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function, causing a ciliopathic spectrum.
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Extended data- Figure 1: Clinical features of TUBB4B cohort reported in this study.
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Extended data- Figure 2: Genetic features of patient variants in TUBB4B.
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Extended data- Figure 3: Description of patient variants in TUBB4B and predicted pathogenic-
ity.
Standard predictors struggle to predict pathogenicity of tubulin variants accurately. Using structural modelling of variant effects
on both the β-tubulin monomer (subunit) and its interaction with α-tubulin a heterodimer (full) based on the crystal structure,
we could demonstrate profound effects on heterodimer formation in PCD-only variants. Here, higher ∆∆G means the variant is
predicted to destabilize the protein and importantly its interactions (full). Interactions, like lateral interactions between subunits
not in the structure, are not captured for interfaces affected like p.P358S.
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Extended data- Figure 4: Segregation and location of pathogenic variants in TUBB4B identi-
fied in unrelated PCD patients.
(a) P1 was recruited as a trio for WGS based genetic diagnosis of PCD (Black et al. 2022 under revision). Expanded 
analysis however identified a heterozygous de novo missense mutation p.P259L (chr9:g.137242994:C>T (hg38)) in TUBB4B 
(NM_006088.6) that was present only in the patient. Mutation and the de novo pattern of segregation of the allele were con-
firmed by targeted Sanger sequencing. (b) P2 is proband of a family initially screened for 34 PCD genes including CCNO and 
MCIDAS by high-throughput sequencing, followed by screening of a UCL Great Ormond Street ICH targeted gene panel of 
40 PCD and 400 motile cilia genes. Whilst biallelic mutations in DNAH9 were identified comprising a  splice acceptor mu-
tation (NM_001372.3:c.7553-3del) and exonic missense mutation (NM_001372.3:c.12640G>T, p.Gly4214Cys), the cellular 
phenotype of reduced generation of motile cilia was not in keeping with pathogenic variants in this gene(70). Reanalysis of 
sequencing data confirmed a heterozygous TUBB4B de novo missense mutation p.P259L (chr9:137242994:C>T (hg38)) only 
in the patient, and not present in either parent. (c) P3 is proband from a trio recruited for WES based genetic diagnosis of 
PCD, followed by targeted analysis of variants in TUBB4B (NM_006088.6) which identified a  heterozygous ‘de novo’ mis-
sense variant [c.776C>T; p.P259L] in exon 4 in the patient that was not present in either parent or a non-related control. (d) 
P4 is a proband recruited as a family for WES genetic diagnosis of PCD, which identified a  heterozygous de novo missense 
mutation p.P259L (g.chr9:137242994:C>T (hg38)) in TUBB4B. Mutation confirmation and segregation of the allele were per-
formed by targeted analysis of the TUBB4B locus using Sanger sequencing. (e) P5 is proband recruited as a singleton for 
genetic diagnosis of PCD. After a negative targeted capture sequencing of 50 PCD genes, Sanger sequencing of TUBB4B 
identified a heterozygous missense mutation p.P259L (g.chr9:137242994:C>T (hg38)). Parents were not tested. (f) P6 is 
patient recruited for whole exome sequencing for genetic diagnosis of PCD, followed by targeted analysis of variants in 
TUBB4B (NM_006088.6) which identified a heterozygous de novo missense variant [c.776C>T; p.P259L] in exon 4. Both the 
parents were also tested and confirmed to be wild type (WT) at this l ocus. (g) Summary of variants identified in  all patients 
(P1-P6) as heterozygous for c.776C>T, p.P259L missense variant in exon 4 (below) compared to control sequence (above). 
Base sequence, amino-acid sequence and codon numbers are shown. Location of base substitution is underlined and amino-
acid substitution is depicted in red. (h) WES followed by targeted analysis of variants in TUBB4B (NM_006088.6) identified a 
heterozygous in-frame 30 bp duplication variant [c.723_752dup; p.(F242_R251dup)] in exon 4 in patient P7, that was verified 
by Sanger sequencing (proband, lower chromatogram, compared to a healthy individual). DNA from the parents of P7 were not 
available for the segregation analysis.(i) Proband P8 was recruited as a duo for WGS which on analysis identified a heterozy-
gous missense mutation affecting the same residue but different nucleotide from P1-6. Here, p.P259S (chr9:137242993:C>T 
(hg38)) was identified in TUBB4B only in the patient, and was not present in the p arent. DNA from the other parent was not 
available for segregation analysis. (j) Proband P9 in our study, was recruited as part of a family for WES to diagnose pro-
found sensorineuronal disease (SND) including early onset vision and hearing loss, as well as respiratory disease consistent 
with PCD. A variant c.1072C>T (p.P358S) in exon 4 of the TUBB4B gene (NM_006088.5) was identified in only the patient 
sample in a heterozygous state, confirming de novo i nheritance. Results confirmed by  Sanger se quencing. (k) Proband P10, 
recruited with a history of bilateral sensorineural hearing loss, blindness (SND), chronic kidney disease with nephromegaly 
and hypertension, chronic productive cough and a history of recurrent sinus and ear infections consistent with PCD. A variant 
c.1072C>T (p.P358S) in exon 4 of TUBB4B (NM_006088.5) was identified in only the patient sample in a heterozygous state, 
confirming de novo i nheritance. (l) Patient P11 was recruited with a history of congenital heart disease, specifically restrictive 
cardiomyopathy, as well as hearing and sight loss (SND), plus PCD features such as severe inner ear infections. WES was 
performed on the parent, sibling and proband initially, which identified the variant c.1072C>T (p.P358S) in exon 4 of TUBB4B 
(NM_006088.5). Inheritance was confirmed by Sanger sequencing in the clinical genetics lab on the proband and the other 
parent’s samples, where the presence of the variant in the heterozygous state was detected only in the patient. (m) Summary 
of variants identified i n a ll p atients ( P9-P11) a s h eterozygous f or c .1072C>T, p .P358S m issense variant i n e xon 4  (below) 
compared to control sequence (above). Base sequence, amino-acid sequence and codon numbers are shown. Location of base 
substitution is underlined and amino-acid substitution is depicted in red. In all pedigrees, males and females are designated by 
the squares and circles, respectively. Filled symbols represent affected probands. Red arrow above chromatograms highlights 
the affected residue.
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Extended data- Figure 5: TUBB4B variants affect ciliary number, length and microtubule PTMs.
(a-j’)TEM of nasal brush epithelial cells from control (a,b) and PCD patients with p.P259L variant (P3, c-i’) or p.P259S (P8,
