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1 Trial Overview
An effective, well tolerated, safe, affordable and generally available treatment of COVID-19 that
prevented progression to severe disease would be of enormous global health benefit. There are many
potential antiviral therapeutics for COVID-19, mainly consisting of repurposed small molecule
drugs. At time of writing, however, there is strong evidence for clinical benefit only for the mono-
clonal antibodies (notably the Regeneron cocktail REGN-CoV-2 [1]) and the small molecule drugs
molnupiravir [2] and nirmatrelvir [3]. The clinical benefits of these interventions were determined
from large phase 3 studies (>1000 patients) in high-risk individuals enrolled shortly after the on-
set of a symptomatic SARS-CoV-2 infection. The primary endpoint was most commonly either
hospitalisation or death from COVID-19 (usually less than 10% event rate). As vaccine availabil-
ity becomes widespread in addition to high levels of natural immunity from infection, conducting
these types of clinical trials will become more and more difficult as the event rates for the pri-
mary endpoints become increasingly low. This calls for improved study designs which allow for
the assessment of antiviral interventions in an efficient manner (hundreds rather than thousands
of patients). Currently there is no consensus pharmacometric methodology to determine which
antivirals should be prioritised for large phase 3 and 4 evaluation, and how to compare current
candidates [4].

PLATCOV is a multi-country platform adaptive trial which will develop and validate a method-
ology for the quantitative assessment of antiviral effects in low-risk patients with high viral burdens
and uncomplicated COVID-19. We choose patients with a low risk of progression as this justifies a
no treatment arm; we target patients with high viral loads as this is a subgroup in whom antiviral
effects can be detected more easily.

This statistical analysis plan (SAP) covers analyses for both the interim and the final reports.
We developed the SAP following the Guidelines for the Content of Statistical Analysis Plans in
Clinical Trials [5]. It includes pre-specified decision rules for continuing or stopping individual trial
arms based on effectiveness or futility.

1.1 Main research questions
Each clinical site in this platform trial will test multiple interventions simultaneously (depending
on local regulations and drug availability). The control arm consists of no intervention other than
antipyretics and will be compared to intervention arms of three distinct types:

• Newly available or repurposed antiviral drugs (currently randomizing patients to remdesivir,
ivermectin, favipiravir, nitazoxanide)

• Positive control (currently REGN-CoV2)

• Novel small molecule drugs (none currently)

There are distinct primary objectives for each intervention type. For the newly available and
repurposed drugs, we want to characterise their antiviral activity and compare them to the current
gold-standard treatment (currently Regeneron monoclonal antibody cocktail). Many of these drugs
are already used and recommended in some countries. Showing that they do not have clinically
significant antiviral activity is as important as showing that they do.

For the positive control (currently Regeneron), there is very good evidence from large phase
3 studies that monoclonal antibodies reduce viral load in COVID-19 and reduce hospitalisation
in high-risk individuals [1]. However, monoclonal antibodies are vulnerable to viral escape muta-
tions. Recent in vitro data suggest that Regeneron does not have clinically significant neutralising
activity against the now dominant Omicron variant [6]. Tracking the performance of the available
monoclonals over time is important to characterise the impact and inform the therapeutics of mu-
tant SARS-CoV-2 strains. Monoclonal antibodies are expensive and cannot be produced at large
scale currently, but this may change in the near future. These drugs may not be available early in
the study in all sites, and will be included depending on local availability and regulatory approval.
For any new small molecule drugs in development that pass phase 1 testing, we want to rapidly
demonstrate antiviral activity (they will have a stronger rationale, i.e. a priori are more likely
to be effective) compared to available drugs. In this case, showing superiority or non-inferiority
compared to a gold-standard becomes the key objective. The secondary objectives of this study
are:
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• To characterise the determinants of viral clearance in early symptomatic SARS-CoV-2 (e.g.
estimate the contribution of age, baseline serology, virus genotype, and prior vaccination);

• To determine optimal dosing regimens for drugs shown to have considerable antiviral activity
(for interventions of type A and C that have >0.9 probability of increasing viral clearance
rate >5%: we will conduct a pharmacokinetic-pharmacodynamic sub-study);

• To compare the antiviral activity of active interventions against current standard of care
monoclonal antibodies.

