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Abstract 
Objectives: Develop an interpretable AI algorithm to rule out normal large bowel endoscopic biopsies 
saving pathologist resources. 
Design: Retrospective study. 
Setting: One UK NHS site was used for model training and internal validation. External validation 
conducted on data from two other NHS sites and one site in Portugal. 
Participants: 6,591 whole-slides images of endoscopic large bowel biopsies from 3,291 patients (54% 
Female, 46% Male). 
Main outcome measures: Area under the receiver operating characteristic and precision recall curves 
(AUC-ROC and AUC-PR), measuring agreement between consensus pathologist diagnosis and AI 
generated classification of normal versus abnormal biopsies. 
Results: A graph neural network was developed incorporating pathologist domain knowledge to classify 
the biopsies as normal or abnormal using clinically driven interpretable features. Model training and 
internal validation were performed on 5,054 whole slide images of 2,080 patients from a single NHS site 
resulting in an AUC-ROC of 0.98 (SD=0.004) and AUC-PR of 0.98 (SD=0.003). The predictive 
performance of the model was consistent in testing over 1,537 whole slide images of 1,211 patients from 
three independent external datasets with mean AUC-ROC = 0.97 (SD=0.007) and AUC-PR = 0.97 
(SD=0.005). Our analysis shows that at a high sensitivity threshold of 99%, the proposed model can, on 
average, reduce the number of normal slides to be reviewed by a pathologist by 55%. A key advantage of 
IGUANA is its ability to provide an explainable output highlighting potential abnormalities in a whole 
slide image as a heatmap overlay in addition to numerical values associating model prediction with 
various histological features. Example results with interpretable features can be viewed online at 
https://iguana.dcs.warwick.ac.uk/. 
Conclusions: An interpretable AI model was developed to screen abnormal cases for review by 
pathologists. The model achieved consistently high predictive accuracy on independent cohorts showing 
its potential in optimising increasingly scarce pathologist resources and for achieving faster time to 
diagnosis. Explainable predictions of IGUANA can guide pathologists in their diagnostic decision 
making and help boost their confidence in the algorithm, paving the way for future clinical adoption.  
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What is already known on this topic 
• Increasing screening rates for early detection of colon cancer are placing significant pressure on 

already understaffed and overloaded histopathology resources worldwide and especially in the 
United Kingdom1. 

• Approximately a third of endoscopic colon biopsies are reported as normal and therefore require 
minimal intervention, yet the biopsy results can take up to 2-3 weeks2. 

• AI models hold great promise for reducing the burden of diagnostics for cancer screening but require 
incorporation of pathologist domain knowledge and explainability. 

What this study adds 
• This study presents the first AI algorithm for rule out of normal from abnormal large bowel 

endoscopic biopsies with high accuracy across different patient populations.  
• For colon biopsies predicted as abnormal, the model can highlight diagnostically important biopsy 

regions and provide a list of clinically meaningful features of those regions such as glandular 
architecture, inflammatory cell density and spatial relationships between inflammatory cells, 
glandular structures and the epithelium. 

• The proposed tool can both screen out normal biopsies and act as a decision support tool for 
abnormal biopsies, therefore offering a significant reduction in the pathologist workload and faster 
turnaround times. 

Introduction 
Histological examination is a vital component in ensuring accurate diagnosis and appropriate treatment 
of many diseases. In routine practice, it involves visual assessment of key histological and cellular 
patterns in the tissue, which is a major step in understanding the state of various conditions, such as 
cancer. Histopathology has been at the forefront of many advances in care including, but not limited to, 
cancer screening programmes, molecular pathology, tumour classification and companion diagnostic 
testing, resulting in a rapid rise in demand for histology-derived data3. This extra workload is placing 
tremendous pressure on pathologists, with 78% of UK cellular pathology departments already facing 
significant staff shortages4. The surging demand and staffing challenges ultimately lead to delays in 
diagnosis, negatively impacting patient care especially for those with abnormal conditions (e.g., cancer 
or serious inflammation) where early intervention and treatment are critical5.  
 
New National Institute for Health and Care Excellence (NICE) guidelines for referral of suspected cancer 
forecast a rise in demand for endoscopy, with more than 750,000 additional procedures performed per 
year by 20206, leading to a breach in standard wait times in a quarter of NHS hospitals7 8. Endoscopic 
large bowel biopsies constitute approximately 10% of all requests in the UK National Health Service 
(NHS) pathology laboratories. During the examination process, the pathologist examines each biopsy 
slide searching for disease, typically working from low to high magnification, and analyses a set of pre-
defined histological features, such as gland architecture, inflammation and nuclear atypia for signs of 
abnormality9 10. The resulting report indicates the presence of any disease process and categorises the 
abnormality into the most appropriate diagnosis11 12. An overview of the pathologist diagnostic decision 
process for reporting endoscopic colon biopsies is provided in Supplementary Fig 1. Approximately a 
third of colonic biopsy samples are reported as normal (Supplementary Table 1), representing a 
substantial workload where the pathologist’s expertise is not fully utilised. The underlying hypothesis of 
this study is that automated screening of normal biopsies may help address rising histopathology capacity 
challenges. 
 
Since the advent of digital pathology13, there has been a sharp increase in the development of artificial 
intelligence (AI) tools that enable computational analysis of multi-gigapixel whole-slide images (WSIs). 
In particular, deep learning (DL) algorithms have achieved remarkable performance not only in routine 
diagnostic tasks, such as cancer grading14 and finding metastasis in lymph nodes, but also in finding 
origins for cancers of unknown primary (CUP)15 and improved patient stratification16 17. Notably, 
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Campanella et al.18 presented a seminal paper on clinical-grade WSI classification, while Bejnordi et 
al.19 demonstrated that AI models are capable of surpassing pathologist performance for breast cancer 
metastasis detection. These models can be leveraged to help reduce inevitable errors in diagnosis, given 
that humans are naturally prone to mistakes, especially when faced with fatigue or distractions20 21. AI 
tools are not as susceptible to these kinds of errors and therefore may help mitigate oversight, reduce 
workload and increase reproducibility.   
 
Differentiating between normal and neoplastic colorectal WSIs using DL has previously been addressed, 
with reports of excellent performance22-24. However, distinguishing normal from abnormal tissue samples 
required for large bowel biopsy screening remains a challenge, due to the difficulty in detecting various 
subtle conditions, such as mild inflammation. To the best of our knowledge, there are no existing multi-
centric studies for normal vs abnormal classification of large bowel biopsies. Existing methods for 
colonic analysis operate on high power sub-images (or image patches) and so do not explicitly model 
both the tissue micro- and macro-structure, including glandular architecture, inflammatory cell density 
and spatial relationships between inflammatory cells, glandular structures and the epithelium. Relying 
solely on DL models to automatically detect histological patterns that are diagnostically relevant in small 
image regions may lead to sub-optimal performance. Alternatively, explicitly incorporating histological 
features that are routinely used by pathologists during the colon biopsy diagnostic workflow may not 
only improve performance over conventional DL models but may also increase transparency and 
interpretability of the algorithm’s decision making to the pathologist – a key requirement for trustworthy 
AI based medical decision models25 26.  
 
To help reduce the burden of large bowel biopsy screening, we propose the first interpretable AI 
algorithm for large bowel slide classification employing a gland-graph network named IGUANA 
(Interpretable Gland-Graphs using a Neural Aggregator). In the proposed approach, a WSI is modelled as 
a graph with nodes27-30, each representing a gland associated with a set of 25 interpretable features 
capturing gland architecture, intra-gland nuclear morphology and inter-gland cell density. The 
interconnections between these nodes capture the spatial organisation of glands within the tissue. The 
node features were developed in collaboration with pathologists and in accordance with existing 
diagnostic pathways to boost predictive accuracy, interpretability and alignment with known histological 
characteristics of a wide range of colorectal pathologies. IGUANA identifies highly predictive regions in 
the biopsy tissue slide and provides an explanation as to why they may be highly predictive. Because of 
the use of biologically meaningful features, this explanation can easily be interpreted by a pathologist as 
the basis of the algorithm’s diagnostic decision making. We validate our algorithm on an internal dataset 
containing 5,054 WSIs and an independent multi-centre dataset containing 1,561 WSIs, achieving the 
best performance compared to recent top-performing approaches. In addition, we analyse predictive 
regions identified by IGUANA along with local and WSI-level explanations and show that our approach 
can identify areas of abnormality, such as inflammation and neoplasia. A summary of our overall 
pipeline can be seen in Fig 1, which consists of the following steps: 1) histological segmentation, 2) 
feature extraction and edge generation, 3) graph prediction and 4) graph explanation. The code for 
IGUANA is available in the open-source domain for research purposes 
(https://github.com/TissueImageAnalytics/iguana) and example results can be visualised in an interactive 
demo available at https://iguana.dcs.warwick.ac.uk. 
 

