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Abstract 

Recent efforts have focused on developing methylation risk scores (MRS), a 

weighted sum of the individual’s DNAm values of pre-selected CpG sites. Most of the 

current MRS approaches that utilize Epigenome-wide association studies (EWAS) 

summary statistics only include genome-wide significant CpG sites and do not 

consider co-methylation. New methods that relax the p-value threshold to include 

more CpG sites and account for the inter-correlation of DNAm might improve the 

predictive performance of MRS. We paired informed co-methylation pruning with P-

value thresholding to generate pruning and thresholding (P+T) MRS and evaluated 

its performance among multi-ancestry populations. Through simulation studies and 

real data analyses, we demonstrated that pruning provides an improvement over 

simple thresholding methods for prediction of phenotypes. We demonstrated that 

European-derived summary statistics can be used to develop P+T MRS among other 

population such as African population. However, the prediction accuracy of P+T 

MRS may differ across multi-ancestry population due to environmental/cultural/social 

differences.  

 

Key Words: Epigenetic scores, Polygenic DNA methylation, Clumping and 

thresholding, Admixed population 
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Introduction 1 

DNA methylation (DNAm), one of the most studied epigenetic mechanisms, 2 

regulates the mode of expression of DNA segments independent of alterations of 3 

their sequence by adding a methyl group at cytosine residues, hence contributing to 4 

variation in cellular phenotypes1. With current advances in and reduction of cost of 5 

array-based profiling technologies, increasing numbers of large-scale epigenome-6 

wide association studies (EWAS) have been conducted to study DNAm in 7 

association with complex human diseases as well as environmental and social 8 

factors2,3. EWAS has thus far been successful in identifying dozens of cytosine 9 

guanine dinucleotides (CpGs) associated with various diseases and exposures, 10 

which could potentially be used for disease diagnosis and prediction, development of 11 

drug targets, and monitoring of drug response3-8. However, differential DNAm in 12 

individual CpGs often shows a weak prediction capacity and can only explain a small 13 

fraction of phenotype variance. Polyepigenetic approaches that aggregate 14 

information on differential DNAm from multiple CpGs might produce a more accurate 15 

biomarker for clinical usage9,10. 16 

 17 

A well-known polygenic approach for genotype data is polygenic risk scores (PRS), 18 

which are weighted sum of risk alleles of a pre-selected number of genetic variants11. 19 

Recently, many efforts have focused on transferring PRS approaches to DNA 20 

methylation data to construct methylation risk scores (MRS), which are defined as 21 
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weighted sums of the individuals’ DNAm values of a pre-selected number of CpGs10. 22 

However, there are many methodological challenges in constructing DNA 23 

methylation risk scores10,12,13. One of the problems is that DNAm is influenced by 24 

ancestry, which captures genetic ancestry (differences in the genome related to 25 

ancestry) as well as social determinants of health such as racism and discrimination, 26 

socioeconomic status, and environmental effects14. Thus, ideally, when external 27 

weights are used for the calculation of MRS, these weights should be assessed in a 28 

population with the same ancestry as the study samples. However, current 29 

epigenetic literature remains limited by the lack of diversity, with most focusing on 30 

European populations15, therefore making it difficult to identify appropriate weights 31 

for MRS for other populations. While it is well known that PRSs are not applicable 32 

across different ancestries16,17, little is known about the performance of MRS across 33 

multi-ancestry populations.   34 

 35 

Currently, there are two popular approaches to construct MRS. The first one is to 36 

use penalized regression models such as Elastic Net and LASSO 37 

regularization10,18,19, which usually requires individual-level DNAm data. When only 38 

summary-level statistics are available, individual CpGs that reached genome-wide 39 

significance in an external epigenome-wide association studies (EWAS) are selected 40 

and the beta-coefficients estimated from EWAS are used as weights to generate 41 

MRS10. However, research in PRS has shown that the optimal p-value threshold 42 
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strongly depends on the data20, and including a larger proportion of variants could 43 

potentially capture more of the phenotype variation21. Moreover, most MRS from the 44 

second approach do not consider DNA co-methylation, defined as proximal CpGs 45 

with correlated DNAm across individuals22, which could potentially bias the 46 

generation of MRS. Shah et al 2015 proposed to remove redundant CpGs  by 47 

keeping the most significant CpGs in co-methylation23,24, however, a window to 48 

define DNA co-methylation needs to be pre-defined and the effect of accounting for 49 

DNA co-methylation was not evaluated.  50 

 51 

One of the most widely used PRS approaches to deal with single nucleotide 52 

polymorphisms (SNPs) in high linkage disequilibrium (LD) and to identify p-value 53 

thresholds with the best prediction accuracy is the pruning and threshold (P+T) 54 

method25. In the P+T approach, the correlation square (R2) for SNPs within a close 55 

genetic distance is calculated and less significant SNPs that are correlated with an 56 