The tertiary objective of this study is to characterise the relationship between viral clearance
and the risk of subsequent hospitalisation or death by day 28. However, the event rate in the
enrolled population is likely to be extremely low (we hope 0%) so it is very unlikely that we will
be able to demonstrate any link between viral clearance and progression to severe COVID-19.

2 Study Methods

2.1 Trial design
This is a multi-centre, multi-country, open label, randomised, controlled, adaptive platform trial
of antiviral interventions in early symptomatic SARS-CoV-2. The control arm consists of no
study drug other than antipyretics. Interventions currently included in the platform are: iver-
mectin, favipiravir, remdesivir, nitazoxanide, and REGN-CoV-2. We plan to include molnupiravir,
nirmatrelvir-ritonavir, Sotrovimab and others depending on local availability and local ethical ap-
proval. At each site there is equal allocation to all interventions but with a minimum of 20% of
patients randomised to the negative control arm.

2.2 Randomisation
Randomisation is performed via a centralised web-app designed by MORU software engineers
using RShiny, hosted on a MORU server. Each study nurse responsible for randomising patients
has unique login credentials provided by email from the main study statistician (James Watson).
Randomisation sheets are pre-generated for each study site separately using blocks of size K (where
K is equal to 3 times the number of interventions available at the site) with an additional 100/K%
fuzziness (randomly interchanging one of the allocations per block to avoid the study nurse knowing
exactly what the Kth allocation will be).

Randomisation sheets and randomisation event logs are stored on a secure Dropbox folder
(professional version that has full version control) which is accessed directly by the RShiny app.
Only the study statistician James Watson and the MORU IT manager have read/write privileges
to this Dropbox folder. For cross checking purposes, the randomisation app also records the patient
age and sex. Each randomisation event is logged with a time-stamp and the identity of the nurse
who performed the randomisation. Each time the set of interventions available at a given study
site changes, a new randomisation sheet is generated, overwriting the previous one.

2.3 Sample size
The sample size is adaptive (there is no fixed sample size). The required sample size depends on
how stringent the thresholds are that define futility or success. We used a simulation approach to
determine futility and success thresholds that result in control of the type 1 error at approximately
10% and control of the type 2 error at approximately 20% (see study protocol for exact details). The
simulations assumed that the decline in viral loads was log-linear (linear on the cycle threshold (CT)
scale), using measurement error estimated from an open access database of prospectively followed
individuals with frequent viral load measurement [7, 4]. We calibrated plausible effect sizes using
preliminary data from the Regeneron phase 2 studies (this suggested increases of approximately
20% in the slope of the viral clearance on the CT scale) [8]. For these futility and success thresholds,
the simulations suggested that the number of patients randomised per arm in order to reach a
decision is:

• Approximately 50 patients (average; median is 30) for each efficacious intervention (assuming
an effect size of 10% increase in viral clearance slope);
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• Approximately 40 patients (average; median is 25) for each inactive intervention (assuming
an effect size of 0%).

Therefore, supposing there are 5 interventions of type A in the platform, and assuming that
only 1 of the 5 are, in fact, effective, we would need on average a total of 50 + 4*40 = 210 patients
randomised to interventions of type A (approximately 66% of the total sample size: a minimum of
20% of samples are randomised to the negative control and thus 13% of patients are randomised
to each intervention arm and the positive control arm). This implies a total of 320 patients for
the first set of interventions identified (this does not include subsequent patients randomised to
the intensive PK sub-studies).