Methods 
WSI datasets 
We collected data from four patient cohorts containing routine Haematoxylin and Eosin (H&E) stained 
WSIs of endoscopic colon biopsies from the following centres: 1) University Hospitals Coventry and 
Warwickshire (UHCW) NHS Trust, United Kingdom; 2) South Warwickshire NHS Foundation Trust, 
United Kingdom; 3) East Suffolk and North Essex (ESNE) NHS Foundation Trust, United Kingdom and 
4) IMP Diagnostics Laboratory, Portugal23. Glass slides from UHCW were digitised with a GE Omnyx 
slide scanner at a pixel resolution of 0.275 microns per pixel (MPP). Slides from ESNE and South 
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Fig 1: Illustration of the overall pipeline for colon tissue classification with gland-graph convolutional networks. a, Overview of the data used 
in our experiments from 4 different centres utilizing different scanners. b, Summary of the pipeline, which involves graph construction, gland-
graph inference and gland-graph explanation. c, Zoomed-in image regions and corresponding results taken from the example in panel b. 

Warwickshire Hospitals were digitised with 3DHISTECH scanners at pixel resolutions of 0.122 MPP 
and 0.139 MPP, respectively. IMP Diagnostics slides were digitised with a Leica GT450 scanner at a 
pixel resolution of 0.263 MPP. In total, we collected 6,591 WSIs from 3,291 patients, with 5,054 from 
UHCW, 148 from ESNE, 257 from South Warwickshire and 1,132 from IMP Diagnostics. To rigorously 
evaluate our approach for colon biopsy screening, we performed 3-fold internal cross-validation on the 
UHCW dataset and held out the remaining three datasets for independent external validation. When 
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creating the folds for internal cross-validation, the data was split with stratification at patient-level to 
ensure that our method was evaluated on completely unseen cases.  
 
Collaborating pathologists categorised WSIs from UHCW, ESNE and South Warwickshire at slide-level 
into a ground-truth diagnosis label of either normal, non-neoplastic or neoplastic with consensus review 
of discordant cases. A wide range of histological conditions were present across the datasets to reflect the 
clinical screening procedure. A full summary of the specific diagnoses is shown in Supplementary Table 
2. For this study, non-neoplastic and neoplastic classes were combined into a single abnormal category. 
WSIs from IMP diagnostics were originally categorised as either non-neoplastic, low-grade dysplasia or 
high-grade dysplasia23, where the non-neoplastic category contained a mixture of normal, inflammatory 
and hyperplastic slides. Therefore, our team of pathologists additionally reviewed non-neoplastic slides 
from IMP to separate normal from abnormal tissue samples. In our final curated datasets, 42% of slides 
from UHCW, 61% from ESNE, 40% from South Warwickshire and 84% from IMP Diagnostics were 
labelled as abnormal. We provide a data description diagram showing the experiment design and the 
inclusion and exclusion criteria used in Supplementary Fig 2. In addition, we provide an overview of all 
datasets used in this study in Supplementary Fig 3 and give a demographic breakdown of patients within 
the development set in Supplementary Fig 4. 
 
Identification of histological objects 
The first step of IGUANA requires the segmentation of various histological objects within the WSI, 
which enables subsequent graph construction and feature extraction. For this, we utilise our recently 
published Cerberus31 model, which performs simultaneous segmentation and classification of nuclei, 
glands, lumen and different tissue regions. During training, we use a multi-task learning strategy, which 
allows the utilisation of multiple independent datasets and enables simultaneous prediction with a single 
network. Therefore, our localisation step is computationally efficient and does not require multiple 
passes through various networks. As well as delineating object boundaries, Cerberus determines the 
category of each nucleus and differentiates the surface epithelium from other glands. Cerberus is trained 
on a large amount of data from 12 different centres, including more than 535K nuclei, 51K glands and 
56K lumen annotations. In our previous work, we have shown that this crucial step of initial localisation 
generalises well to unseen examples31.  
 
Extraction of clinically interpretable features 
After performing segmentation of various histological objects using Cerberus, we extract a set of 
clinically meaningful features, which were carefully chosen in collaboration with pathologists so that 
they reflect what features are considered during the screening procedure. Our model’s ability to localise 
glands, lumen and nuclei within the tissue allows us to extract interesting gland, intra-gland and inter-
gland features that are potentially capable of identifying various histological conditions. Specifically, the 
inter-gland features are defined in the non-glandular surrounding area, also known as the lamina propria. 
To obtain this region, we utilise the patch-based tissue type classification output from Cerberus and 
consider both normal gland and tumour patch predictions. We then subtract the gland segmentation 
output from the prediction map and carry out a series of refinement steps to obtain the final estimation of 
the lamina propria. We ensure that each feature that we consider has a key biological significance. For 
example, we consider the size and morphology of glands, which can be indicative of cancer. For 
quantifying the morphology, we utilise the best alignment metric (BAM)32, which provides a measure of 
how elliptical an object is, to help capture abnormal glands with irregular shapes. We also take into 
account the number of lumen along with their corresponding morphology, which can be suggestive of 
conditions such as cribriform architecture and serrated polyps, respectively. Furthermore, the 
organisation of epithelial cells and the amount of different inflammatory cells within the gland are 
diagnostically informative. For example, normal glands will have epithelial cells organised at the 
boundary and neutrophils within the gland are indicative of crypt abscesses. For measuring the epithelial 
organisation, we compute the mean and standard deviation of distances of epithelial nuclei centroids to 
their nearest gland boundary. We also utilise the mean and standard deviation of inter-epithelial nuclear 
distances within the gland. Certain inflammatory conditions, such as lymphocytic colitis, will have an 
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Fig 2: Example segmentation results obtained by our multi-task model across the four datasets used in our experiments. The top row shows 
normal examples, whereas the bottom row shows abnormal examples. In particular, the bottom-left example from ESNE shows a hyperplastic 
polyp and the bottom-right example from South Warwickshire shows inflammation. 

increased number of inflammatory cells within the lamina propria. Therefore, we extract inter-glandular 
features indicative of the local density of inflammatory cells and report the associated cellular 
composition. Overall, we compute a set of 25 features, which are standardised before utilisation within 
our graph-based machine learning model. Visual examples of features used within our framework, along 
with examples from the 5th and 95th percentiles, are given in Supplementary Fig 5. We also provide a 
more in-depth description of these features, along with what conditions they can detect in Supplementary 
Table 3. 
 
Gland-graph neural network for interpretable diagnosis 
Recently, graph neural networks (GNNs) have become popular in Computational Pathology (CPath)27 
due to their ability to model a large WSI as an interconnection of nodes representing histologically 
important constructs characterized by node-level features28 33 34. An added advantage of using GNNs for 
predictive modelling in CPath is their ability to generate an explanation of their output in terms of the 
node level features35-37.  
 
Thus, once the different histological objects have been identified, each WSI is represented as a gland-
graph. Here, glands are represented as nodes on a 2D plane that are connected by edges if they are within 
a certain distance of each other. Each gland is then associated with a set of 25 features that were 
previously described. Therefore, the overall graph provides a mechanism for representing local features 
across the entire tissue sample. As opposed to surgical resections, which usually contains a large bulk of 
tissue, biopsies can contain many separate tissue segments on the slide. This arrangement has no 
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biological significance and, therefore, it would be unreasonable for glands to be connected between 
neighbouring tissue regions. Thus, we also ensure that an edge between any two given glands only exists 
if they are both located within the same tissue segment.  
 