R2 greater than a particular value (LD pruning)26 are removed. Next, several p-value 57 

thresholds are tested to maximize the prediction accuracy of the derived PRS (p-58 

value thresholding)26,27. Theoretically, the P + T approach could be applied to 59 

generate MRS, however, there is no standard procedure on how to conduct pruning 60 

for DNAm data and the performance of such MRS across multi-ancestry populations 61 

remains unknown.  62 

 63 

 . CC-BY-NC-ND 4.0 International licenseIt is made available under a 
perpetuity. 

 is the author/funder, who has granted medRxiv a license to display the preprint in(which was not certified by peer review)preprint 
The copyright holder for thisthis version posted October 20, 2022. ; https://doi.org/10.1101/2022.06.09.22276204doi: medRxiv preprint 

https://doi.org/10.1101/2022.06.09.22276204
http://creativecommons.org/licenses/by-nc-nd/4.0/


Here, we propose to use the Co-Methylation with genomic CpG Background 64 

(CoMeBack), a tool that uses a sliding window to estimate DNA co-methylation, to 65 

account for correlations of DNAm at proximal CpG sites22, and pair it with p-value 66 

thresholding to construct P+T CoMeBack MRS. CoMeBack uses unmeasured 67 

intermittent CpGs from the human reference genome to link array probes in hope of 68 

reducing false positives while improving the identification of biologically relevant co-69 

methylation22. We conducted simulation studies based on data from an adult 70 

population consisting of three groups of different ancestries (Indian, White and Black, 71 

n = 1,199) to evaluate the prediction performance of P+T CoMeBack MRS and how 72 

it changes across multi-ancestry population. Next, we applied the P+T CoMeBack 73 

approach to DNAm data from the Drakenstein Child Health Study (n=270)28, a multi-74 

ancestry birth cohort from South Africa, to evaluate the performance of MRS for 75 

maternal smoking status. Our simulation study and real data application 76 

demonstrated that the P+T approach improves the predictive accuracy of MRS over 77 

methods that do not account for co-methylation and has similar performance as 78 

LASSO regression, which requires access to the raw DNAm data. We also showed 79 

that MRS built upon the data from a population of one genetic ancestry could 80 

achieve high prediction performance among populations of other genetic ancestries, 81 

but the performance might differ in the presence of environmental/cultural/social 82 

differences associated with ancestry.  83 

 84 
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Materials and methods  85 

P+T CoMeBack approach for MRS 86 

P+T CoMeBack method refers to the calculation of MRS using informed co-87 

methylation pruning (P) with CoMeBack and P-value thresholding (T). First, 88 

summary statistics from an EWAS (typically include the participant ID, effect size, 89 

standard error and P-value of each CpG site) need to be estimated in an 90 

independent dataset (training dataset) to avoid overfitting, and then applied to 91 

generate MRS in a testing dataset (the samples used to evaluate the performance of 92 

MRS).  93 

 94 

In our P+T CoMeBack method, co-methylation pruning is completed by applying 95 

CoMeBack to DNAm data of the testing dataset or a reference panel22. Specifically, 96 

CoMeBack chains two adjacent array probes if the following requirements are met: 97 

1. two probes are less than 2kb apart; 2. the reference human genome annotation 98 

shows a set of unmeasured genomic CpGs between them; 3. the density of 99 

unmeasured genomic CpGs between them is at least one CpG every 400bp. 100 

Chaining of adjacent array probes continues until an array probe does not meet the 101 

requirements, which will form a unit where multiple CpGs are chained together. 102 

Correlations between DNAm levels will then be calculated for all array probes inside 103 

each unit. If all pairs of adjacent probes in a unit have a correlation square (R2) 104 

greater than 0.3, such unit will be declared as a co-methylated region (CMR). 105 
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Pruning is conducted by only keeping one CpG site per CMR in the dataset, the one 106 

with the lowest (most significant) P-value in the EWAS summary statistics.  107 

 108 

P + T CoMeBack will be compared to the standard pruning approach, in which less 109 

significant SNPs that are correlated with an R2 > 0.3 and located within 2000bp of 110 

each other are being removed. 111 

 112 

Next, P-value thresholding step (T) is performed for the pruned set of CpG sites. 113 

Specifically, the P-value thresholding step (T) is performed by applying different P-114 

value thresholds (e.g., P-value thresholds ∈ [0.05, 0.005, 5 x 10−4, 5 x 10−5, …])  and 115 

only including those CpG sites in the final MRS calculation that reached a P-value 116 

below those thresholds in the EWAS summary statistics.  117 

 118 

Finally, for each P-value threshold, MRS are calculated as a weighted sum of DNAm 119 