j,j’). In control cells, dense, long cilia on the surface(a,b), which in cross-section clearly transition through docked basal body
(MTDs), transition to MTDs exiting the cell with characteristic Y-links of transition zone and then to ‘9+2’ MTDs of the
axoneme. In PCD patient cells evidence of disrupted centriole assembly and amplification is observed including misoriented
and internally docked centrioles without axonemes as well as partial structures (c-f). Dashed magenta ROI in (c) with increased
zoom to highlight features (c’). (g-i’) P3 TEM shows rare short cilia without clear axonemal microtubules (g,h) or dilated
cilia tips with disorganized microtubules and granular material (i,i’). (j,j’) P8 TEM of short cilia with bulbous head shows
splayed microtubules within the expanded tip. (k) Nasal brush epithelial cells were cultured and differentiated in ALI from
healthy parent (CTL) and syndromic PCD (P9) patient (lower) before sectioning for immunofluorescence confirming reduced
centrioles (FOP: magenta) and loss of axonemes, with abnormal acetylated (α-tubulin staining (green) mislocalizing within
the cytoplasm. (l,m) Immunofluorescence of healthy donor (CTL) or patient (P1) nasal brushings stained for (l) cilia outer
and inner dynein arm motors (DNAI2: cyan; DNALI1: yellow) of the IFT-B complex (IFT88: magenta;) and (m) microtubule
post-translational modifications (α-tubulin: yellow; polyglutamylated tubulin: magenta; detyrosinated tubulin: cyan). Scale
bars represent: 10 µm (k-m), 1 µm (c,f), 500 nm (j, f), 250 nm (c’-e, g,-i’), and 100 nm (j).
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Extended data- Figure 6: Generation of Tubb4b knock-out mice support a dominant negative
mechanism of disease for patient pathogenic variants in vivo as haploinsufficiency for Tubb4b
has no effect.
(a-c) Two independent deletion alleles were generated by Cas9 genome editing in the 4th exon of Tubb4b and founder screening.
Both alleles cause a frame shift and premature termination codon. (c) Both alleles are protein null for TUBB4B unique peptides
by mass spectrometry (shown for KO2). (d-f) Tubb4b−/− primary cilia on fibroblasts show no difference in percentage ciliation
(d), cilia length (e) or gross structure by immunofluorescence (f). (g-i) Despite the pronounced hydrocephaly phenotypes
visible in vivo, mutant primary ependymal cells differentiated in vitro show no difference by high-speed video microscopy
in percentage of cells with coordinated beating (g), ciliary beat frequency (h) or quantification of cilia structures stained for
immunofluorescence (i). (j) Whole-mount immunofluorescence of oviducts reveals a similar arrest of ciliogenesis as in airway
epithelia. (k-n) Heterozygous KO animals (shown for KO2) are phenotypically normal, showing normal trachea cilia numbers
(k) and lengths (l), normal fertility, as shown by normal spermatogenesis (m), and postnatal survival/growth (n). (0) Single
cell RNASeq heatmaps show the proportions of cells expressing each α- and β-tubulin isotype (RNA count greater than zero)
in each cell type identified in the population from published mouse lung (magenta)(68), ependymal (blue)(66) and choroid
plexus (black)(67) single cell RNASeq datasets. Rows are clustered on similarity of proportions among cell types (scale 0-
1). Cilia length and number of ciliated cells in fibroblasts were quantified using ARL13B as a marker, N = 3 biological
replicates per genotype with (h) n >139 cells per biological replicate and (i) n > 87 cells per biological replicate, mean values
are plotted. Ependymal beat coordination and beat (k, l) were calculated from N = 3 biological replicates per genotype, n > 17
cilia measurements per replicate. (j, m, n) Fibroblast Growth Factor Receptor 1 Oncogene Partner (FOP): yellow, acetylated
α-tubulin: magenta, actin: cyan (m) or ARL13B: cyan (j). Scale bars represent: 250 µm (m), 25 µm (l), 10 µm (i, j) and 5
µm (f). (c, k, n) Graphic bars represent the mean ± SEM derived from N=4 biological replicates (c), N=3 biological replicates,
n>18 cells/sample (k) and N= 155 animals. (d, e, g, h) Statistical analyses were carried out by the PLSD Fisher test. Graphic
bars represent the mean ± SEM derived from three biological replicates. Student’s t-test: ns, not significant; **, p ≤0.01.
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Extended data- Figure 7: Disease-causing TUBB4B variants alter microtubule dynamics.
Microtubule network dynamics analysis of RPE1 cells overexpressing TUBB4B variants, showing immunostaining of FLAG-
tagged TUBB4B (green) and EB1 (magenta) protein upon cold-induced depolymerization (20 and 30 minutes) and repoly-
merization at 37 °C (4 and 6 minutes). See Figure 3(g, h) for quantification of repolymerization. Scale bars represent: 10
µm.
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Extended data- Figure 8: TUBB4B variants cause dominant negative disease through distinct
molecular mechanisms affecting heterodimerization or polymerization.
(a) Immunoblot of in vitro translated ALFA-tagged control and TUBB4B patient variants. All PCD-only (p.P259L, p.P259S,
Dup) and syndromic PCD+SND p.P358S TUBB4B variants are stable. (b) Schematic of tubulin heterodimer assembly path-
way. Binding of partially folded tubulin molecules as they emerge from the ribosomes by prefoldin and subsequent folding by
the cytoplasmic chaperonin CCT. These quasi-native tubulin intermediates interact with five tubulin-specific chaperones named
tubulin cofactors A through E (TBCA–TBCE). The native assembly-competent tubulin is released from a supercomplex that
contains both α- and β-tubulin and cofactors C–E, upon hydrolysis of GTP by β-tubulin in the supercomplex. (c-i) Effects of
TUBB4B variants on tubulin stability and heterodimerization were investigated using Sf9 insect cells expressing recombinant
bacmids containing human tubulin-α1A with an internal His tag and human tubulin-β4B-FLAG. The recombinant bacmid also
contains a GFP reporter gene to monitor infection of Sf9 cells, and is used as a loading control. (c) Size exclusion chromatogra-
phy analysis and elution profile for the indicated constructs for porcine α/β-tubulin (red), FLAG-eluted tubulin-α/tubulin-β4B
(blue) and FLAG peptide (black) (c, left panel). Coomassie-stained gels showing elution profiles for the corresponding protein
complexes (c, right panel). Whole insect cell pellets were analyzed by immunoblot probed with anti-His and anti-FLAG anti-
bodies for α-tubulin and β-tubulin respectively to monitor expression (p.P259L/S (d); Dup (f); p.P358S (h)), as well as GFP
to monitor transduction. After elution from His-tag affinity Ni-NTA beads, immunoblots for recombinant tubulin heterodimers
were probed with anti-His and anti-FLAG antibodies for α-tubulin and β-tubulin respectively to monitor heterodimerization
(p.P259L/S (e); Dup (g); p.P358S (i)).
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Extended data- Figure 9: Engineered point mutations in Tubb4b do not recapitulate patient
phenotypes in the mouse retina.