Upon formation of our gland-graph representation of a WSI in terms of its nodes and edges, we pass the 
input through a GNN, which sequentially aggregates features within the slide to predict the diagnosis. An 
important aspect of IGUANA is its ability to provide an interpretable and explainable output, which can 
be used to facilitate the diagnostic process and potentially for biomarker discovery. For this, we utilise 
GNNExplainer36, which generates a subset of nodes and features that play a crucial role in the GNN’s 
prediction. To obtain a WSI-level explanation, the local features are averaged within the top ten most 
predictive nodes. This enables analysis over larger cohorts to identify existing sub-populations. To 
further increase model interpretability, we can also visualise the intermediate nuclear, lumen and gland 
localisation results overlaid on top of the original WSI. We provide further detail of our graph-based 
approach in Supplementary Section S3. 
 
Software, optimisation and reproducibility 
We implemented our framework with the open-source software library PyTorch version 1.1038, PyTorch 
Geometric version 2.1.139 and Python version 3.6 on a workstation equipped with one NVIDIA Tesla 
V100 GPU. We utilised scikit-learn version 1.0.240 to perform the comparative experiments using 
random forest and fastcluster version 1.2.641 to perform biclustering analysis. We trained our graph 
neural network for 50 epochs using a batch size of 64 and an initial learning rate of 0.005, which was 
reduced by a factor of 0.2 after 25 epochs. It should be noted, that despite using a GPU with 32GB RAM, 
our GNN framework incurred a low memory utilisation and therefore different specification GPUs may 
also be used. The interactive demo was developed using the tile server from TIAToolbox42 and Bokeh 
2.4.3. No changes were made to the AI system or the hardware over the course of the study. 
 
Model code, along with a full list of software requirements, is located at 
https://github.com/TissueImageAnalytics/iguana. Model code and weights are for research purposes only 
and are therefore shared under a non-commercial Creative Commons license. 
 
Patient and public involvement 
Lay members have made a valuable contribution to this project in ensuring that the patient is at the heart 
of this project. Three lay advisors have been working with us since the conception of this project. One of 
the advisors is part of the National Cancer Research Institute (NCRI) consumer network and Independent 
Cancer Patient’s Voice (ICPV) group, who are both supportive of new technologies being brought into 
the NHS for patient benefit. 

Results 
Large-scale cross validation for colon biopsy screening 
To rigorously evaluate our approach for colon biopsy screening, we performed 3-fold cross-validation 
using 5,054 Haematoxylin and Eosin (H&E) stained colon biopsy WSIs from University Hospitals 
Coventry and Warwickshire (UHCW), where each slide was labelled as either normal or abnormal. 
Interpretable screening of normal colon biopsies is a challenging problem due to a wide spectrum of 
large bowel abnormalities including a variety of neoplastic and inflammatory conditions. Fig 3 shows the 
results of IGUANA, achieving an average area under the receiver operating characteristic (AUC-ROC) 
curve of 0.9783 ± 0.0036 and an area under the precision-recall (AUC-PR) curve of 0.9798 ±	0.0031. 
These scores determine the level of agreement between consensus pathologist diagnosis and AI 
generated classification of normal versus abnormal biopsies. We also include results obtained using other 
existing slide-level classification algorithms such as IDaRS43, CLAM44 and a random forest (RF) 
baseline classifier using our glandular features (denoted by Gland-RF). We observe that IGUANA 
achieves the best performance compared to both patch-based methods (IDARS and CLAM),  
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Fig 3: Results obtained across the 4 cohorts used in our experiments. Here, we display the ROC and PR curves along with the respective AUC 
scores of our approach compared to IDaRS, CLAM and Gland-RF (a random forest approach using the same handcrafted features with global 
aggregation). We also display the specificities obtained at sensitivity cut-offs of 0.97, 0.98 and 0.99. The shaded areas in the curves and the 
error bars in the bar plots show 1 standard deviation from the results. 
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demonstrating its strong predictive ability given that it uses only 25 features per gland. We provide 
additional comparative results between IGUANA and IDaRS in Supplementary Fig 6. Note that despite 
IGUANA outperforming it, the Gland-RF model produces comparable performance – signifying the 
strength of our set of clinically-derived features – albeit without the localised interpretability provided by 
IGUANA. Also, as opposed to the two patch-based methods, IGUANA provides concrete justification as 
to why a certain diagnostic class was predicted. We go into further detail on interpretability and 
explainability later in this section.  
 
Model generalization to independent cohorts 
A true reflection of a model’s clinical utility requires the assessment of its performance on completely 
unseen cohorts. For this, we utilised three additional cohorts of H&E-stained colon biopsy slides, 
providing a total of 1,537 WSIs. These cohorts consisted of 1,132 slides from IMP Diagnostics 
Laboratory in Portugal23, 148 slides from East Suffolk and North Essex (ESNE) NHS Foundation Trust 
and 257 slides and South Warwickshire NHS Foundation Trust, where slides were again categorised as 
either normal or abnormal. We observe from Fig 3 that our model attains high performance for both the 
ESNE and South Warwickshire cohorts, reaching AUC-ROC scores of 0.9567 ± 0.0155, 0.9649 ± 
0.0025 and 0.9789 ± 0.0023 and AUC-PR scores of 0.9731 ± 0.0105, 0.9466 ± 0.0034 and 0.9949 ± 
0.0006 for ESNE, South Warwickshire and IMP datasets, respectively. It is evident that there is a large 
difference in performance between IGUANA and other approaches on the external cohorts, signifying 
that superior generalisation to unseen data is a strength of our model. In particular, at a sensitivity of 0.99 
we obtain a percentage increase over IDaRS of 47.4%, 63.6% and 58.9% for IMP, ESNE and South 
Warwickshire cohorts, respectively. Example results obtained by our segmentation model across the four 
datasets are shown in Fig 2. 
 
Analysis of expected reduction in pathologist workload 
The real-world value of our approach is determined by its ability to reduce pathologist workload. As our 
model is intended for screening, it must achieve high sensitivity to minimise the risk of false negatives. 
Therefore, assessment of the specificity at high sensitivity cut-off thresholds provides a good indication 
of its potential effectiveness as a screening tool. Here, the specificity is directly indicative of the 
percentage reduction in normal slides that require pathologist review. In the middle column of Fig 3 we 
display the specificity of our model at sensitivities of 0.97, 0.98 and 0.99 on all datasets used in our 
experiments, where we see that IGUANA sustains the best performance at various cut-offs compared to 
other methods. During internal cross-validation, we obtain specificities of 0.7865 ±	0.0429, 0.6720 
±	0.1128 and 0.5409 ±	0.1210 for sensitivities of 0.97, 0.98 and 0.99, respectively. For independent 
validation, our method obtains average specificities across the three external datasets of 0.7513 ± 
0.0919, 0.6679 ± 0.0779 and 0.5487 ± 0.1599 for sensitivities of 0.97, 0.98 and 0.99. Therefore, this 
indicates that at a sensitivity of 0.99, our method is able to screen around 55% of normal cases during 
both internal and external validation.   
 
In Supplementary Fig 7 we show the proportion of slides that require pathologist review to achieve a 
certain sensitivity18. In these plots, we consider a target sensitivity of 0.99, which is reasonable due to 
high levels of inter-observer disagreement for conditions such as mild inflammation. We also show with 
a vertical dashed line the proportion of abnormal slides in each dataset, which indicates the minimum 
number of slides that need to be reviewed for screening. For each of the cohorts, we observe that for our 
target of 0.99 sensitivity our model can screen out 32%, 31%, 17% and 13% of total slides from UHCW, 
South Warwickshire, ESNE and IMP datasets, respectively. If considering a sensitivity of 0.97, we can 
screen out 44% of slides from UHCW, 46% from South Warwickshire, 30% from ESNE and 19% from 
IMP.  
 
Performance across anatomical sites 
We perform a statistical analysis of test results on the internal UHCW dataset to analyse potential 
differences in performance over colonic sites, such as the ascending, descending and transverse colon. 
After performing the Mann-Whitney U test45, we found that no statistically significant difference was 
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observed in the results, with 𝑝-value > 0.05, suggesting no model bias towards a particular anatomical 
site.  
 