𝛽 values (𝛽 value = methylated allele intensity / (unmethylated allele intensity + 120 

methylated allele intensity + 100), ranging from 0 representing unmethylation to 1 for 121 

complete methylation) of the selected CpGs, where the weights are the 122 

corresponding effect sizes for each CpG from the EWAS summary statistics. The 123 

squared correlation (R2) between the phenotype of interest and MRS obtained using 124 

each P-value threshold is calculated to represent the prediction accuracy. The P-125 

value threshold that produces MRS with the highest prediction accuracy in the 126 
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testing data set is selected as the optimal P-value and the corresponding MRS is 127 

used for downstream analysis. The pipeline for generating P+T MRS is written in an 128 

R script, which is available at GitHub (https://github.com/jche453/Pruning-129 

Thresholding-MRS.git).  130 

 131 

In our simulation studies and real data application, we compare the P+T CoMeBack 132 

MRS approach to the standard P+T and T approach, which refers to an approach in 133 

which the MRS is calculated by only thresholding, not accounting for correlations 134 

between included CpGs (no pruning). 135 

 136 

Simulation studies 137 

To validate the performance of the proposed P+T MRS approach, we conducted 138 

simulation studies based on whole blood Illumina Infinium Human Methylation 450K 139 

BeadChip data from an ethnically heterogeneous discovery cohort composed of 140 

several publicly available datasets (GSE55763, GSE84727, GSE80417, GSE111629 141 

and GSE72680)22. Intra-dataset normalization and batch effects correction were 142 

performed using ComeBat function in R-package sva29, followed by merging of 143 

datasets and correction for inter-dataset batch effects using the same function. After 144 

the removing XY chromosome binding, non-CpG, cross-hybridizing probes and 145 

probes that are in close distance with common SNPs, there were 386,362 CpGs left 146 
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for MRS analysis. We randomly selected 1,199 adults (898 Indians, 136 Blacks and 147 

165 Whites) to conduct the simulation studies.  148 

 149 

CoMeBack was applied to the DNA methylation 𝛽 values of the 386,362 CpGs to 150 

obtain CMR. In each simulation, 10 of the 386,362 CpGs were randomly selected to 151 

be causal, k% (k = 30, 50, 70 or 100) of which are in a CMR with other CpGs. At 152 

most, one CpG would be causal in each CMR.  153 

 154 

The causal CpGs were randomly assigned a “true” effect size from a uniform 155 

distribution as 𝑤𝑖  ~ 𝑈(−0.5, 0.5). We then simulated a phenotype for the j-th subject 156 

as follow: 157 

𝑌𝑗 = ∑ 𝑤𝑖
10
𝑖=1 𝑚𝑖𝑗 + 𝜀𝑗 , 𝜀𝑗 ~ 𝑁(0, 𝛿2), 158 

where 𝑚𝑖𝑗 is the DNAm 𝛽 value of causal CpG site i of the j-th subject, and 𝜀𝑗 is an 159 

error term that follows a normal distribution. Different 𝛿2 were set to ensure that the 160 

targeted variance of phenotype explained by DNAm alone equals 10%, 30% 50% or 161 

80%.  162 

 163 

We also simulated a second phenotype Y*
j for the j-th subject, which was directly 164 

affected by ancestry using European ancestry as reference: 165 

𝑌𝑗
∗ = ∑ 𝑤𝑖

10

𝑖=1

𝑚𝑖𝑗 + 𝑎 ∗ (𝑖𝑓 𝐼𝑛𝑑𝑖𝑎𝑛)  +  𝑏 ∗ (𝑖𝑓 𝐵𝑙𝑎𝑐𝑘) + 𝜀𝑗
∗, 𝜀𝑗

∗ ~ 𝑁(0, 𝛿∗2) 166 
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Effect of ancestry in our simulations is simulated as the effect of genetic ancestry 167 

assuming there were no complex social determinants involved in the causal 168 

pathway. Different 𝛿∗2 were used so that the variance of phenotype that was 169 

explained by DNAm and ancestry together equals 20%, 50% or 80. For our 170 

simulations, effect a was set to 0.1 and b to 0.2. In each simulation, both simulated 171 

phenotypes 𝑌𝑗 and 𝑌𝑗
∗ share the same epigenetic liability (∑ 𝑤𝑖

10
𝑖=1 𝑚𝑖𝑗). 172 

 173 

In each simulation, for fair comparison, 762 Indians were randomly chosen as the 174 

training dataset so that there were at least 136 people left for each race group in the 175 

testing dataset. Associations between CpGs and each of the two simulated 176 

phenotypes were assessed by robust linear regression model using limma R 177 

package30 in the training dataset. We calculated top 10 principal components (PCs) 178 

from DNAm of 386,362 CpGs31 and used EpiDISH to estimate cell type proportions 179 

of each CpGs32. We observed that in our simulation dataset, top 10 PCs are highly 180 

correlated with cell type proportions (Supplement figure 1A), and using either 181 

summary statistics adjustment for top 10 PCs or summary statistics adjusted for cell 182 

type proportions would lead to almost identical prediction performance of MRS 183 