2.4 Framework
All comparisons will be made with respect to the negative control arm (no “across intervention”
arm comparisons in the primary analysis). In the case of a site not randomising patients to the
negative control (because of local objection), that site will only provide indirect data to support
the treatment estimates (under the hierarchical model structure). All decisions concerning efficacy
will be based on super-superiority relative to the negative control arm whereby the probability of
an effect is defined under the model as the posterior probability that the increase in viral clearance
relative to the control arm is greater than 5%.

3 Statistical interim analyses and stopping rules
We plan frequent interim analyses (Figure 1). This is to allow for near-real time monitoring of
accrued data in order to detect possible issues in patient recruitment, viral load swabbing, or with
the PCR assays at the different sites. We allow for a slightly inflated type 1 error (10%) as this is a
phase 2 study (and so the type 1 vs type 2 error trade-off is different from typical phase 3 studies).
In addition, meeting the success threshold will trigger a subsequent intensive PK-PD sub-study
to determine dose-response effects thus gathering additional efficacy data for that intervention. If
there is strong a-priori evidence of antiviral efficacy (e.g. molnupiravir, nirmatrelvir) blood samples
for population PK-PD modelling will be obtained from all enrolled patients.

For the type A interventions, we are interested in making decisions regarding futility (highly
unlikely that the viral clearance is increased by > 5%) and regarding success (highly likely that
the viral clearance is increased by > 5%). For type B interventions (monoclonal antibodies) we are
interested in estimating their antiviral effect (in order to interpret and calibrate the observed effect
sizes for the type A/C interventions) and detect any temporal changes related to virus genotype
(variant escape).

3.1 Interim analysis decision making
Only the study statistician (James Watson) will be unblinded to all interim analyses. Each interim
analysis report will sent to the Data Safety and Monitoring Board (DSMB) along with a summary of
whether the futility or success thresholds for any of the interventions have been met. The DSMB
will then make recommendations for continuing or stopping the intervention arms. Concurrent
data from other trials (e.g. safety data) may be used in making these decisions. If an arm is
stopped for futility or an intensive PK-PD study is triggered, then all the data pertaining to the
negative control arm and the intervention arm will be presented to the Trial Steering Committee
(TSC), along with the DSMB recommendations. The interim analysis of the first 50 patients with
available qPCR data will be presented unblinded to the TSC in order to determine any necessary
final changes to the statistical analysis plan.

3.2 Timing of final analysis
As this is a platform trial, no overall final analysis is planned. For each intervention studied, we
define the “final analysis” as:

• For an intervention of type A or C that meets the futility criteria (<0.1 probability that viral
clearance is increased by at least 5%): final analysis will be timed from when all patients
randomised to that arm have passed their day 28 follow-up.
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Figure 1: Planned interim analyses and decision rules for stopping an arm or triggering an intensive
PK-PD sub-study.

• For an intervention of type A or C that meets the success criteria (>0.9 probability that viral
clearance is increased by at least 5%): final analysis will be timed from when the last patient
is enrolled in the intensive PK-PD sub-study and has passed their day 28 follow-up.

• For an intervention of type B (monoclonal antibodies), if a decision to drop the arm is made
based on loss of efficacy due to variant escape,final analysis will be timed from when the last
patient randomized to that arm passes their day 28 follow-up.

3.3 Timing of outcome assessments
For the primary and secondary endpoints we will use all viral load measurements taken up until
day 7. Time will be defined as time since randomisation (units of days, including all timepoints
< 8 days since randomisation as there will be some variation in exact clock times of the follow-up
swabs) The tertiary endpoint (all cause hospitalisation) will be taken up until day 28.

4 Statistical Principles

4.1 Posterior estimates
Treatment effects will be estimated under a Bayesian framework using a hierarchical model with
weakly informative prior distributions. For the hyperparameters, the prior distributions are chosen
for computational reasons to aid model convergence. For the key population level parameters, we
will use priors based on analysis of open access data [4]. The prior on the treatment effect is driven
by plausible maximum effect sizes given published data on viral decreases in patients randomised
to Regeneron or placebo [1].