Local feature explanations increase model transparency 
A major component of IGUANA is the ability to provide an interpretable and explainable output. In Fig 
4, we display visual explanations of the most predictive nodes and features given by IGUANA. Node 
explanations are shown in the form of a heatmap, where relatively high values indicate glandular areas 
that contribute to the slide being classified as abnormal. Therefore, we should expect that all glands in a 
normal slide will have low values in the associated heatmap as shown in Fig 4a, where no glands 
contribute to the slide being classified as abnormal. Fig 4b-d show WSIs with hyperplastic polyps, 
inflammation and adenocarcinoma, respectively. Hyperplastic polyps are often characterised by 
intraluminal folds and lumen dilation. On the other hand, inflammatory conditions usually have 
an increased number of lymphocytes, plasma cells, eosinophils and neutrophils within the 
lamina propria and potentially within the glands. Other indicators of inflammation can include 
crypt branching and crypt dropout. Colon adenocarcinoma is often denoted by irregular glandular 
morphology, epithelial nuclear atypia and multiple lumina. High-grade cancers typically lose their 
glandular appearance and form solid sheets of tumour cells. It can be observed that IGUANA is able to 
pick up abnormal glands with features in line with the above descriptions. In particular, we see that the 
most predictive glands in Fig 4b contain lumen with a clearly irregular morphology, whereas highlighted 
glands in 4c show areas with a high degree of inflammation. The adenocarcinoma heatmap in Fig 4d 
highlights areas that have lost their conventional glandular appearance. Specifically, epithelial nuclei are 
no longer arranged at the gland boundary, cribriform architecture is observed and glands appear much 
larger, due to the formation of tumour cell sheets.  
 
In addition to the node explanation heatmap, IGUANA indicates why certain glands are being identified 
as abnormal. This is useful because it can provide confirmation that the correct features are being 
identified by the model, giving researchers and clinicians confidence that it is performing as expected. 
This strategy can also be used to identify additional features within abnormal conditions. To show this, in 
Fig 4, we display the most predictive glands in each slide and provide the corresponding feature 
explanations. Specifically, we display the top ten features in descending order of significance, along with 
their corresponding feature importance values between 0 and 1. Here, we expect that the feature 
explanations should align with what is observed in the associated cropped regions. In our hyperplastic 
polyp example, we see that the top glands (i.e., 1, 2 and 3) contain lumen with abnormal morphology, 
whereas lumen dilation is observed in top gland 4. In line with this, lumen morphology and lumen 
composition are high-scoring features across the provided examples. We also observe that lumen size 
and organisation of epithelial nuclei within the glands are often found to be important features. In the 
example shown in Fig 4c, we observe that top glands have a high degree of inflammation, which is 
matched by top features, such as inflammatory cell density, gland density and lamina propria neutrophil 
proportion. In the adenocarcinoma example, we see that the top four glands are all large, have irregular 
morphology and often display solid sheets of tumour cells with no obvious glandular structure. This is 
highlighted in the feature explanation, where gland morphology, gland size and epithelial organisation 
are consistently top-ranked features. Here, epithelial organisation describes how the epithelial nuclei are 
positioned at the gland boundary. Due to the presence of solid tumour patterns across the top glands, this  
feature is frequently highlighted in cancerous cases. We provide additional visual examples of the 
interpretability of our model output in Fig 5. 
 
WSI-level feature explanations are consistent with known histological patterns 
In Fig 6a, we show WSI-level explanations averaged over different sub-conditions in the UHCW and 
IMP cohorts. We focus on these datasets because they are the largest, with both containing over 1,000 
samples. Here, we plot top 10 features across the various sub-conditions for increased readability. These 
plots can be used both to confirm that the global explanations are as expected and to understand which 
features are particularly important for categorising a certain sub-condition as abnormal. In both UHCW  
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Fig 4: Visualisation of node and feature explainability. Here, we present the overlay of the node-level explanations in the form of a heat map 
which show the most predictive nodes in the WSI. We also show cropped images of the 4 most predictive nodes within each WSI along with 
the associated 10 most predictive features and their feature importance value. The colour of the boundary of the top nodes (glands) indicates 
the corresponding value in the node explanation heatmap. a-d show example slides that are normal, hyperplastic, inflammatory or cancerous, 
respectively. 
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Fig 5: Additional visualisation of node and feature explainability. As before, we present the overlay of the node-level explanations in the form 
of a heat map which show the most predictive nodes in the WSI. We also show cropped images of the four most predictive nodes within each 
WSI along with the associated 10 most predictive features and their feature importance value. a-d contain show slides that are normal, 
inflammatory (with crypt abscesses), high-grade dysplasia or adenomatous polyps, respectively. 
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and IMP cohorts, the normal radar plots have a small radius, indicating that no feature contributes to the 
slide being classified as abnormal. For inflammatory cases, the UHCW and IMP radar plots show that a 
wide range of features can contribute to the slide being classified as abnormal, where there may be both 
cellular and architectural changes in the tissue. However, the most important features that can 
differentiate between other sub-conditions include inflammatory cell density, gland lymphocyte 
infiltration and gland density. Gland density can be indicative of gland dropout, which is a sign of 
inflammation. The UHCW radar plots for dysplasia and adenocarcinoma are similar, where the most 
important features are gland morphology, gland epithelial cell organization, gland epithelial cell size and 
variation of gland epithelial cell size. This is in line with the key expected histological patterns observed 
within these tissue types. Likewise, these plots are similar to the low- and high-grade dysplasia plots for 
the IMP cohorts, indicating that the correct histological features are being highlighted when providing 
the WSI feature explanation. For hyperplastic polyps, we can see that lumen composition, lumen 
morphology and epithelial cell organisation have a large influence in the slide being classified as 
abnormal. Lumen composition is the ratio of lumen to gland size and therefore can identify glands with 
lumen dilation, which is a distinguishing feature of hyperplastic polyps. Conversely, lumen serrations, 
which are present in hyperplastic polyps, can lead to irregular lumen morphology, further validating the 
feature explanations output by our model. 
 
WSI-level feature explanations identify population subgroups 
In Fig 6b, we perform hierarchical biclustering of all abnormal slides and WSI-level feature importance 
scores to help identify various subgroups that exist within the UHCW dataset. At the bottom of the plot, 
we identify various patient clusters which have varying histological appearance. These are numbered as 
follows: 1) general sign of inflammation, without neutrophil infiltration; 2) inflammation with a high 
degree of both lymphocytic and neutrophilic gland infiltration; 3) mainly neoplastic slides with irregular-
shaped glands and large epithelial cells; 4) irregular gland morphology, with minimal inflammation; 5) 
abnormal lumen morphology and composition, with signs of inflammation in the lamina propria; 6) 
increased eosinophilic infiltration in the lamina propria and 7) neoplastic slides with gland epithelial 
clustering. Therefore, this gives us confidence that the network is learning key histological differences 
among the dataset to make an informed WSI-level prediction. More fine-grained clusters can be observed 
by referring to the associated dendrograms in the biclustering plot. 
 
Interactive visualisation of results 
We provide an interactive demo at https://iguana.dcs.warwick.ac.uk showing sample IGUANA results 
and highlighting the full output of our model at global and local levels, including the intermediate gland, 
lumen and nuclear segmentation results. In particular, we display the node explanations overlaid as a heat 
map on top of the glands and the local explanations by hovering over each node in the overlaid graph. 
Here, we provide the top 5 features to provide insight into what is contributing to certain glands being 
flagged as abnormal. It may also be of interest to assess the difference in features for nodes across the 
WSI. Therefore, we also enable visualisation of each of the 25 features overlaid on top of the glands as 
heat maps.  
 

