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Supplementary Text S1 

 

Phenotypes 

SPIT 1&2 

 The full description of the task used in SPIT 1&2 samples can be found elsewhere (1). 

Briefly, the task consisted of a practice block (24 trials; 18 go trials; six stop trials) and four 

experimental blocks of 24 trials for a total of 72 go trials and 24 stop trials. Go trials consisted of 

the presentation of one of the two letters (an X or an O) on each trial where participants responded 

by pressing one key of a hand-held game pad for an X and the other for an O. The stop trials 

involved an auditory signal (1000Hz tone presented through headphones at a comfortable listening 

level) which was presented at random on 25% of all trials instructing participants to withhold the 

response on that particular trial. Each trial began with a fixation stimulus which was presented for 

500ms followed by the go-signal (X or O) which was presented for 1000ms. The total duration of 

the trial was limited to 3500ms allowing 3000ms for a go task response. The task paused briefly 

after each block so that the supervisor could check if there were any error messages indicating that 

the participant was not following task instructions. Stop signal delay (SSD) was initially set at 

250ms and then dynamically adjusted in 50ms increments depending on performance: after a 

successful stop trial the SSD was increased by 50ms (to make the stopping more difficult in the 

next trial) and after unsuccessful stop trials – shortened by 50ms.  

Mean GoRT and GoRT SD were calculated based on trials that did not involve a stop 

signal. The SSRT was estimated using the integration method for subjects that: i) meet the racing 

assumption [such that the mean reaction time for failed stop trials was shorter than the mean 

reaction for Go trials] and ii) successfully perform 25%-75% of all stop trials. Go-reaction times 

in which no stop signal was presented were rank ordered and the Go-reaction time that 

corresponded to the probability of inhibition was determined. For example, if a participant 

inhibited 60 % of their Go-responses, one finds the 60th slowest Go-reaction time. All slower Go-

responses would have been stopped; all faster ones would have been executed. Interpolated SSRT 

is estimated by subtracting mean delay from the integrated Go-reaction time (2).  

 

 

 



ABCD Study 

The full description of the SST in the ABCD Study can be found in (3). Briefly, the task 

consisted of 360 trials across 2 runs. Within each run 150 Go trials and 30 Stop trials were 

presented. Each trial lasted for 1000ms: Go trials comprised a response terminated arrow (50% 

rightward facing) followed by a fixation cross of variable length for a total trial duration of 

1000ms; Stop trials comprised the arrow (50% rightward facing) presented for the duration of the 

variable stop signal delay (SSD) followed by a 300ms Stop Signal, and then by a fixation cross for 

a total duration of 1000ms. SSD was varied based on individual performance in 50ms increments. 

Stop trials are separated by 1 to 20 Go trials (mean 4.91) using twelve optimized trial orders. For 

a more detailed description see (4).  

Data from ABCD Study release 2.0 were downloaded from http://dx.doi.org/10.15154/1503209. 

For Go reaction time and its variability, we selected the provided variables 

tfmri_sst_r1_beh_crgo_mrt (mean GoRT), tfmri_sst_all_beh_crgo_stdrt (GoRT SD) and 

restricted analysis to samples with acceptable performance in the task 

(tfmri_sst_beh_performflag=1). Poor performance was defined based on several criteria including 

fewer than 150 Go trials, less than 60% correct Go trials, more than 30% of incorrect Go trials, 

more than 30% of late Go trials (across correct and incorrect trials), more than 30% of 

nonresponsive Go trials, fewer than 30 Stop trials, and Stop trial accuracy lower than 20% or 

greater than 80%. SSRT measures estimated using the integration method were only available in 

release 3.0 (variable tfmri_sst_all_beh_total_issrt, therefore, for consistency with other 

measures, we selected only the subjects that were also available in release 2.0. Additional filters 

released in version 3.0 including the violation of the racing model assumption 

(tfmri_sst_beh_violatorflag=0), task coding errors (tfmri_sst_beh_glitchflag=0), the rate of 

incorrect Stop trials (0.25<tfmri_sst_all_beh_incrs_rt<0.75) and the omission rate of Go trials 

(tfmri_sst_all_beh_nrgo_rt>0.3) were implemented for quality control. Subjects with SSRT 

shorter than 120ms were removed.  

 

MELBOURNE 

Stop signal task (5) was presented in 12 blocks each consisting of 72 trials (54 go and 18 

stop). Each trial lasted 1000ms: Go trials comprised a response terminated arrow (50% rightward 

facing) followed by a fixation cross of variable length for a total trial duration of 1000ms; Stop 



trials comprised the arrow (50% rightward facing) presented for the duration of the variable SSD 

followed by a 200ms Stop Signal, and then by a fixation cross for a total duration of 1000ms. SSD 

was varied based on individual performance in 50ms increments. Subjects that violated the racing 

assumption (such that the mean reaction time for failed stop trials was longer than the mean 

reaction for GO trials) were excluded. Go trial omissions and Go trials with response time <150ms 

were excluded before calculating the mean Go reaction time and its variability. SSRT was 

calculated using the integration method for blocks with not less than 25% (5/18) and not more than 

75% (13/18) of successful stop trials. SSRT was then calculated for each block separately (6) and 

the median of SSRT values across blocks was taken to give a single SSRT value for an individual. 