4.2 Adherence and protocol deviations
This study is open label and thus it is possible that some patients who are randomized to the no
study drug arm, or to study interventions perceived to be ineffective, may be given alternative
rescue treatment (e.g. the monoclonal antibody Regeneron) if their symptoms persist and the
treating physician is worried that they will deteriorate clinically. This can introduce confounding
between the treatment allocation and outcome. Notably, if multiple patients randomized to the
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Assessed for eligibility (n=  )
Excluded  (n=   )

• Symptom onset not within 96 hours (n=  )

• SARS-CoV-2 negative by lateral flow test OR PCR for 

SARS-CoV-2 within last 24 hours with a Ct of 25 or 

more (n=  )

• Oxygen saturations <96% by pulse oximetry on room 

air (n=  )

• Taking any concomitant medications or drugs (n=  )

• Laboratory abnormalities (n=  )

• (if female) Pregnant, trying to become pregnant or 

lactating (n=  )

• Currently participating in another COVID-19 

therapeutic or vaccine trial (n=  )

• Evidence of pneumonia (n=  )

• BMI ≥ 30 kg/m2 (n=  )

• Declined to participate (n=  )

• Other reasons (n=  )

No study drug mITT analysis (n=  )

Allocated to favipiravir (n=  )

• Received intervention (n=  )

• Did not receive intervention (n= )

o Significant non-compliance with 

treatment regimen (n=  )

o An adverse event which requires 

discontinuation  (n=  )

o Required rescue treatment (n=  )

o Protocol deviations (n=  )

o Loss to follow up (n=  )

Randomized (n=  )

Allocated to remdesivir (n=  )

• Received intervention (n=  )

• Did not receive intervention (n= )

o Significant non-compliance with 

treatment regimen (n=  )

o An adverse event which requires 

discontinuation  (n=  )

o Required rescue treatment (n=  )

o Protocol deviations (n=  )

o Loss to follow up (n=  )

Allocated to REGN-COV2 (n=  )

• Received intervention (n=  )

• Did not receive intervention (n= )

o Significant non-compliance with 

treatment regimen (n=  )

o An adverse event which requires 

discontinuation  (n=  )

o Required rescue treatment (n=  )

o Protocol deviations (n=  )

o Loss to follow up (n=  )

Allocated to ivermectin  (n=  )

• Received intervention (n=  )

• Did not receive intervention (n= )

o Significant non-compliance with 

treatment regimen (n=  )

o An adverse event which requires 

discontinuation  (n=  )

o Required rescue treatment (n=  )

o Protocol deviations (n=  )

o Loss to follow up (n=  )

Allocated to no study drug (n=  )

• Received intervention (n=  )

• Did not receive intervention (n=  )

o Significant non-compliance with 

treatment regimen (n=  )

o An adverse event which requires 

discontinuation  (n=  )

o Required rescue treatment (n=  )

o Protocol deviations (n=  )

o Loss to follow up (n=  )

Ivermectin mITT analysis (n=  ) REGN-COV2 mITT analysis (n=  ) Remdesivir mITT analysis (n=  ) Favipiravir mITT analysis (n=  )

Figure 2: CONSORT diagram summarizing screening, reasons for excluding patients and randomi-
sation.

negative control were in fact given the positive control (e.g. Regeneron) before day 7, this could
impact the viral loads during follow-up and thus bias the estimates of the rate of viral clearance in
the negative control arm. For all protocol deviations regarding treatment (either stopping treat-
ment for safety reasons or switching treatment arms), we will consider all viral load measurements
taken after the deviation as censored, i.e. we will estimate viral load clearance rates only using
the data during the period of protocol compliance. We will summarize the number of treatment
protocol deviations by site.