(a) Strategy to generate LCA KI p.R391H allele by Cas9 genome editing in the 4th exon of Tubb4b and Sanger sequencing
to validate. (b) Tubb4bR391H/+ animals show no decrease in fitness or survival postnatally. (c-e) Tubb4bR391H/+ animals
show no early onset or age-related degeneration of photoreceptors by histology (c) or immunofluorescence (d) (rhodopsin: red;
M-opsin: green) in 4 month adult mice. (e) Tubb4bR391H/+ animals show no evidence of physiological changes in neuroretina
with age as shown by electroretinogram unlike the p.R391H/+ human patients. (f) Species-specific differences in expression
of TUBB4B in the neuroretina are likely to account for these differences. Heatmaps show the proportions of cells expressing
each tubulin (RNA count greater than zero) in each cell type identified in the population from published mouse (left)(35) and
human (right)(34) neuroretina single cell RNASeq datasets. Rows are clustered on similarity of proportions among cell types

30 | medRχiv Mechaussier, Dodd et al. |



(scale 0-1). Scale bars represent: 100 µm (c) and 10 µm (d). (b, e) Graphic bars represent the mean ± SEM derived from N>3
animals per time point.

Mechaussier, Dodd et al. | medRχiv | 31



Extended data- Figure 10: List of guides, repair ssODNs, primers and antibodies used in this
study.
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