Discussion 
Key findings 
There has been a staffing crisis in pathology for many years46, which is being further exacerbated by the 
increased demand for histopathological examination. Embracing new technologies and AI in clinical 
practice may be necessary as hospitals seek to find new ways to improve patient care47. AI screening of 
large bowel endoscopic biopsies holds great promise in helping to reduce these escalating workloads by 
filtering out normal specimens. However, currently there doesn’t exist a solution that can do this with a 
high predictive performance. Also, explainable AI is now recognised as a key requirement for 
trustworthy AI in human-centred decision making26, yet is usually not considered in many healthcare  
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Fig 6: Analysis of global explanations. a, Radar plots showing global feature importance for sub-conditions in the UHCW and IMP datasets. 
b, Hierarchical biclustering of feature importance values. 1-7 denote prominent clusters after biclustering, with the following distinguishing 
histological characteristics: 1) inflammation, without gland neutrophil infiltration; 2) inflammation with both gland lymphocytic and 
neutrophilic infiltration; 3) neoplasia with irregular gland morphology and large epithelial cells; 4) irregular gland morphology with minimal 
inflammation; 5) hyperplasia with irregular lumen morphology and composition with inflammation in the lamina propria; 6) eosinophilic 
infiltration in the lamina propria and 7) neoplasia with gland epithelial cell clustering. 

applications. Therefore, in this study we developed an AI model that can accurately differentiate normal 
from abnormal large bowel endoscopic biopsies, while providing an explanation for why a particular 
diagnosis was made.   
 
We demonstrated that our proposed method for automatic colon biopsy screening could achieve a strong 
performance during both internal cross validation (mean AUC-ROC=0.98, mean AUC-PR= 0.98) and on 
three independent external datasets (mean AUC-ROC=0.97, mean AUC-PR=0.97). Highly sensitive 
tools for screening are required to minimise the number of undetected abnormal conditions, since the  
false negative report is likely to lead to delayed diagnosis and potential patient harm. Currently, we 
obtain promising specificities of 0.789 ± 0.043 at a sensitivity of 0.97 and 0.541 ± 0.121 at a sensitivity 
of 0.99, which could have a positive impact on reducing pathologist workloads. We also show in 
Supplementary Fig 7 the expected reduction in clinical workload, where we report up to a 32% time 
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saving by screening out normal biopsies that do not require assessment, while still maintaining a 
sensitivity of 0.99. 
 
Analysis of misclassifications 
To understand misclassifications made by our model, we show six normal slides with the highest 
predicted abnormality scores in Supplementary Fig 8. After inspection, we see that IGUANA correctly 
classifies these slides and therefore identifies mislabelling errors in the dataset. Here, the examples 
should have been labelled as either inflammatory or hyperplastic polyp. In the figure, we include sample 
image regions, as well as local and WSI-level feature explanations that are reflective of the true category 
of each slide. In addition, we performed a false negative analysis, where in Supplementary Fig 9a we 
show the counts of various sub-conditions along with the corresponding number of false negatives. In 
Supplementary Fig 9b, we show the false negative rate of each category. It can be observed that the 
model found slides with lymphocytic and collagenous colitis somewhat challenging, with false positive 
rates of 0.29 and 0.46, respectively. Explicit modelling of the sub-epithelial collagen band should enable 
us to better detect collagenous colitis. It may be worth noting that there was a relatively small number of 
collagenous colitis samples in all four cohorts and so they may not have a large impact on the overall 
performance. Also, a high false negative rate was observed in the mild inflammation category, but this is 
to be expected because they are visually similar to normal samples.  
 
Strengths and limitations 
Not only does the IGUANA algorithm attain a strong performance, it also highlights diagnostically 
important areas within the tissue and provides an explanation as to which clinical features in those areas 
are most related to its prediction. This is a major strength of our study as it implies that IGUANA can be 
used to screen out normal biopsies with high accuracy and also used as a highly interpretable decision 
support tool within abnormal biopsies.  
 
To enable explainable predictions, our algorithm relies on an accurate intermediate segmentation step, 
which requires many pixel-level annotations. This can be a time-consuming step and can therefore act as 
a bottleneck in the development of similar methods. In addition, the type of features that can be 
incorporated into our AI algorithm are dependent on which kinds of histological objects are initially 
localised. For example, we do not currently detect goblet cells and so do not include features indicative 
of goblet cell-rich hyperplastic polyps. Other histological objects that could be added include giant cells, 
signet ring cells and mitotic figures. In addition, although we segment the surface epithelium, we do not 
extract any associated features that can help identify conditions such as collagenous colitis. Our method 
also does not assess surface abnormality to detect intestinal spirochaetosis or pigment to detect melanosis 
coli. These shortcomings will be addressed in future work. In Supplementary Fig 1b, we highlight 
diagnostic features (in red colour) that are not currently modelled in our framework. 
 
Findings in context 
There have been recent AI approaches developed for cancer detection in colonic whole-slide images22 48 

49. However, such approaches cannot be used for screening in clinical practice because they often fail to 
identify non-cancerous abnormalities such as inflammation. Similarly, AI models have been developed 
for detecting polyps50 51, inflammatory bowel disease52 or grading dysplasia23, but again they do not 
address the problem of screening normal from all types of abnormality. Our approach utilises 
retrospective biopsies from pathology archives, where data is accordingly labelled as normal or abnormal 
to reflect the clinical screening process. Therefore, unlike other approaches, our AI model can be directly 
implemented as a triaging tool and may therefore have a profound effect on reducing pathologist 
workloads. In addition, most recent automatic methods rely on weak supervision, where only the overall 
diagnosis is used to guide the algorithm. This strategy may be advantageous because it does not rely on 
the time-consuming task of collecting many annotations. However, this limits the interpretability of the 
output, which may hinder the acceptance of such models in hospitals.  
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Implications for clinicians and policy makers 
Analysis of colon biopsy slides by visual examination, either under the microscope or more recently on 
the computer screen, is the current gold standard. However, the current practice is unsustainable with 
increasing numbers of specimens that require examination and due to staff shortages, where only 3% of 
NHS hospitals report adequate staffing4. With advances in cancer screening programmes and no 
immediate sign of the pathologist staffing crisis being resolved, additional measures to assist with 
reporting will be essential. Our proposed AI model addresses this unmet need by automatically filtering 
out normal colonic biopsies that require minimal intervention, yet make up a substantial proportion of all 
cases, with high degree of accuracy. As a result, our model significantly reduces the number of samples 
that require review by pathologists. 
 
AI models are now starting to be used in clinical practice for prostate cancer detection, where a clear 
advantage for clinicians has been demonstrated in terms of reducing workloads and increasing reporting 
accuracy53 54. There is growing evidence that automated methods for tissue diagnosis can transform 
pathologist workflows and help drive new policies in healthcare. However, no such tool currently exists 
for screening large bowel endoscopic biopsies, perhaps due to the fact that no automated tool has been 
able to accurately detect all kinds of abnormality, including inflammation, dysplasia, hyperplasia and 
neoplasia. With its triaging capability, the proposed model promises to have positive implications on 
patient treatment due to faster time to diagnosis, resulting in the potential for early intervention where it 
is needed the most. 
 
Extending the model to surgical resections 
Despite the screening of endoscopic large bowel biopsies being a focus of this study, the proposed 
approach could be applied to resection samples with minimal modification. Our method may be 
especially powerful in this case because each tissue segment within the slide is typically larger, allowing 
greater spatial context to be explored. Two potential areas of interest using resection samples include the 
prediction of genetic alterations55 and survival analysis17 56. In these cases, histological biomarkers are 
less well known, as compared to those used for routine screening tasks. Therefore, our approach might be 
used to aid biomarker discovery and help toward further understanding of which morphological patterns 
are associated with certain genetic alterations and clinical outcomes.  
 
Conclusion 
We have shown that IGUANA offers promise as an effective triaging tool for AI-based colon biopsy 
screening with a strong emphasis on diagnostic interpretability providing concrete justification as to why 
a certain diagnostic class was predicted and making its predictions transparent and explainable. The 
proposed AI method can help alleviate current issues in pathologist shortages in the NHS and worldwide 
and reduce turnaround times of the screening results. Before deployment in clinical practice, a larger 
scale validation is required with further analysis of IGUANA’s feature explanation output. In addition, 
considerable time needs to be invested into extending the current user interface so that it easily integrates 
with current pathologists’ clinical workflows. This will involve a detailed study on the effectiveness of 
the decision support tool within abnormal biopsies and assessing its implications on time to report the 
diagnosis.   
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Screening of normal endoscopic large bowel biopsies 
with artificial intelligence: a retrospective study 

Supplementary material 
 

S1. Diagnostic Pathway 
 

 
Supplementary Fig 1: Pathologist colon screening diagnostic algorithm. a, Decision process for diagnosing colon biopsies as normal. If any 
abnormal feature is found during this process, then the entire tissue sample is reported as abnormal. b, feature breakdown within each 
category. Red regions show features not yet explicitly modelled in our approach.   
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S2. Data Audit & Cohort Details 
 
Supplementary Table 1: Internal audit of seven UK NHS trusts for large bowel biopsies in 2019. 