Participants that had valid data from less than 5 out of 12 blocks as well as with SSRT shorter than 

120ms were excluded. 

 

IMAGEN 

Stop signal task (7) consisted of 480 trials (400 go and 80 stop). Go trials presented a 

stimulus (arrows pointing left or right) for a duration of 1000ms. Stop trials comprised the go 

stimulus presented for a duration of variable SSD followed by a stop-signal (an arrow pointing 

upwards). Stop trials were separated by 3 to 7 Go trials. Stopping difficulty was manipulated across 

trials by varying SSD based on individual performance between 0 to 900ms in 50ms increments 

(initial SSD = 250ms). SSRT was calculated using integration method. Subjects with more than 

80 errors in Go trials and SSRT shorter than 120ms were excluded.  

 

COLORADO 

The preparation for the stop signal task began with a single block of all-go trials (50 trials 

preceded by 10 practice trials) followed by a task practice for 48 trails containing both go and stop 

trials. The task was presented in 3 blocks each consisting of 80 trials (60 go and 20 stop) (8). In 

go trials green arrows were presented pointing left or right; in Stop trials the green arrow turned 

red at the varying SSD. Stopping difficulty was manipulated across trials using a staircase 

algorithm by varying SSD based on individual performance in 50ms increments (initial SSD = 

200ms). Subjects that violated the assumptions of the race model (such that the mean reaction time 

for failed stop trials was longer than the mean reaction for GO trials) were excluded. SSRT was 



calculated using the integration method for blocks with not less than 25% and not more than 75% 

of successful stop trials and the mean across block SSRT values was calculated.  

 

Oregon-ADHD-1000 and Michigan-ADHD-1000  

Children completed the stop task in a single session lasting about 15-20 minutes. They sat 

facing a computer screen accompanied by a trained examiner who provided verbal instructions 

from a practiced script. The examiners were blind to child diagnosis and study hypotheses. The 

computer screen displays an X or an O on a black and white 14" computer monitor in random 

sequence. Children first complete two sets of 32 practice trials during which they practice pressing 

the designated key on the keyboard for the X or the O as quickly as possible, using two fingers on 

their dominant hand. They then completed a second set of 32 practice trials during which they 

again pressed the appropriate key, but this time trying not to hit any key when hearing a stop tone. 

Children are instructed to respond as quickly as possible without making errors on the X/O 

discrimination, that they will not be able in every instance to stop, and that they should not wait 

for the beep. The experimenter remained with each child throughout the task. In the experimental 

procedure, a fixation point appeared at the center of the screen for 500ms at the beginning of each 

trial. It was replaced by an X or O for 1000ms. The child responds with a key press, and the screen 

then is blank for 1000ms. Four blocks of 64 trials were administered, with a rest in between each 

block, for a total of 256 trials. On 25% of the trials, the stop tone sounded for 100ms. Thus, a total 

of 64 trials (16 per block) included the stop signal tone. The timing of the stop tone was varied to 

implement the tracking procedure as follows. The SSD was initially set at 250ms. If the child failed 

to inhibit their response after the tone, on the subsequent trial the SSD was decreased by 50ms 

(making it easier to stop next time); if they inhibited successfully, SSD was increased by 50ms on 

the next trial (making it harder to stop next time). Probability of stopping successfully is thus 

maintained at approximately 50%.  

 

Prior to creating the total score across blocks, the following validity criteria were applied 

to each block: a) stop accuracy between 30-70%, b) hit accuracy greater than 75%, and c) mean 

RT for the block between 100-1500ms (to avoid anticipations on current or next trial). Mean go 

response time (GoRT) was calculated by averaging the correct go-trial response times across all 

blocks. SSRT, the primary measure of response inhibition, was calculated for each valid block by 



the integration method following previously published guidelines (9); SSRTs less than 50ms were 

considered invalid. The practice trials and the first block of data were removed to exclude warm-

up effects. Valid block SSRT scores were averaged to create the final outcome variable. 
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Stop signal reaction time calculation using integration method 

The integration method (9,10) for estimating the stop signal reaction time is based on the 

“integration” of the reaction time distribution and identifying the point at which the area under the 

curve is equal to the probability of response in stop trials [p(respond|signal)]. This way the SSRT 

corresponds to the nth RT, where the n is the number of go RTs in the distribution multiplied by 

the p(respond|signal). For instance, if there are 300 go trials and the probability of response to a 

stop trial is 0.45 [p(respond|signal) = 0.45], then the nth RT is the 135th (300 x 0.45) fastest go RT. 

