 84 (95% CI: 61, 66) in men 304 

and 230 (95% CI: 117, 136) in women (17.8% and 22.4% reduction respectively).  The NNI to 305 

prevent one event would be 152 (95% CI: 146, 158) in men and 418 (95% CI: 384, 447) in 306 

women (25.5% and 29.4% reduction respectively). 307 

 308 

If the PRS and primary care records-based prioritisation tool, using age- and sex-specific 309 

prioritisation thresholds corresponding to 5% false negative rates, was used to prioritise 310 

formal assessment (with conventional risk factors with PRS) in the population, then 2,367 311 

(66.3%) men and 825 (45.6%) women would be classified as high risk. (Figure 2, 312 

Supplementary table 9). The NNS to prevent one event would reduce to 63 (95% CI: 60, 66) 313 

in men and 127 (95% CI: 117, 136) in women (38.2% and 57.1% reduction respectively). The 314 

NNI to prevent one event would be 115 (95% CI: 111, 120) in men and 232 (213, 248) in 315 

women (43.6% and 60.8% reduction respectively). 316 
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Changing the prioritisation thresholds so that the total number of events identified after 317 

prioritisation was 63.5% and 43.4% of all events amongst men and women respectively (the 318 

total number identified when the primary care records-based prioritisation tool was used 319 

with conventional risk factors), prioritising using PRS resulted in a NNS of 82 (95% CI: 79, 85) 320 

in men and 223 (95% CI: 205, 240) in women and a NNI of 149 (95% CI: 143, 155) in men and 321 

223 (95% CI: 205, 240) in women. Prioritising using PRS and primary care records resulted in 322 

a NNS of 58 (95% CI: 55, 60) in men and 90 (95% CI: 83, 97) in women and a NNI of 105 (95% 323 

CI: 101, 110) in men and 163 (95% CI: 151, 176) in women (Table 4, supplementary figure 4). 324 

Compared to prioritising using primary care records, the reductions in the NNS and NNI 325 

when prioritising using PRS and primary care records, were consistently greater in younger 326 

individuals and were statistically significant at the 5% level for all age groups except in 327 

women aged 40-49. 328 

 329 

Sensitivity Analysis 330 

In sensitivity analyses including all individuals (i.e., including 15,324 individuals without a 331 

primary care record for any one of SBP, total cholesterol, HDL cholesterol or BMI) 332 

(Supplementary table 10), we found comparable results for the PRS-based prioritisation 333 

tool and the primary care-based prioritisation tool in men and women. As expected, we 334 

observed an increase in the NNS in the prioritisation tools derived with primary care records, 335 

especially amongst the lower age group (Supplementary table 11-13, supplementary figure 336 

5).  337 

 338 

In sensitivity analyses assuming only half of those who accepted the invitation for a formal 339 

assessment and were deemed high risk complied with statin uptake, the NNS doubled for all 340 

prioritisation tools, with the NNS to prevent one event increasing to 143 in men and 805 in 341 

women when using the PRS based prioritisation tool, and 131 in men and 373 in women 342 

when using the primary care records-based prioritisation tool (Supplementary table 14-16, 343 

supplementary figure 6). 344 

345 

 . CC-BY 4.0 International licenseIt is made available under a 
perpetuity. 

 is the author/funder, who has granted medRxiv a license to display the preprint in(which was not certified by peer review)preprint 
The copyright holder for thisthis version posted October 22, 2022. ; https://doi.org/10.1101/2022.10.20.22281120doi: medRxiv preprint 

https://doi.org/10.1101/2022.10.20.22281120
http://creativecommons.org/licenses/by/4.0/


 
 

 13 

DISCUSSION 346 

 347 

This study has rigorously assessed the impact of using PRS both alone and in combination 348 

with traditional risk factors for systematically prioritising individuals for a formal CVD risk 349 

assessment, and compared the efficiency and effectiveness against current 350 

recommendations of using existing data on CVD risk factors within primary care records. 351 

First, we found that adding PRS to both a prioritisation tool and formal CVD risk assessment 352 

model improves their correlation, which subsequently leads to higher efficiency and 353 

effectiveness of a prioritisation tool, especially amongst younger individuals.  Consequently, 354 