 Histopathology 
Requests 

Large Bowel 
Biopsies (%) 

Normal Large 
Bowel Biopsies (%) 

Coventry 41,771 4,877 (11.7) 1,680 (34.4) 
Wolverhampton 52,008 9,708 (18.7) 4,140 (42.6) 
Oxford 56,575 7,766 (13.7) 3,938 (50.7) 
Nottingham 59,851 10,562 (17.6) 3,428 (32.4) 
Newcastle 59,843 5,348 (8.9) 2,015 (37.7) 
Durham 34,958 6,240 (17.8) 2,353 (37.7) 

Glasgow 108,000 29,000 (13.9) 7,830 (27.0) 
Total 413,006 73,501 (17.8) 25,384 (34.5) 

 
 
 
Supplementary Table 2: Summary of all conditions present in the datasets used in the paper. 
 UHCW IMP 

Diagnostics 
ESNE South 

Warwickshire 
Normal ✓ ✓ ✓ ✓ 
Ulcerative 
Colitis 

✓ ✘ ✓ ✓ 

Collagenous 
colitis 

✓ ✘ ✓ ✓ 

Crohn’s disease ✓ ✘ ✘ ✓ 
Mild 
inflammation 

✓ ✓ ✓ ✓ 

Moderate 
inflammation 

✓ ✓ ✓ ✓ 

Chronic 
inflammation 

✓ ✓ ✓ ✓ 

CMV ✓ ✘ ✘ ✘ 
Dysplasia ✓ ✓ ✓ ✓ 
Hyperplastic 
polyp 

✓ ✓ ✓ ✓ 

Tubular 
adenoma 

✓ ✓ ✓ ✓ 

Villous adenoma ✓ ✓ ✓ ✓ 
Lymphoma ✓ ✘ ✘ ✘ 
Lipoma ✓ ✘ ✘ ✘ 
Adenocarcinoma ✓ ✓ ✓ ✓ 
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Supplementary Fig 2: Data description diagram showing the experiment design and the inclusion and exclusion criteria used in the study. 
Here n denotes the number of whole-slide images, OOF refers to Out-Of-Focus slides and SAPI refers to biopsies that were Slightly Abnormal 
but Pathologically Insignificant.  
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Supplementary Fig 3: Summary of the data used in this study. Despite using WSIs labelled as either normal or abnormal in our experiments, 
we also show the breakdown of abnormal slides into non-neoplastic and neoplastic categories. 

 

 
Supplementary Fig 4: Demographic information of the UHCW dataset, that was used for algorithm development. BME denotes black and 
minority ethnic groups. 

S3. Extended Methods 

Graph neural networks for computational pathology 
Existing graph neural networks (GNNs) for computational pathology usually consider fixed-size image 
patches at each node1-3 and so fail to incorporate features derived from macrostructures, which can span 
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multiple image patches. However, GNNs that use nodes at centres of image patches in WSIs4 may have 
poor interpretability. Instead, nodes can be centred at known histological entities, such as nuclei and 
glands, allowing pathologists to directly reason with a model’s predicted outcome5. Although some 
methods position nodes at known entities, Deep Learning-based features are commonly used6 7, again 
leading to reduced interpretability. Rather than using features derived from image regions, graphs built 
on top of meaningful entities enable the extraction of morphological features. For example, previous 
methods have constructed graphs on top of nuclei (also known as cell graphs), allowing utilisation of 
interpretable cellular features8 9. However, nuclei are the most basic building blocks in the tissue and 
therefore associated features may have limited expressive power, and may fail to model important multi-
cellular structures, such as glands. Cell graphs can also be very large, where a single tissue sample can 
contain tens of thousands of nuclei, leading to the generation of intractable graph models. To overcome 
recent limitations in the literature, our proposed method utilises the concept of gland-graphs for WSI 
classification, where the nodes are positioned at glands within the tissue, with associated human-
interpretable features. The features that we utilise are clinically-meaningful and in line with pathologist 
diagnostic pathways, leading to excellent performance and providing a highly-interpretable output. 
 
Identification of histological objects 
Cerberus10 is a fully convolutional neural network with a shared ResNet3411 encoder and 𝑇 independent 
decoders, each of which makes a prediction for a specific task 𝑡. Specifically, we consider 6 tasks: 1) 
gland instance segmentation, 2) gland semantic segmentation, 3) nuclear instance segmentation, 4) 
nuclear semantic segmentation, 5) lumen instance segmentation and 6) tissue type patch classification. 
Here, the instance and semantic segmentation branches are combined to achieve simultaneous 
segmentation and classification. For segmentation tasks, we use U-Net12-inspired decoders that upsample 
the features step-by-step by a factor of two. After each upsampling operation, we incorporate features 
from the encoder with skip connections, followed by two convolutions (3x3 kernel) with batch 
normalisation13. This is repeated until the features have the same spatial dimensions as the input. For 
tissue type classification, we use global average pooling to reduce the features at the output of the 
encoder to a 256-dimensional vector, which is then followed by two fully connected layers. The tissue 
type classification output is used to estimate the lamina propria region. 
 
Gland-graph construction 
Mathematically, a graph is defined as 𝐺 ≡ (𝑉, 𝐸),	where 𝑉 is a set of 𝑁 vertices (or nodes) and 𝐸 is a set 
of edges, where 𝑒!,# ∈ 𝐸 denotes an edge between nodes 𝑖 and 𝑗 ∈ 𝑉. In our case, 𝑉 describes the set of 
all glands in a WSI. Each node typically has an associated 𝑘-dimensional feature vector 𝒙! for 𝑖 ∈ 𝑉. In 
existing methods, an edge 𝑒!,# is constructed if the Euclidean distance between the centroids of nodes 𝑖 
and 𝑗 is less than a certain threshold9 14. The distance between neighbouring node centroids is suitable for 
convex node entities, such as nuclei, because centroids will usually be located within the object. 
However, glands can often be non-convex, especially when they become cancerous. Therefore, we 
instead define an edge 𝑒!,# in our gland-graph if the minimum distance between points on the boundary 
contours of two glands 𝑖 and 𝑗 is less than a certain distance	𝛼. 
 
Gland-graph neural network 
Upon formation of our gland-graph representation 𝐺 ≡ (𝑉, 𝐸) of a WSI in terms of its nodes  𝑉 and their 
non-directional edges 𝐸, we pass the input through a GNN to compute the slide-level prediction score. 
Each node vector 𝒙! 	represents a gland in terms of the previously described features and the GNN 
aggregates information across nodes using the edges in its computation. Note that the number of nodes 
and edges in each graph can be different depending upon the tissue structure.  The GNN first applies a 
linear operation on 𝒙! ∈ ℝ$% to produce another node-level feature representation ℎ!& for input into two 
Principal Neighbourhood Aggregation (PNA) graph convolution15 layers. Each PNA layer (𝑙 = 1,2) 
updates each node representation by aggregating information from its neighbours 𝑗 ∈ ℵ! according to the 
following rule: ℎ!' = 𝛾'<ℎ!'(), ⨁ 𝜌'<ℎ!'(), ℎ#'()?#∈ℵ! ?, where 𝛾' and 𝜌' are multi-layer perceptrons (MLPs) 
each with their own trainable weights. PNA uses a combination of aggregation strategies (denoted by ⊕) 



 vi 

based on scaling of mean, standard deviation, minimum and maximum aggregation operators over node 
features. It has been shown recently that using this aggregation approach is superior to methods that use a 
single aggregation step, such as computing the sum as it enables the resulting GNN to be a better 
discriminator of local graph structures15. Outputs of the two PNA layers are concatenated and fused with 
a linear operation to arrive at the final node-level feature embedding 𝒓!. The final output 𝒇(𝐺) ∈ ℝ,  is 
obtained by performing global attention pooling: 
 

𝒇(𝐺) =C
exp	(𝜓(𝒓!))