(Supplement figure 1B). Thus, to account for population stratification and cell type 184 

difference, we adjusted for the top 10 PCs in our main analyses. The summary 185 

statistics (effect size and P-values) obtained from association tests in the training 186 

data were saved and later used to construct MRS in the testing dataset. We 187 
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repeated 1000 simulations per scenario to evaluate the prediction accuracy (R2), 188 

power and type 1 error rate of the P+T MRS. Linear regression analysis was used to 189 

access the association between MRS and simulated phenotypes, and power is 190 

defined as the proportion of simulations where MRS were significantly associated 191 

with the simulated phenotype with at  level of 0.05. To estimate type 1 error rate, 192 

we first obtained a null association between MRS values and simulated phenotype 193 

values by permutation of MRS values. Linear regression analysis was used to 194 

access the association between permutated MRS and simulated phenotypes, and 195 

type 1 error rate is defined as the proportion of simulations where permutated MRS 196 

were significantly associated with the simulated phenotype.  197 

 198 

We evaluated the performance of the MRS not only in scenarios of A) same ancestry 199 

in training and test data, but also B) across different ancestry groups (training data: 200 

Indian, test data: European or African) and C) in multi-ancestry populations (training 201 

data: Indian, test data: Indian, European and African). For scenario C), we evaluated 202 

two analysis strategies: 1. Joint-analysis: perform MRS analyses in the whole testing 203 

dataset where subjects from all racial groups were merged; 2. Standardization: scale 204 

MRS to have a standard normal distribution within each racial group before merging 205 

all subjects for analyses.  206 

 207 

Application study of smoking MRS 208 
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To evaluate the performance of the P+T CoMeBack approach in a real data setting, 209 

we applied the P+T CoMeBack approach to calculate a MRS for maternal smoking 210 

status during pregnancy using cord blood DNAm data from newborns in the South 211 

African Drakenstein Child Health Study (DCHS), a multi-ancestry longitudinal study 212 

investigating determinants of early child development33. There were 145 Black 213 

African infants and 115 Mixed ancestry infants in the DCHS. A detailed description of 214 

the enrollment process, inclusion criteria, variables measurement and ethical 215 

approval of the study have been previously published33,34.  216 

 217 

Cotinine levels were measured in urine provided by mothers within four weeks of 218 

enrollment and classified as <499 ng/ml (non-smoker), or ≥500 ng/ml (active 219 

smoker)28. Cord blood was collected at time of delivery and used to measure DNA 220 

methylation by either MethylationEPIC BeadChips (EPIC, n=145) or the Illumina 221 

Infinium HumanMethylation450 BeadChips (450K, n=103)33,34, followed by quality 222 

control and normalization to calculate  values (details have been published 223 

elsewhere) 35.  224 

 225 

Summary statistics for the calculation of MRS were obtained from a study that meta-226 

analyzed the associations between newborn blood DNA methylation and sustained 227 

maternal smoking during pregnancy among 5,648 mother-child pairs as part of the 228 

Pregnancy and Childhood Epigenetics (PACE) Consortium (Table 1)36. The 229 
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participants of all cohorts used in the meta-analysis except one were of European 230 

ancestry.  231 

 232 

In addition, we compared P+T CoMeBack MRS to three previously published MRS 233 

for maternal smoking during pregnancy (Reese MRS, Richmond 19 MRS, Richmond 234 

568 MRS; Table 1). Reese MRS model was trained among 1,068 newborns of 235 

European ancestry in the Norwegian Mother and Child Cohort Study, while 236 

Richmond 568 MRS and Richmond 19 MRS was trained in multi-ancestry newborns 237 

(N=6,685) and children around 6.8 years old (N=3,187) in PACE Consortium 238 

respectively. The training population for Reese MRS and Richmond 19 MRS 239 

overlapped with the training population for summary statistics used in P+T 240 

CoMeBack MRS in our study. Reese et al. used a LASSO regression to select CpGs 241 

for Reese MRS, which is a weighted sum of DNAm  values of 28 CpGs with 242 

weights estimated from the LASSO regression37. Richmond 19 MRS is a weighted 243 

sum of DNAm  values of 19 CpGs that were significantly associated with prenatal 244 

smoking in an EWAS conducted in peripheral blood from children of averaged 6.8 245 

years age (Richmond 19 MRS)38,39. In the same study, Richmond 568 MRS was 246 

proposed based on 568 CpGs that were significantly associated with prenatal 247 

smoking in cord blood38,39. We obtained the weights of reported CpGs from the 248 

mentioned studies and applied them to DNAm data in DCHS to generate Reese 249 

MRS, Richmond 19 MRS and Richmond 568 MRS.  250 
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 251 