PRS in combination with primary care records reduces the number of men and women 355 

needed to be screened to prevent one CVD event (NNS) by around 20% and 35% 356 

respectively, in comparison to using primary care records alone and identifying the same 357 

number of events. In contrast, using the PRS alone and in place of primary care records in a 358 

prioritisation tool leads to larger NNS. These results support the use of PRS together with 359 

primary care records to prioritise individuals at highest risk of a CVD event for a formal CVD 360 

risk assessment, which could lead to better allocation of resources by reducing the number 361 

of formal risk assessments in primary care.   362 

 363 

This study has provided a comparison of prioritisation tools using longitudinal primary care 364 

records and/or PRS within the UK population aged between 40 and 69 years who are 365 

currently invited for a National Health Service (NHS) Health Check to assess their individual 366 

risk of CVD. We have demonstrated the benefits of PRS not only by measuring model 367 

discrimination, but also by evaluating the health impact if implemented within this 368 

population. Compared with previous studies which have generally focussed on the role of 369 

PRS in a formal CVD risk assessment model20,21,29,38, our study has uniquely assessed its role 370 

in a prioritisation tool, in conjunction with a CVD risk model. We have also shown that if PRS 371 

were widely available, the inclusion of PRS in a prioritisation tool could improve the 372 

effectiveness of a prioritisation tool especially in younger individuals by reducing the 373 

reliance on primary care records.  374 

 375 
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The benefits in prioritising a subgroup of those individuals at low absolute risk to increase 376 

efficiency echoes other studies, which have also shown that selecting a smaller proportion 377 

of younger, low-risk individuals can lead to dramatically reduced costs whilst resulting in 378 

more Quality Adjusted Life Years (QALYs) gained.39 Using a prioritisation tool could also 379 

efficiently help reduce the concerning backlog in health checks caused by the COVID-19 380 

pandemic40, where the number of people invited to health checks in England declined by 381 

82% between the end of 2019 and 2020,41–43 while still preventing nearly the same number 382 

of CVD events. Whilst the addition of PRS has the potential to prioritise individuals earlier 383 

for a formal CVD assessment, further extensions include using PRS to identify individuals at 384 

high risk of other common chronic diseases, including diabetes, dementia and kidney 385 

disease.44–48  386 

 387 

 388 

Strengths and Limitations 389 

Our study has several strengths. This study is the first of our knowledge to directly compare 390 

how using different data types for a prioritisation tool can impact on the CVD risk 391 

assessment programme in England. This was possible due to the unique data linkage of 392 

primary care records along with a baseline survey in UK Biobank. We derived the PRS based 393 

prioritisation tools using two current and well documented PRS that have been shown to 394 

improve model performance independent of traditional CVD risk factors. We also took 395 

advantage of the sporadically observed longitudinal primary care records when deriving the 396 

primary care records-based prioritisation tools, by estimating current risk factor values using 397 

a multivariate mixed model. Whilst QRISK2, which replaces missing non-recorded values 398 

with age, sex and ethnicity-specific population average values, could have been used in our 399 

study for the prioritisation tool, we chose to optimise the available longitudinal data in 400 

primary care records to reduce possible over-inflation of the information from PRS. Another 401 

strength of this study is the use of 10-fold cross validation to correct for over optimism that 402 

may exist in our analyses as we derived and conducted the population health modelling in 403 

the same individuals. Further, we used rescaling methods to adjust the 10-year risk 404 

estimates for all of the models to minimise the healthy selection bias when deriving models 405 

in UK Biobank.  406 

 407 
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However, several potential limitations exist. First, whilst we used primary care records that 408 

were no more than six and a half years old before baseline, the mean risk factor levels 409 

between primary care records and at the UKB baseline differed within the same individuals 410 

which could lead to a different distribution of 10-year risk estimates. This may also weaken 411 

the correlations between the prioritisation tool and formal risk assessment models reported. 412 