4.3 Analysis populations
The primary analysis will be in the intention-to-treat (ITT) population, including follow-up data
only from the period of treatment adherence (modified intention-to-treat, mITT). A minimum of 3
days of follow-up data are necessary in order to be included in the mITT population (e.g. patients
who discontinue before day 2 will not be included). A secondary analysis will be performed in the
per-protocol population, defined as patients who had 100% adherence to the allocated intervention
arm. Specific reasons for treatment discontinuation will be outlined and recorded in order to assess
confounding bias. The safety population will include all patients who have received at least one
dose of the intervention.

5 Trial population
Figure 2 shows the CONSORT diagram summarizing the number of patients screened; the reasons
for exclusion; the number of enrolled patients randomized to each arm (showing the arms currently
open in the Thailand sites); and the number of patients who complete treatment and follow-up
and who are included in the modified intention to treat analysis (mITT).

5.1 Screening data
We will summarise the reasons for exclusion for the screened patients not eligible for enrollment.
This will not be done for the interim analysis, only for the final analysis once an arm is stopped
for futility or success.
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5.2 Eligibility
The key trial eligibility criteria are as follows:

• Previously healthy adults, aged 18 to 50 years (low risk of developing severe COVID-19);

• SARS-CoV-2 positive by lateral flow antigen test OR a positive PCR test for SARS-CoV-2
within the last 24 hours with a CT value of less than 25 (all viral targets);

• Symptoms of COVID-19 (including fever, or history of fever) for less than 4 days (96 hours);

• Oxygen saturation ≥96% measured by pulse-oximetry at time of screening.

5.3 Withdrawal and follow-up
Level of withdrawal will be tabulated and cover the following aspects:

• Discontinuation from any of the study interventions

• Withdrawal from study follow-up

• Withdrawal from entire study and requests that data is not used.

Data will be tabulated for the timing of withdrawal from follow up or lost to follow up. The
number of withdrawals and reason will be recorded. A participant may withdraw from the inter-
vention, or be withdrawn for the following reason.

• Withdrawal of consent by participant

• Alteration of participants circumstances or condition which gives justification for discontin-
uation as decided by investigator.

A table will summarise the loss to follow up and withdrawals during the study with the corre-
sponding reasons.

5.4 Baseline patient characteristics
The following key baseline characteristics will be summarized, stratified by site:

• Age and sex;

• Baseline viral load (in copies per mL: the mean value of the 4 swabs taken at randomisation);

• Result of SARS-CoV-2 rapid antibody test;

• Baseline quantitative serum antibody titres (when available);

• Vaccination status (vaccine type, number of doses: expressed as not vaccinated, partially
vaccinated and fully vaccinated);

• Days since onset of symptoms.

These will be summarised by their mean or median and standard deviation/range for the
continuous variables and by their mean for the binary variables.

6 Analysis

6.1 Outcome definitions
The primary outcome is the inferred rate of viral clearance expressed as a slope coefficient (the
mean posterior estimate and the 95% credible interval) for the daily change in the log viral load
(on the ∆CT scale). This will be inferred under a Bayesian mixed effects (hierarchical) model
using the log viral load measurements up until day 7. The primary analysis will be conducted on
the observed ∆CT values (40-CT) with batch adjustment.
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6.1.1 Viral load quantification

All viral load quantification will be done using ThermoFisher TaqCheck TM SARS-CoV-2 Fast
PCR assay. Each PCR assay is run on a 96 well plate, composed of all the aliquots from the
transport media of the swabs from 4 patients (10 timepoints each done in duplicate, i.e. 20 samples
per patient) and one control set composed of 6 spiked control samples of known viral densities over
the range 107 to 102 viral copies per mL, each done in duplicate (12 in total). For each plate (i.e.
batch) we can thus estimate a standard curve (which defines the conversion from the CT value to a
number of viral copies per mL). At each interim analysis we will perform a quality control check by
comparing the estimated standard curves from each plate, both within sites and across sites (each
country will run the PCR assays separately). In addition, we will use the standard curve data to
estimate heteroscedasticity in the viral load estimation. We expect the PCR measurement error
to increase as the viral load decreases. Heteroscedasticity can be shown visually by plotting the
true viral load densities in the control duplicated samples against their observed difference in CT
value. We can then estimate the variance in the differences as a function of the true viral density.