Linear regressions were used to assess the associations between maternal smoking 252 

status and each MRS, controlling for ancestry (in pooled samples), cell type 253 

proportions and top 5 PCs calculated from genotypes. In order to obtain comparable 254 

beta-coefficients and standard errors across different MRS, each MRS was divided 255 

by their interquartile range (IQR) before linear regression analysis. 256 

 257 

Results 258 

Simulation results 259 

We compared the prediction performance of P+T CoMeBack MRS to the T method 260 

among 136 Indians in the test data across different simulation scenarios (Figure 1). 261 

Figure 1A shows that P+T CoMeBack MRS that account for co-methylation between 262 

CpGs have stable prediction performance when proportion of causal CpGs located in 263 

a CMR (k%) varies. P+T without CoMeBack had similar prediction performance while 264 

the T method had a slightly lower prediction performance. While the P+T CoMeBack 265 

MRS showed subtle improvement over T method when 𝑉𝐷𝑁𝐴𝑚
2  is 80% (Figure 1A), 266 

the difference between P+T CoMeBack MRS and the T method decreases as the 267 

𝑉𝐷𝑁𝐴𝑚
2  decreases. This is likely because as variance explained by DNAm decreases, 268 

there is less power for association testing, and it becomes increasingly difficult to 269 

distinguish real signals from statistical noise while generating the summary statistics.  270 

 271 
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Next, we assessed the performance of P+T CoMeBack, P+T and T method across 272 

different ancestries and among multi-ancestry populations. All three methods 273 

achieved a high power (> 95%) and a low type 1 error rate (~ 5%) within each 274 

ancestry in most scenarios for both phenotypes except when the phenotype variance 275 

explained by DNA methylation is 10% or 30% (Supplement table 1-4).  276 

 277 

Whether the simulated phenotypes were independent of ancestry or not, MRS 278 

among Whites and Blacks achieved a prediction R2 as high as among Indians, which 279 

should have the best prediction of the simulated phenotypes since weights were 280 

obtained from Indian training samples (Figure 2). Findings were similar when the 281 

phenotype variance explained by DNA methylation was reduced from 80% to 10%, 282 

30% or 50% (Supplement Figure 2). When the phenotypes are not associated with 283 

ancestry (Figure 2A), the three MRS analyses strategies (stratification, joint analysis 284 

and standardization) lead to nearly identical results. However, when the phenotypes 285 

are ancestry-dependent, both joint analysis and standardization of MRS showed very 286 

poor prediction of the phenotypes (Figure 2B).  287 

 288 

MRS of maternal smoking status 289 

Figure 3 shows the prediction performance of MRS for maternal smoking status 290 

among DCHS newborns. As the p-value threshold decreases, the prediction 291 

accuracy of the resulting MRS increases before reaching a plateau, demonstrating 292 
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the importance of P-value thresholding in MRS to control for noise. Among mixed 293 

ancestry newborns, P+T CoMeBack MRS of smoking status excluded 22 CpGs in 294 

pruning and achieved a prediction R2 of 29.5% using P-value threshold of 5x10-22, 295 

while the standard P+T without CoMeBack had a lower prediction R2 of 26.2% using 296 

P-value threshold of 5x10-10 and the best T method MRS had the lowest prediction 297 

accuracy (24.5%) using P-value threshold 5x10-9, confirming the benefits of pruning 298 

in MRS calculation (Figure 3A). All three MRS had lower prediction performance for 299 

maternal smoking among Black African infants (10.9%, and 8.0% respectively) 300 

(Figure 3B), which is likely due to the low prevalence of smokers among mothers of 301 

Black African infants in DCHS (13%) compared to mothers of mixed ancestry infants 302 

(49%) (Supplement Figure 3). Additionally, the distributions of all MRS in Black 303 

African infants and mixed ancestry infants were similar within each category of 304 

maternal smoking status (Supplement Figure 4), confirming that the difference of 305 

prediction R2 between Mixed and Black infants is less likely due to ancestry-related 306 

factors other than prevalence of maternal smoking. Joint-analysis of P+T CoMeBack 307 

MRS showed a prediction accuracy of 20.4%, which is between the prediction 308 

accuracy of P+T CoMeBack MRS among Black African infants and mixed ancestry 309 

infants (Figure 3C). Standardization approach did not improve the performance of 310 

MRS (Figure 3D).  311 

 312 
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We next compared the prediction accuracy and distribution of P+T CoMeBack MRS 313 

to other established MRS for maternal smoking during pregnancy and newborn 314 

DNAm (Figure 4). Overall, P+T CoMeBack and Reese MRS had stable and similar 315 

classification performance in all analyses compared to other MRS. P+T CoMeBack 316 