Second, we determined the number of events identified in the population health modelling 413 

by calculating the model’s sensitivity in UKB and translating to a hypothetical population; 414 

due to the low number of events in UKB, the sensitivity of each model may be limited in 415 

accuracy, especially in younger age groups with fewer events. Third, PRS for cardiovascular 416 

disease are still under active development and, while we utilise two extensively studied and 417 

validated PRS, there are likely more powerful PRS soon to be available49. Finally, the age-418 

range of the population health modelling was limited to between 40 and 69 years old due to 419 

the use of UK Biobank. This restricts the population health modelling and in particular limits 420 

the ability to investigate the early prioritisation capabilities of PRS (which are fixed at 421 

conception). 422 

 423 

Conclusion 424 

Population health guidelines in England recommend individuals at higher estimated risk of 425 

CVD be prioritised for formal risk assessment. Our results show that incorporating PRS 426 

improves the correlation between prioritisation tools and formal CVD risk assessment 427 

models. In particular, the use of PRS together with primary care records to prioritise 428 

individuals at highest risk of a CVD event for a formal CVD risk assessment has the ability to 429 

efficiently prioritise those who need interventions the most, which could lead to better 430 

allocation of resources by reducing the number of formal risk assessments in primary care.   431 

 432 
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Table 1: Key characteristics of individuals in UK Biobank baseline survey and linked primary care records 

Abbreviations: BMI, body mass index; CVD, cardiovascular disease; HDL cholesterol, high-density lipoprotein cholesterol; PRS, polygenic risk score; SD, standard deviation. 
a Risk factor values in both baseline and primary care records if one was missing.  
b Risk factor values for primary care records estimated using multivariate mixed effects model. 

Characteristic Men, N = 44,184 (41%) Women, N = 64,501 (59%) 

CVD events, N 1230 608 

Follow up duration: years, median (5th, 95th percentile) 8.1 (6.1, 10.8) 8.2 (6.8, 10.9) 

Duration between first primary care record and baseline visit: 
years, median (5th, 95th percentile) 

3.6 (0.9, 5.5) 3.9 (1.1, 5.6) 

 Primary care records Baseline Primary care records Baseline 

Age, mean (SD) a - 56.2 (8.0) - 56.1 (7.8) 

Coronary artery disease PRS, mean (SD) - -1.15 (0.46) - -1.13 (0.46) 

Stroke PRS, mean (SD) - 1.55 (0.22) - 1.56 (0.23) 

Ethnicity — White, N (%) a - 42,283 (95.7%) - 61,977 (96.1%) 

Townsend, mean (SD) a - -1.5 (3.0) - -1.5 (2.9) 

Systolic blood pressure:     
mmHg, mean (SD) b 135.3 (7.82) 141.0 (17.3) 130.7 (9.62) 134.9 (19.1) 
Number of historical records, mean 3.8 - 4.6 - 

Total cholesterol:     
mmol/litre, mean (SD) b 5.48 (0.47) 5.79 (1.01) 5.71 (0.50) 6.03 (1.08) 
Number of historical records, mean 2.0 - 2.0 - 

HDL cholesterol:     
mmol/litre, mean (SD) b 1.35 (0.19) 1.30 (0.31) 1.68 (0.24) 1.61 (0.37) 
Number of historical records, mean 1.8 - 1.9 - 

BMI:     
kg/m2, mean (SD) b 27.2 (3.1) 27.5 (4.1) 26.6 (4.1) 26.8 (5.0) 
Number of historical records, mean 2.0 - 2.3 - 

Current smoker, N (%) 4,472 (10.1%) 5,233 (11.8%) 4,911 (7.61%) 5,511 (8.5%) 

History of diabetes, N (%) 466 (1.05%) 630 (1.4%) 412 (0.64%) 459 (0.7%) 

Blood pressure-lowering medication prescriptions, N (%) 6,396 (14.5%) 5,529 (12.51%) 9,737 (15.1%) 7,643 (11.85%) 

Family history, N (%) a 1,568 (3.55%) - 2,494 (3.87%) - 

Chronic kidney disease (4/5), N (%) a 57 (0.13%) - 79 (0.12%) - 

Rheumatoid arthritis, N (%) 146 (0.33%) 381 (0.86%) 336 (0.52%) 989 (1.53%) 

Atrial fibrillation, N (%) 336 (0.33%) 123 (0.28%) 1,749 (2.7%) 89 (0.14%) 
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Table 2: C indices of prioritisation tools and formal CVD risk assessment tools in UK Biobank 

 
 
Abbreviations: PRS, polygenic risk score. 
 