∑ exp	(𝜓(𝒓#))-
#.)

	⊙ 𝜔(𝒓!)
-

!.)

 

 
where 𝜓 and 𝜔 are MLPs, 𝐶 denotes the number of classes predicted by the network, ⊙ denotes 
element-wise multiplication and hence the global pooling operator learns to assign a varying weight to 
different gland representations, signifying their relative importance in the final prediction. Finally, a 
softmax function is applied and all the trainable weights in the GNN are optimised in an end-to-end 
fashion by minimising the binary cross entropy loss between the output and the ground-truth labels of 
training slides.  
 
Gland-graph explanation 
To enable an interpretable and explainable output, we utilise the graph pruning method GNNExplainer16, 
which generates a subset of nodes and features that play a crucial role in the GNN’s prediction. The 
intuition here is that removing unimportant nodes and features should have a negligible impact on the 
performance and can therefore be removed. Specifically, GNNExplainer is formulated as an optimisation 
task that maximises the mutual information between a GNN’s prediction and the distribution of possible 
subgraph structures. Practically, this is achieved by learning a real-valued mask, which gives less weight 
to unimportant graph components. For our approach, we learn a node explanation mask 𝑀/	 ∈ ℝ- and a 
feature explanation mask 𝑀1 ∈ ℝ-×$%, where 𝑁 denotes the number of nodes in each WSI and 25 is the 
pre-defined number of features. Rather than applying a threshold to the learned masks to give a compact 
subgraph, we visualise the raw mask output, which gives an interpretable and explainable output that can 
be discussed with clinicians. Specifically, the learned mask 𝑀/	provides the node explanation which can 
be overlaid on top of the glands in each WSI as a heatmap. Similarly, 𝑀1 can be used to identify the top 
features for each node/gland and the corresponding importance values. To obtain a WSI-level 
explanation, the local features are averaged within the top ten most predictive nodes.  
 
To assess which node explanation method was best, we utilised the metric proposed by Jaume et al.5. The 
intuition behind their proposed metric is that a superior node explanation technique should be able to 
locate top nodes that can better differentiate between classes (in our case normal vs abnormal). We 
compared node explanations given by GNNExplainer, integrated gradients31 and the attention scores 
given by our network and found that GNNExplainer gave the best results in terms of class separability. It 
is important to note that GNNExplainer is a post-hoc method, which is why we used attention pooling 
during optimisation of our predictive model. 
 
Comparative methods 
To rigorously assess the performance of our approach, we compare with IDaRS17, CLAM18 and a 
random forest classifier using the interpretable glandular features that we extracted (denoted by Gland-
RF). Both IDaRS and CLAM are recent state-of-the-art DL approaches that use raw H&E image patches 
as input in a multiple-instance learning (MIL) framework. The Gland-RF model computes the mean and 
standard deviation of all local features within the slide to obtain a fixed-size global feature vector before 
input to the model. When fitting the Gland-RF for each fold, we perform a grid search over the 
hyperparameters and select the best models in terms of their performance on the validation set.  
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S4. Interpretable Features 
 

 
Supplementary Fig 5: Examples of cropped image regions from the UHCW dataset containing features taken from the 5th (first image in each 
panel) and 95th (second image in each panel) percentiles. Yellow arrows show areas within the image relevant to the associated feature. 
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Supplementary Table 3: Description of all 25 features used in our experiments, along with various conditions that they may be able to 
detect. LP denotes lamina propria. 

Feature Name Feature Description Histological 
Description 

Main Conditions 
Modelled 

Gland size Size of gland (number of pixels at 
0.5 microns/pixel) 

Gland enlargement Neoplasia, dysplasia, 
adenomatous polyps 

Gland morphology How far gland is from being 
elliptical – BAM distance38 

Gland distortion,  
gland branching 

Neoplasia, dysplasia. 
adenomatous polyps 

Gland density Distance to nearest gland Gland dropout Inflammation 
Lumen size Size of lumen (number of pixels 

at 0.5 microns/pixel) 
Lumen dilation Neoplasia, dysplasia, 

hyperplastic polyps 
Lumen morphology How far lumen is from being 

elliptical – BAM distance38 
Lumen serrations Hyperplastic polyps 

Lumen number Lumen count within gland Cribriform 
architecture 

Neoplasia 

Lumen composition Ratio of lumen to gland area Gland dilation Hyperplasia 
Gland epithelial size Average size of epithelial nuclei 

within a gland 
Epithelial cell atypia Neoplasia, dysplasia, 

adenomatous polyps 
Gland epithelial size 

variation 
Standard deviation of epithelial 

nuclei size within a gland 
Epithelial cell atypia Neoplasia, dysplasia, 

adenomatous polyps 
Gland epithelial 

organisation 
Average distance of intra-gland 
epithelial nuclei to nearest gland 

boundary 

Stratification of 
epithelial cells 

Neoplasia, dysplasia, 
adenomatous polyps 

Gland epithelial 
organisation variation 

Standard deviation of intra-gland 
epithelial nuclei distances to 

nearest gland boundary 

Uneven stratification 
of epithelial cells 

Neoplasia, dysplasia, 
adenomatous polyps 

Gland epithelial 
clustering 

Average distance between intra-
gland epithelial nuclei 

Epithelial cells tightly 
packed 

Neoplasia, dysplasia, 
adenomatous polyps 

Gland epithelial 
clustering variation 

Standard deviation of intra-gland 
epithelial nuclei distances to 

nearest gland boundary 

Epithelial cells 
unevenly spaced 

Neoplasia, dysplasia, 
adenomatous polyps 

Lumen epithelial 
organisation 

Average distance of intra-gland 
epithelial nuclei to nearest lumen 

boundary 

Gland dilation, 
cribriform 

architecture 

Neoplasia, dysplasia, 
hyperplastic polyps 

Lumen epithelial 
organisation variation 

Standard deviation of intra-gland 
epithelial nuclei distances to 

nearest lumen boundary 

Lumen serrations, 
cribriform 

architecture 

Neoplasia, dysplasia, 
hyperplastic polyps 

Gland epithelial density Number of intra-gland epithelial 
nuclei, normalised by the gland 

size 

Solid sheets of 
epithelial cells 

Neoplasia, dysplasia, 
adenomatous polyps 

Gland lymphocyte 
density 

Number of intra-gland 
lymphocytes, normalised by the 

gland size 

Gland lymphocyte 
infiltration 

Inflammation 

Gland neutrophil 
density 

Number of intra-gland 
neutrophils, normalised by the 

gland size 

Gland neutrophil 
infiltration (crypt 

abscess) 

Inflammation 

Gland eosinophil 
density 

Number of intra-gland 
eosinophils, normalised by the 

gland size 

Gland eosinophil 
infiltration 

Inflammation 

LP lymphocyte 
proportion 

Proportion of lymphocytes within 
nearest 220 nuclei to gland 

Lymphocytic colitis Inflammation 

LP plasma cell 
proportion 

Proportion of plasma cells within 
nearest 220 nuclei to gland 

Colitis Inflammation 

LP neutrophil 
proportion 

Proportion of neutrophils within 
nearest 220 nuclei to gland 

Acute inflammation Inflammation 

LP eosinophil 
proportion 

Proportion of eosinophils within 
nearest 220 nuclei to gland 

Eosinophilic colitis Inflammation 

LP connective tissue 
cell proportion 

Proportion of connective tissue 
cells within nearest 220 nuclei to 

gland 

Desmoplasia Inflammation 

LP inflammatory cell 
density 

Mean distance of nearest 250 
inflammatory nuclei to gland 

General inflammation Inflammation, 
hyperplastic polyps 
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S5. Extended Results 

 
Supplementary Fig 6: Results of IGUANA across the four cohorts used in our experiments compared to IDaRS with different aggregation 
strategies. Here, AT corresponds to the average of top tiles, where top tiles are those with a score above the median. We display the ROC and 
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PR curves along with the respective AUC scores for each method. We also display the specificities obtained at sensitivity cut-offs of 0.97, 0.98 
and 0.99. The shaded areas in the curves and the error bars in the bar plots show 1 standard deviation from the results.   