MRS and Reese MRS showed a similar prediction R2 among both Black and Mixed 317 

ancestry infants, which are better than other smoking MRS (Figure 4A). P+T 318 

CoMeBack MRS had the largest AUC (0.820) in the ROC curve among mixed infants 319 

(Figure 4B) but a smaller AUC than Reese MRS in Black infants and joint-analysis 320 

(Figure 4C-D). Further, all 6 MRS showed significant association with smoking status 321 

in Mixed infants, Black infants and joint-analysis (Table 2), showing the promise of 322 

using MRS to capture the overall DNAm signals in association testing. 323 

 324 

Discussion 325 

Based on the well-established P+T CoMeBack framework in PRS, we developed 326 

P+T CoMeBack MRS, which aggregates EWAS signals and could potentially be 327 

used as a biomarker in association studies where single CpGs do not achieve 328 

significance4,40,41. The proposed P+T CoMeBack MRS approach uses CoMeBack for 329 

co-methylation pruning and evaluates multiple P-value thresholds to maximize 330 

prediction performance. Such MRS could potentially serve as a powerful dimension 331 

reduction approach for mediation and multi-omics integration analyses4,40-43 as well 332 

as biomarkers of individual disease risk in a clinical setting44-46.  333 
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 334 

Overall, our simulation studies demonstrated good performance of P+T CoMeBack 335 

MRS for predicting phenotypes of interest with good statistical power and well-336 

controlled type 1 error. We demonstrated that the prediction accuracy of MRS 337 

reflects the variance of phenotype that is explained by DNAm. By accounting for 338 

inter-correlation between CpGs, P+T CoMeBack MRS and P+T without CoMeBack 339 

showed a slightly better performance than the standard T method. In the real data 340 

application, we observed the best prediction of maternal smoking status when using 341 

P+T CoMeBack, which confirms the usefulness of accounting for co-methylation and 342 

demonstrates  the ability of CoMeBack to control for false discover of CMR and 343 

usefulness in constructing MRS22. However, we note that P+T CoMeBack MRS 344 

could still have poor prediction performance if the external EWAS is underpowered 345 

or subject to bias. 346 

 347 

In the prediction of maternal smoking status, P+T CoMeBack MRS showed 348 

comparable performance to Reese MRS, which was derived using the LASSO 349 

method37. When predictors are highly correlated, LASSO typically selects one of the 350 

correlated predictors and shrinks the effect size of the rest to zero, which might 351 

produce similar results to our pruning procedure in developing MRS. One of the 352 

advantages of P+T CoMeBack MRS is that it is based on EWAS summary statistics 353 

which are often publicly available, hence making it a valuable approach, as it is often 354 
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difficult to obtain individual DNAm data from an external cohort. Additionally, P+T 355 

CoMeBack MRS can make use of meta-analysis-type summary statistics, which 356 

aggregates results from multiple studies to improve association estimates. In 357 

contrast, to construct MRS like Reese MRS, individual DNAm data are usually 358 

required to perform a LASSO regression, and these are often not accessible. 359 

Recently, novel penalized regressions have been proposed to generate PRS with 360 

only GWAS summary statistics and publicly available reference data47, but their 361 

applications to EWAS summary statistics for MRS have not been investigated. To 362 

develop MRS for different exposures and outcomes, we urge EWAS studies to make 363 

their genome-wide summary statistics publicly available. 364 

 365 

In our simulation studies, weights obtained from Indian training samples were 366 

applied to generate P+T CoMeBack MRS, thus MRS among Indian testing samples 367 

were assumed to have the best prediction of the simulated phenotypes. However, 368 

MRS among Whites and Blacks also achieved a prediction accuracy as high as 369 

among Indians for both simulated phenotypes suggesting that genetic ancestry does 370 

not contribute to difference in prediction abilities of MRS across multi-ancestry 371 

population. This is likely because we assumed all ancestries share the same causal 372 

CpGs and effect sizes. However, in the real world, this assumption could possibly be 373 

violated for many phenotypes. Unlike ancestry in our simulation studies, ancestry in 374 

the real world is complex. The meaning of ancestry could be different in different 375 
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regions/nations, and “effect of ancestry” involves the joint effects of ancestry-376 

associated social determinants of health and environmental effects , and cultural 377 

context48. Ancestry, along with environment and social differences associated with it, 378 

could affect both MRS and phenotypes in numerous causal pathways and potentially 379 

modify the effect of MRS on the phenotypes. Thus, even if all ancestries indeed 380 

share the same causal CpGs and effect sizes, it might still not be sufficient to 381 

disentangle the relationship between ancestry, DNAm and phenotype of interest. 382 