To help adjust for variation in the human cell content of the swabbed sample the qPCR method
assesses viral densities and also human cell densities using RNaseP as a human cell marker.

6.2 Analysis Methods
6.2.1 Statistical model for the analysis of the serial viral load data

The primary analysis will consist of fitting Bayesian hierarchical (mixed effects) linear models to
the log viral load data up until day 7. The treatment effect is defined as the proportional change
(expressed as a multiplicative term) in the population slope of the daily change in log viral load.
We will model the data directly on the ∆CT (40-CT) scale adjusting for batch differences (i.e.
each PCR batch has a slightly different standard curve, i.e. transformation to the copies per mL
scale). The model jointly analyses the control samples placed on each PCR plate (this allows for
inference on the intrinsic measurement error and the batch differences) and the patient samples.
The general model likelihood takes the following form:

yi,t,k,b ∼ Student
(
λ, α0 + αi + αk + αb + αcov + γxi,t + β0e

βk+βi+βcov+βT (i)t, σ2
PCR + σ2

)
(1)

zb,d ∼ Normal
(
θ1 + αb + θ2d, σ

2
PCR

)
(2)

where:

• yi,t,k,b is the log viral load (∆CT) for patient i at time t (in days since randomisation) from
site k, measured from batch b.

• T (i) is the randomized treatment allocation for individual i.

• zb,d is the ∆CT value for the control sample with known density d on batch (i.e. plate) b.

• σ2
PCR is the intrinsic variance in measurement (PCR assay variance).

• σ2 is the biological measurement variance.

• λ is the degrees of freedom of the student-t error model.

• The slope of viral clearance decomposes into 5 multiplicative terms: the population mean
slope β0; the site random effect βk (eβk is thus the proportional change in slope); the indi-
vidual random effect βi; the covariate effect βcov; and the treatment effect (fixed across sites
and individuals) βT (i).

• The intercept term (baseline log viral load) decomposes into 5 terms: the population intercept
α0; the site random effect αk; the individual random effect αi; the batch random effect αb

(PCR assay batch); and the covariate effect αcov. All comparisons are made relative to the
no antiviral treatment control arm, so we set βcontrol = 0.

• xi,t is the relative human RNaseP quantification (RNaseP ∆CT value: this is proportional
to the log number of human cells) for patient i at time t. The parameter γ thus provides an
adjustment for human cell content in each swab. We scale xi,t so that it has mean 0.
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• The parameters θ1, θ2 define the standard curve for the PCR assay, with αb the same batch
effect as for the patient samples (constant shift).

We will fit the data by sequentially fitting five nested models. The base model (model 0:
‘vanilla’) only includes individual and site random effect terms for the slope and intercept. Model 1
adds the parameter γ for the adjustment for human RNaseP. Model 2 adds batch effects, and model
3 adds the control data (control samples with known viral load) allowing for the decomposition
of the total variance into the intrinsic machine variance and the biological variance in the patient
samples. The final model then incorporates all the covariate adjustment terms αcov and βcov (see
below for their definition). If analysis only has data from one site, then the site random effect term
αk will be dropped.

We have chosen a student-t distribution for the model likelihood (with the number of degrees
of freedom λ estimated from the data) as this is robust against departures from normal (Gaussian)
error, and against model mis-specification, notably concerning the assumption of log-linear decline
in viral loads. Prior analyses carried out in order to prepare this statistical analysis plan suggest
that a considerable number (e.g. up to 5%) of viral load densities can depart substantially from the
expected distribution under a simple log-linear model with Gaussian error [4]. This can partially
be explained by patterns of bi-exponential decay in viral loads. It is unclear if the slope of the
second phase of elimination in a bi-exponential decline is affected by interventions. We therefore
choose not to fit bi-exponential models as this makes the interpretation of the treatment effect more
difficult and prior modelling suggested no major impact in terms of treatment effect estimation [4].