 

 
Supplementary Fig 7: Impact of the automatic colon biopsy screening tool on clinical practice. For each dataset we show the proportion of 
slides that need to be reviewed to ensure a specific sensitivity. Our target sensitivity is 0.99. We also show the proportion of abnormal slides 
to indicate the minimum number of slides that need to be reviewed to ensure high sensitivity. 
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Supplementary Fig 8: Analysis of false positives in the UHCW dataset. In each panel, we display zoomed in images, the gland that contributes 
most to the prediction, the local feature explanation (corresponding to the top gland) and the global feature explanation. 

Hyperplastic polyp Probability of being abnormal : 0.9873Hyperplastic polyp

Probability of being abnormal: 0.9611 Probability of being abnormal : 0.9762Inflammatory

Probability of being abnormal : 0.9887Inflammatory Probability of being abnormal : 0.9956Inflammatory

GS: Gland size, GM: Gland morphology, GD: Gland density, LN: Lumen number, LC: Lumen composition, LM: Lumen morphology, LS: Lumen size, GED: Gland epithelial density, GLD: Gland lymphocyte density, 
GND: Gland neutrophil density, GEoD: Gland eosinophil density, GEC: Gland epithelial clustering, GECV: Gland epithelial clustering variation, GEO: Gland epithelial organisation, 

GEOV: Gland epithelial organisation variation, LEO: Lumen epithelial organisation, LEOV: Lumen epithelial organisation variation, GES: Gland epithelial size, GESV: Gland epithelial size variation, 
LPLP: Lamina propria lymphocyte proportion, LPPP: Lamina propria plasma proportion,  LPNP: Lamina propria neutrophil proportion, LPEoP: Lamina propria eosinophil proportion, 

LPCP: Lamina propria connective proportion,  ICD: Inflammatory cell density

Probability of being abnormal : 0.9839

Local explanation Global explanationTop Gland Local explanation Global explanationTop Gland

Local explanation Global explanationTop Gland Local explanation Global explanationTop Gland

Local explanation Global explanationTop Gland Local explanation Global explanationTop Gland

Inflammatory
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Supplementary Fig 9: False negative analysis. On the left we show the class counts along with the corresponding number of false negatives. 
On the right, we show the false positive rate per class. For this figure, we don’t consider sub-conditions with minimal examples. 

 
 
S6. DECIDE-AI Checklist 
 
Supplementary Table 4: DECIDE-AI checklist19 indicating where each item was adhered to in the main manuscript. In this study, there was 
no human interaction with the AI tool and hence those items are not applicable. 
Item Number Theme Recommendation Page 

Number 
1-17 AI-specific reporting 

items 
  

1-X Generic reporting 
items 

  

Title and Abstract 
1 Title Identify the study as early clinical evaluation of a decision 

support system based on AI or machine learning, specifying 
the problem addressed. 

1 

I Abstract Provide a structured summary of the study. Consider 
including: intended use of the AI system, type of underlying 
algorithm, study setting, number of patients and users 
included, primary and secondary outcomes, key safety 
endpoints, human factors evaluated, main results and 
conclusions. 

1 

Introduction    
2 Intended use a) Describe the targeted medical condition(s) and problem(s), 

including the current standard practice, and the intended 
patient population(s).  
b) Describe the intended users of the AI system, its planned 
integration in the care pathway, and the potential effect, 
including patient outcomes, that it is intended to have. 

2, 3 

II Objectives State the study objectives. 3 
Methods 
III Research governance Provide a reference to any study protocol, study registration 

number, and ethics approval. 
17 

a b



 xiii 

3 Participants a) Describe how patients were recruited, stating the inclusion 
and exclusion criteria at both patient and data level, and how 
the number of recruited patients was decided.  
b) Describe how users were recruited, stating the inclusion 
and exclusion criteria, and how the intended number of 
recruited users was decided.  
c) Describe steps taken to familiarize the users with the AI 
system, including any training received before the study 

5 

4 AI system a) Briefly describe the AI system, specifying its version and 
type of underlying algorithm used. Describe, or provide a 
direct reference to, the characteristics of the patient population 
on which the algorithm was trained and its performance in 
preclinical development/validation studies.  
b) Identify the data used as inputs. Describe how the data 
were acquired, the process needed to enter the input data, the 
pre-processing applied, and how missing/low-quality data 
were handled.  
c) Describe the AI system outputs and how they were 
presented to the users (an image may be useful). 

3, 4, 5, 
6, 7 

5 Implementation a) Describe the settings in which the AI system was evaluated.  
b) Describe the clinical workflow/care pathway in which the 
AI system was evaluated, the timing of its use, and how the 
final supported decision was reached and by whom. 

7, 8, 9 

IV Outcomes Specify the primary and secondary outcomes measured. 7, 9 
6 Safety and errors a) Provide a description of how significant 

errors/malfunctions were defined and identified.  
b) Describe how any risks to patient safety or instances of 
harm were identified, analysed, and minimized. 

9 

7 Human factors Describe the human factors tools, methods or frameworks 
used, the use cases considered, and the users involved. 

N/A 

V Analysis Describe the statistical methods by which the primary and 
secondary outcomes were analysed, as well as any pre-
specified additional analyses, including subgroup analyses and 
their rationale. 

7, 9 

8 Ethics Describe whether specific methodologies were used to fulfil 
an ethics-related goal (such as algorithmic fairness) and their 
rationale. 

N/A 

VI Patient involvement State how patients were involved in any aspect of: the 
development of the research question, the study design, and 
the conduct of the study. 

7 

Results 
9 Participants a) Describe the baseline characteristics of the patients 

included in the study and report on input data missingness.  
b) Describe the baseline characteristics of the users included 
in the study. 

3, 4, 5 

10 Implementation a) Report on the user exposure to the AI system, on the 
number of instances the AI system was used, and on the users’ 
adherence to the intended implementation.  
b) Report any significant changes to the clinical workflow or 
care pathway caused by the AI system. 

9, 15 

VII Main results Report on the pre-specified outcomes, including outcomes for 
any comparison group if applicable. 

7, 8, 9 

VIII Subgroup analysis Report on the differences in the main outcomes according to 
the pre-specified subgroups. 

N/A 

11 Modifications Report any changes made to the AI system or its hardware 
platform during the study. Report the timing of these 
modifications, the rationale for each, and any changes in 
outcomes observed after each of them. 

7 



 xiv 

12 Human-computer 
agreement 

Report on the user agreement with the AI system. Describe 
any instances of and reasons for user variation from the AI 
system’s recommendations and, if applicable, users changing 
their mind based on the AI system’s recommendations. 

N/A 

13 Safety and errors a) List any significant errors/malfunctions related to: AI 
system recommendations, supporting software/hardware, or 
users. Include details of: (i) rate of occurrence, (ii) apparent 
causes, (iii) whether they could be corrected, and (iv) any 
significant potential effects on patient care.  
b) Report on any risks to patient safety or observed instances 
of harm (including indirect harm) identified during the study 

15 

14 Human factors a) Report on the usability evaluation, according to recognized 
standards or frameworks.  
b) Report on the user learning curves evaluation 

N/A 

Discussion 
15 Support for intended 

use 
Discuss whether the results obtained support the intended use 
of the AI system in clinical settings. 

9, 16 

16 Safety and errors Discuss what the results indicate about the safety profile of the 
AI system. Discuss any observed errors/ malfunctions and 
instances of harm, their implications for patient care, and 
whether/how they can be mitigated. 

15 

IX Strengths and 
limitations 

Discuss the strengths and limitations of the study. 15 

Statements 
17 Data availability Disclose if and how data and relevant code are available. 17 
X Conflicts of interest Disclose any relevant conflicts of interest, including the 

source of funding for the study, the role of funders, any other 
roles played by commercial companies, and personal conflicts 
of interest for each author. 

17 
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