This may greatly impact the transferability of MRS across different ancestries, which 383 

could be the reason why we observed an inconsistency of performance of P+T 384 

CoMeBack MRS in terms of their distributions and predictions across multi-ancestry 385 

population in the real data analyses. In practice, we recommend that researchers 386 

conduct MRS analyses stratified by ancestry first and evaluate the effect of ancestry 387 

on MRS analyses before pooling participants together for a joint analysis. 388 

 389 

In our real data application, summary statistics for smoking were obtained from a 390 

cohort with mainly people of European ancestry36. MRS of smoking among mixed 391 

ancestry infants achieved a prediction accuracy of nearly 30%. However, the 392 

prediction accuracy of P+T CoMeBack MRS among Black African infants was only 393 

10.9%. We suspect that the difference was largely due to the prevalence of active 394 

smoking among mothers of Black African infants being lower than those of mixed 395 
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ancestry infants (13% vs 49%), which is similar to how the prevalence of outcome 396 

affects the predictive ability of PRS49.  397 

 398 

To the best of our knowledge, this is the first study to propose using CoMeBack for 399 

pruning MRS among multi-ancestry populations. However, there are several 400 

potential limitations that warrant mention. First, the sample size of both simulation 401 

studies and real data analyses was relatively small, thus our results might not fully 402 

capture the strengths and limitations of P+T CoMeBack MRS. Second, lack of 403 

different ancestry-specific summary statistics made it impossible to compare the use 404 

of external weights from population of different ancestries (e.g. European ancestry vs 405 

other ancestries). Third, the prevalence of active maternal smoking is different in 406 

different ancestries and has influenced the performance of P+T CoMeBack MRS. As 407 

a result, real data analysis of smoking MRS could not provide firm evidence about 408 

the transferability of MRS between Black African and mixed ancestry infants. Fourth, 409 

we mainly focused on the prediction performance of P+T CoMeBack MRS. Further 410 

studies are needed to assess the performance of P+T CoMeBack MRS in mediation 411 

analysis.    412 

 413 

In conclusion, P+T in general and P+T using CoMeBack in particular, provides an 414 

improvement for prediction of phenotype of interest, over T method that does not 415 

account for co-methylation between CpGs. In contrast to PRS, using existing 416 
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summary statistics that were derived from European populations can be used to 417 

calculate MRS in other ancestries, thus reducing the ancestry/ethnicity disparity in 418 

medical research. However, caution is needed in the analyses and interpretation of 419 

MRS results across multi-ancestry populations. More investigations of MRS are 420 

urged to further improve their prediction accuracy and translational values, also in 421 

combination with other clinical and non-clinical variables, especially among multi-422 

ancestry population. With the current increase of large consortia-led EWAS for 423 

different exposures and health outcomes (e.g., the PACE consortium), we believe 424 

the predictive performance of MRS will continue to increase, and the P+T CoMeBack 425 

method has the potential to be widely used for risk prediction and association testing. 426 
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Table 1.  Overview of included EWAS, their phenotypes, training sample and methods.  

MRS 
Training 
dataset 

publication 

Training 
Population 

Phenotype 
MRS 

publication 

P-value 
threshold/ 

Method  

No. of CpG 
sites (joint-
analysis) 

 P+T 
CoMeBack 

MRS 

Sikdar et al.  
201936 

Multi-ethnic 
newborns 

(mainly White, 
N=5,648) 

Most cohorts 
ascertained sustained 

smoking during 
pregnancy by 

questionnaires; two 
cohorts incorporated 

cotinine-based smoking 
measure 

- 

5x10-22 (Mixed) 

21 (43 passed P-
value threshold 
and 22 excluded 

by pruning) 

5x10-24 (Black) 

20 (42 passed P-
value threshold 
and 22 excluded 

by pruning) 

5x10-22 (Pooled) 

21 (43 passed P-
value threshold 
and 22 excluded 

by pruning) 

P+T MRS 
Sikdar et al.  

201936 

Multi-ethnic 
newborns 

(mainly White, 
N=5,648) 

Same as above - 

5x10-10 (Mixed) 

198 (233 passed 
P-value 

threshold and 35 
excluded by 

pruning) 

5x10-36 (Black) 

4 (26 passed P-
value threshold 
and 22 excluded 

by pruning) 

5x10-24 (Pooled) 

8 (42 passed P-
value threshold 
and 34 excluded 

by pruning) 
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T MRS 
Sikdar et al.  