Goodness of fits will be assessed using leave-one-out validation [9] and Bayesian R2 approxi-
mation [10].

6.2.2 Covariate adjustment

In addition to the human RNaseP adjustment, the primary analyses will adjust for the following
covariates (through the parameters αcov, βcov):

• The serological status on admission as a binary variable corresponding to the result of the
screening rapid antibody test (+/-);

• When available (likely July 2022), quantitative serum antibody at baseline (assay not yet
determined);

• Age (in years - scaled to have mean zero);

• A quantitative measure of serological status using a pre-specified antibody (not yet decided).
These data will only be available after August 2022.

• Previous SARS-CoV-2 vaccination (as an ordinal variable: 0: no doses; 1: partially vaccinated
with only one dose: 2: fully vaccinated with 2 doses; 3: 3 or more doses);

• The SARS-CoV-2 variant of concern (following WHO labels, with the reference strain chosen
to be the major Delta lineage which was the dominant variant of concern when the trial
started in Bangkok in September 2021; for sub-lineages, e.g. BA.2, data analysis will be
exploratory and not part of the primary analysis of treatment effects).

• The trial “epoch”: this is defined as the discrete intervals of time at which new interventions
enter or exit the study. This is to adjust for temporal effects which could confound across
arm comparisons made for non-contemporaneously recruiting arms.

If any of the binary covariates show no variation (e.g. all patients are vaccinated) then we
will drop the term from the model. We will fit both the covariate adjusted model and the non-
adjusted model in all instances as to check for sensitivity to the covariate model. A sensitivity
analysis regarding temporal drift will be done by analyzing each arm individually along with
contemporaneously enrolled controls.

10



6.3 Subgroup analyses
The primary pre-specified subgroup analysis will look at the relationship between the efficacy of
the monoclonal antibodies (currently the Regeneron antibody cocktail) and the virus genotype ex-
pressed as the major WHO lineages. This will be done by fitting an interaction term δxvar(i)e

βT (i)

for the relevant T (i); where xvar(i) is the virus variant infecting individual i.
Secondary subgroup analyses will be carried out only for treatment arms that show an antiviral

effect (meet the success criteria). We will look at subgroup effects for (listed in order of priority):

• SARS-CoV-2 variant of concern;

• Serological status on admission (using quantitative serum antibody);

• Vaccination status;

• Age and sex;

6.4 Prior distributions
In all the following, for the normal distributions, the second term corresponds to the scale (standard
deviation not the variance).

Population level parameters

α0 ∼ Normal(18, 5) (population intercept)

β0 ∼ Normal(−2, 2) (population slope)

σ ∼ Normal(3, 3) (standard deviation of biological noise)

σPCR ∼ Normal(0.5, 1) (standard deviation in assay)

γ ∼ Normal(0, 1) (human RNaseP adjustment)

βT (i) ∼ Normal(0, 0.5) log treatment effect

θ1 ∼ Normal(−3, 3) (standard curve intercept)

θ2 ∼ Normal(log2(10), 1) (standard curve slope)

δ ∼ Normal(0, 1) (variant subgroup effect)

Covariate effects
βcov ∼ Normal(0, 1) (covariate effect on slope)

αcov ∼ Normal(0, 1) (covariate effect on intercept)

Random effects and hyperparameters

Ω ∼ Cholesky(2) (correlation matrix for individual random effects)

Σ ∼ Exponential(1) (standard deviation for individual random effects)

αb ∼ Normal(0, σb) (batch random effects)

σb ∼ Exponential(1) (standard deviation of batch effects)