C indices and 95% confidence intervals from each model for the prediction of 10-year cardiovascular disease 
by sex and for the combined population in UK Biobank after 10-fold cross validation. 
 

Model C-index (95% confidence interval) 

All individuals Men Women 

Prioritisation tool 

Primary care records 
only 

0.730 (0.719, 0.741) 0.684 (0.670, 0.699) 0.734 (0.715, 0.754) 

PRS + age 0.663 (0.652, 0.675) 0.663 (0.649, 0.678) 0.686 (0.665, 0.707) 

PRS + primary care 
records  

0.740 (0.730, 0.751) 0.704 (0.691, 0.718) 0.738 (0.718, 0.758) 

Formal risk assessment tool 

Conventional risk 
factors 

0.730 (0.719, 0.740) 0.700 (0.686, 0.714) 0.739 (0.720, 0.759) 

Conventional risk 
factors +PRS 

0.738 (0.727, 0.749) 0.716 (0.702, 0.730) 0.742 (0.722, 0.762) 

 . CC-BY 4.0 International licenseIt is made available under a 
perpetuity. 

 is the author/funder, who has granted medRxiv a license to display the preprint in(which was not certified by peer review)preprint 
The copyright holder for thisthis version posted October 22, 2022. ; https://doi.org/10.1101/2022.10.20.22281120doi: medRxiv preprint 

https://doi.org/10.1101/2022.10.20.22281120
http://creativecommons.org/licenses/by/4.0/


 
 

 28 

Table 3: Correlation of predicted 10-year risks between prioritisation tools and formal assessment tools by sex in the derivation dataset 
 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Abbreviations: PRS, polygenic risk score. 

Men 
Primary care records only 

prioritisation tool 
PRS + age prioritisation 

tool 

PRS + primary care 
records prioritisation 

tool 

Conventional risk 
factor formal 
assessment tool 

0.75 - - 

Conventional risk 
factor + PRS formal 
assessment tool 

- 0.67 0.82 

Women    

Conventional risk 
factor formal 
assessment tool 

0.80 - - 

Conventional risk 
factor + PRS formal 
assessment tool 

- 0.67 0.82 
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Table 4: Number needed to invite and screen to prevent one event and number of events identified after prioritisation and formal assessment 
in a hypothetical population of 100,000 individuals in England, with prioritisation thresholds selected to identify the same number of events if 
prioritising with primary care records with prioritisation thresholds controlling the false negative rate to 5%. 
 

 
Abbreviations: NNS, number needed to screen; PRS, polygenic risk score. 
 
Age structure of hypothetical population extrapolated from Office for National Statistics, England, United Kingdom 2015. Expected events at 10 years based on extrapolation 
of incidence rates from CPRD, 2014-2019. Age group and sex specific prioritisation thresholds when prioritising using primary care records were defined as the level such 
that the expected false negative rate is controlled to be 5%. Age group and sex specific prioritisation thresholds when prioritising using PRS or PRS and primary care records 
tool chose thresholds that resulted in a similar number of events identified if prioritising using primary care records. Prioritisation thresholds for the PRS prioritisation tool 
was equivalent to a 5.9% and 6.5% false negative rate for men and women respectively, and for the PRS and primary care records prioritisation tool was equivalent to an 
8.1% and 13.0% false negative rate respectively. NNI and NNS assumes 100% statin compliance. NNI assumes a 50% invitation uptake if assessing without using prioritisation 
tool, and a 55% invitation uptake if assessing with using prioritisation tool.  