201936 

Multi-ethnic 
newborns 

(mainly White, 
N=5,648) 

Same as above - 

5x10-9 (Mixed) 344 

5x10-24 (Black) 42 

5x10-16 (Pooled) 72 

Reese 
MRS 

Reese et al. 
201737  

White newborns 
(N=1,068)* 

Sustained smoking 
during pregnancy 

obtained from 
combined information of 
cotinine-based and self-

report based 
classification 

Reese et al. 
201737  

Logistic LASSO 
regression 

28 

Richmond 
568 MRS 

Joubert et 
al. 201639  

Multi-ethnic 
newborns 
(N=6,685)* 

Maternal smoking 
during pregnancy via 

questionnaires 

Richmond et 
al. 201838 

Robust linear 
regression; 
Bonferroni 

corrected P-value 
< 0.05 

568 

Richmond 
19 MRS 

Joubert et 
al. 201639  

Multi-ethnic 
older children 

(average age = 
6.8 years) 
(N=3,187) 

Maternal smoking 
during pregnancy via 

questionnaires 

Richmond et 
al. 2018 

Robust linear 
regression; 
Bonferroni 

corrected P-value 
< 0.05 

19 

* These training populations overlapped with training population for summary statistics used for P+T MRS. 
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Table 2.  Association between maternal smoking status and MRS in DCHS.  

MRS 
Mixed Black Pooled (Joint-analysis) 

Beta-coefficient* 
Standard 

Error 
P-value 

Beta-
coefficient 

Standard 
Error 

P-value 
Beta-

coefficient 
Standard 

Error 
P-value 

P+T 
CoMeBack 

MRS 
0.88 0.12 5.65 x10-11 0.76 0.18 

5.74 
x10-5 

0.82 0.10 3.01x10-14 

P+T MRS 0.71 0.11 1.05 x10-8 0.52 0.14 
3.29 
x10-4 

0.69 0.10 1.32x10-10 

T MRS 0.80 0.13 7.35 x10-9 0.70 0.19 
2.82 
x10-4 

0.64 0.09 2.55 x10-11 

Reese 
MRS 

0.97 0.13 3.77 x10-11 0.73 0.16 
2.06 
x10-5 

0.77 0.09 2.50 x10-15 

Richmond 
568 MRS 

0.85 0.14 9.84 x10-9 0.54 0.16 
7.82 
x10-4 

0.65 0.10 1.57 x10-10 

Richmond 
19 MRS 

0.76 0.14 5.37E x10-7 0.70 0.19 
3.78 
x10-4 

0.70 0.11 2.05 x10-9 

*Beta-coefficients indicate change in interquartile range (IQR) of MRS between smokers and non-smokers.
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Figure 1. Simulation study. Prediction R2 of P+T CoMeBack, P+T and T method 

in dependence of (A) the proportion of causal CpG sites in CMRs and (B) 

proportion of phenotype variance explained by DNA methylation, among 

Indian participants. For each simulation, the discovery cohort was repeatedly and 

randomly split into a training set comprising 762 Indians and a testing set comprising 

136 people of the same ancestry. Phenotypes were simulated without an influence of 

ancestry. Results are shown for (A) different proportions of causal CpGs located in 

CMR (30%, 50%, 70%, 100%) and (B) different proportions of phenotype variance 

explained by DNA methylation (10%, 30%, 50%, 80%). Each box represents the 

distribution of prediction accuracy across 1000 simulations, where the central mark is 

the median and the edges of the box are the 25th and 75th percentiles.
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Figure 2. Simulation study. Prediction R2 of P+T CoMeBack and T approach 

across different racial groups and among multi-ancestry populations. For each 

simulation, the discovery cohort was repeatedly and randomly split into a training set 

comprising 762 Indians and a testing set comprising 136 people of each ancestry 

group. The proportion of causal CpGs located in CMR is 70% and the proportion of 

phenotype variance explained by DNA methylation (and ancestry) is 80%. Results 

are shown for the prediction of simulated phenotypes (2A) without an influence of 

ancestry and (2B) influenced by ancestry. Joint-analysis refers to MRS analyses of 

all participants pooled from all ancestry groups and standardization refers to 

standardizing MRS within each ancestry group and then merging all participants 

before analyses. Each box represents the distribution of prediction accuracy across 

1000 simulations, where the central mark is the median and the edges of the box are 

the 25th and 75th percentiles. 
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Figure 3. Real data application. MRS for the prediction of maternal smoking 

during pregnancy using cord blood DNA methylation data from newborns in 

the South African Drakenstein Child Health Study (DCHS). Prediction R2 of 

maternal smoking status is shown stratified for A. Mixed infants. B. Black infants. C. 

joint-analysis (all subjects pooled from all ancestries) D. Standardization 

(standardizing MRS within each ancestry and merging all subjects before analyses
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Figure 4. Real data application. Comparison of P+T CoMeBack method to P+T, 

T and 3 other published MRS for predicting maternal smoking status in the 

South African Drakenstein Child Health Study (DCHS). A Prediction R2 of all 6 

MRS methods for Mixed infants, Black infants and pooled samples (joint-analysis). A 

receiver operating characteristic (ROC) curve comparing prediction performance of 

all 6 MRS among (B) Mixed infants, (C) Black infants and (D) pooled samples (joint-

analysis). 
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