λ ∼ Exponential(1) (t-distribution degrees of freedom)
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6.5 Sensitivity analyses
Sensitivity to the prior specification will be assessed by multiplying all prior standard deviation
terms by 5. Sensitivity to the assumption of log-linear decline will be assessed by fitting an
‘up-down’ model of viral dynamics [11] (where “up” refers to viral multiplication and “down” the
subsequent clearance). Under this model the likelihood is (dropping batch, site, and covariate
terms for notational simplicity, these are added analogous to the previous log-linear model) given
by:

yi,t ∼ Student
(
λ, α0 + αi + log

{
βi
1 + βi

2

βi
2e

−βi
1[t−timax] + βi

1e
βi
2[t−timax]

}
, σ2

PCR + σ2

)
Under this model, the term α0+αi is the individual peak log viral load (on the ∆CT scale) which

occurs at time timax (this is the time relative to randomisation, if negative it is therefore unobserved).
The parameters β1

1 , β
i
2 are the growth and clearance rates for individual i, respectively.

If some patients are enrolled very early in the course of their illness, it is possible that their viral
loads increase over the first days of follow-up. This would mean that the clearance rate estimated
under a simple log-linear decline model would be biased towards a shallower slope. Randomisation
protects against confounding bias as the sample size increases, however for small sample sizes
unequal allocation of ‘pre-peak’ versus ‘post-peak’ individuals could influence treatment effect
estimates. Treatment effects are inferred in the same way as for the log-linear model (proportional
change in the population slope coefficients), by acting on β2 (note that in reality, the treatment
effect most likely would change all three parameters α0, β1, β2, however this would mean inferring
three separate treatment effects as the model is non-mechanistic).

6.6 Missing data
Missing viral load will not be imputed. The model will be fit to all available viral load densities
up until day 7 or day of treatment deviation. For all analyses, missing data on the key baseline
variables (vaccination, virus genotype, antibody rapid test) will be imputed at random using the
observed site-specific covariate distribution multiple times (5 times, the model will be refit). We
do not expect much missing data (eg <1%). If delays in genotyping result in missing variant data,
we will impute the variant using genetic surveillance prevalence data.

6.7 Harms
Safety analyses will include all patients who have received at least one dose of the intervention.
The safety and tolerability data will be pooled from all the sites that receive the same study
intervention. The safety and tolerability will be assessed by comparing the frequency of adverse
events and serious adverse events when compared to the control intervention.

All adverse event summaries will refer to treatment emergent adverse events, i.e. adverse events
that newly started or increased in intensity after study drug administration (or from hour 0 in the
control group receiving no intervention). Adverse events will be graded according to CTCAE V5.0.
Adverse Events (AEs) of grade 3 and above will be recorded, the grading is as follows - 1 = mild,
2 = moderate, 3 = severe, 4 = life-threatening, 5 = fatal. All Serious Adverse Events (SAEs) will
be recorded, a serious adverse event was any untoward medical occurrence that resulted in death,
was life threatening, required inpatient hospitalization or prolongation of existing hospitalization,
resulted in persistent or significant disability/incapacity or consisted of a congenital anomaly or
birth defect.

We will tabulate AE of grade 3 and higher, SAEs, and deaths, by treatment arm with compar-
isons made relative to the no study drug arm.

None of the drugs evaluated will be pre-registration or pre-approval, so adverse effect profiles
for each are already well known.

6.8 Statistical software and analysis implementation
All analyses will be be in done in R. Interim analyses and the final analyses will be done using
RMarkdown scripts, pre-coded to ensure full transparency. All code for the statistical analysis is
available on the following github repository: https://github.com/jwatowatson/PLATCOV-SAP.
This ensures full version control by tracking all changes made to the analysis code.
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The statistical models for the analysis of the serial viral load data are written in stan and fitted
via the rstan interface [12]. These are available on the github repository. For each model, we will
run 6 parallel chains for 10,000 iterations, discarding half for burn-in and thinning every 40 (thus
1,000 posterior draws).

Convergence of Bayesian fits will be assessed visually by examining the traceplots of the key
model parameters and assessing the Rhat values for each parameter (Gelman-Rubin statistic).
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