 

  

Prioritisation using primary care records followed by conventional risk 
factors Prioritisation using PRS + age, followed by conventional risk factors + PRS 

Prioritisation using PRS and primary care records, followed by 
conventional risk factors + PRS 

Age 
group Participants 

Participants 
prioritised  

(%) NNI (95% CI) NNS (95% CI) 

Number of  
events  

identified as  
high risk 

 (%) 

Participants 
prioritised  

(%) NNI (95% CI) NNS (95% CI) 

Number of  
events  

identified as  
high risk 

 (%) 

Participants 
prioritised  

(%) NNI (95% CI) NNS (95% CI) 

Number of  
events  

identified as  
high risk 

 (%) 

Men              

40-49 18253 10126 (55.5%) 765 (498.9, 932.8) 421 (274.4, 513.0) 120 (24.8%) 13016 (71.3%) 727 (530.4, 856.5) 400 (291.7, 471.1) 163 (33.6%) 7208 (39.5%) 369 (265.8, 438.4) 203 (146.2, 241.1) 163 (33.6%) 

50-59 17391 12134 (69.8%) 170 (150.6, 184.2) 93 (82.8, 101.3) 651 (52.5%) 13100 (75.3%) 179 (162.6, 193.3) 98 (89.4, 106.3) 666 (53.7%) 9878 (56.8%) 133 (118.4, 144.4) 73 (65.1, 79.4) 654 (52.7%) 

60-69 14356 12517 (87.2%) 73 (70.4, 74.9) 40 (38.7, 41.2) 1564 (84.7%) 12196 (84.9%) 74 (70.8, 76.1) 40 (39.0, 41.9) 1506 (81.5%) 11064 (77.1%) 65 (62.1, 66.9) 36 (34.2, 36.8) 1519 (82.3%) 

Total 50000 34777 (69.6%) 135 (130.4, 140.5) 74 (71.7, 77.3) 2335 (65.3%) 38313 (76.6%) 149 (143.0, 154.9) 82 (78.7, 85.2) 2335 (65.4%) 28150 (56.3%) 105 (100.5, 109.5) 58 (55.3, 60.2) 2336 (65.4%) 

              

Women              

40-49 18107 3233 (17.9%) 1092 (0.0, 1596.1) 601 (0.0, 877.9) 27 (10.0%) 10139 (56.0%) 3550 (0.0, 5198.6) 1952 (0.0, 2859.2) 27 (10.0%) 1748 (9.7%) 506 (0.0, 731.1) 279 (0.0, 402.1) 31 (11.7%) 

50-59 17282 8329 (48.2%) 572 (389.4, 701.7) 314 (214.2, 385.9) 132 (23.0%) 12436 (72.0%) 742 (507.0, 891.7) 408 (278.8, 490.4) 156 (27.1%) 4683 (27.1%) 306 (198.7, 373.0) 168 (109.3, 205.2) 139 (24.1%) 

60-69 14611 10459 (71.6%) 152 (138.7, 162.1) 84 (76.3, 89.1) 626 (65.1%) 11357 (77.7%) 178 (163.2, 189.7) 98 (89.8, 104.3) 603 (62.7%) 7714 (52.8%) 114 (105.2, 121.2) 63 (57.9, 66.7) 616 (64.0%) 

Total 50000 22021 (44.0%) 255 (235.4, 273.5) 140 (129.5, 150.4) 785 (43.4%) 33932 (67.9%) 406 (372.3, 436.0) 223 (204.8, 239.8) 786 (43.5%) 14145 (28.3%) 163 (150.5, 175.5) 90 (82.8, 96.5) 786 (43.5%) 
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Figure 1: Flow chart of the implementation of a prioritisation tool for formal cardiovascular 
disease assessments 

 
 
Abbreviations: BMI, body mass index; CAD, coronary artery disease; CVD; cardiovascular disease; HDL, high 
density lipoprotein; PRS, polygenic risk score. 
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Figure 2: Number needed to invite, number needed to screen and number of events identified after prioritising for a formal CVD assessment, 
in a hypothetical population of 100,000 individuals in England. 
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Abbreviations: NNS, number needed to screen; NNI, number needed to invite; PRS, polygenic risk score. 
 
95% confidence intervals are represented by vertical lines. Age group and sex specific prioritisation thresholds were defined as the level such that the expected false 
negative rate is controlled to be 5%. NNI and NNS assumes 100% statin compliance, and half of all individuals invited for formal assessment attend. 
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