SSRT is then estimated as a difference between nth RT and mean stop signal delay (SSD – the 

time between the presentation of a go and stop stimuli). For the most accurate estimate, go trials 

should include all trials with a response while replacing go omissions (trials where a participant 

did not respond) with the maximum RT to compensate for the missing response.  

 

Supplementary Text S3 

 

Genotyping and genotyping QC 

SPIT1, SPIT2 and ABCD Study data were processed using the same pipeline deposited at 

http://bitbucket.org/mathieu-lemire/sk-scripts-qc-genotypingarrays. In brief, samples from a given 

study and given genotyping array were first stratified based on their ancestry when needed (based 

on self-report and/or the first 3 principal components – in which case a sample was assigned the 

ancestry of the nearest sample from the 1000 Genomes project). QC procedures were applied to 

each stratum separately. Samples were excluded if their call rate was below 97%, a heterozygosity 

rate of 6 times the interquartile range from the closest quartile and/or their predicted and reported 

sex were mismatched. One copy of duplicated samples was retained based on highest call rate.  

Monozygotic twin pairs were split – only the member with the lowest alphanumerical ID was 

retained. Subjects genotyped on plate number 461 in the ABCD Study dataset were removed due 



to poor data quality as recommended in the ABCD Study documentation. SNPs were excluded if 

they had call rates below 97%, they deviated from the rules of Hardy-Weinberg equilibrium at an 

FDR <1% and/or were duplicates of other SNPs, based on position and alleles (only the SNP with 

the highest call rate was retained).  

 

The quality control for the MELBOURNE and IMAGEN study centers involved initially 

excluding subjects with very low-genotyping score (>10% of missing data) and SNPs with 

genotyping call rate <90%. SNPs with a minor allele frequency (MAF) < 0.01 were also removed. 

Further, individuals with: i) disparities between the recorded and observed sex status; ii) with low 

genotyping score (>5% of missing data); iii) cryptic relatedness higher than 0.25 and iv) displaying 

outlying mean heterozygosity (greater than ±3 SDs from the sample mean) were excluded. To 

identify potential sources of population stratification multidimensional scaling (MDS) was 

performed using HapMap3 dataset. Consequently, subjects exceeding ±2 SD on the 1st or 2nd 

principal components were excluded. SNPs with low genotyping call rate <95%, MAF< 0.01 and 

significantly departing from Hardy-Weinberg (HW) equilibrium (p< 10-7) were removed before 

imputation.  

 

The COLORADO sample was genotyped on the Axiom Precision Medicine Research array 

2.0 chip or the Affymetrix 6.0 chip. QC consisted of removing indels, rare variants (MAF<0.01), 

variants with a high missing call rate (GENO<0.02) and variants out of Hardy-

Weinberg equilibrium (p<10-4). Those with cryptic relatedness >0.2 were removed after 

computing a GRM. 

 

The Oregon-ADHD-1000 and Michigan-ADHD-1000 cohorts were both genotyped using 

the Illumina PsychChip v1.1. For the Oregon cohort, all individuals had genotype call rates >98%. 

SNPs were excluded if they had a call rate <97%, Hardy-Weinberg equilibrium deviation 

(p<10!"), ambiguous strand information, or differential call rates between genotyping batches or 

ethnic groups. SNPs located in regions of suggestive copy number anomalies as calculated by B-

allele frequency were also removed. Additional SNPs determined by Illumina to perform poorly 

across populations were excluded. For the Michigan cohort, all individuals had a genotyping rate 

>97%. Genotyped SNPs were excluded from analysis if their call rate was < 97%, had Hardy-



Weinberg equilibrium p-value <10-5, had a call rate difference between ADHD cases and controls 

>2%, had a batch effect FDR adjusted p-value < 0.05, or were discordant among duplicate samples. 

 

Supplementary Text S4 

 

Multiple testing correction for PGS estimation 

An effective number of independent PGS (𝑁#) can be calculated as (11,12): 

𝑁# = 1 + (𝑁$ − 1))1 −
𝑉𝑎𝑟(𝜆)
𝑁$

., 

where 𝑁$ is the number of p-value thresholds used (here, 7) and 𝜆 are the eigenvalues derived from 

the 𝑁$ PGS (centered and scaled to unit-variance). If all PGS were uncorrelated, then all 

eigenvalues would take the value 1 and have no variance, leading to 𝑁#=𝑁$, whereas if all were 

perfectly correlated, the first eigenvalue would take the value 𝑁$ while all others are 0, leading to 

𝑁#=1. Since the overall correlation between the PGS (more generally, variables) can be captured 

by the variance of the eigenvalues, the expression represents the proportional reduction in the 

number of PGS after accounting for their correlations (11,12). 

 

Supplementary Text S5 

 

Simulated whole genomes 

The program consists of a collection of scripts that uses plink and UNIX tools to simulate 

whole genomes that are “descendants” of samples from the 1000 Genome project. An alternative 

and viable choice for the simulations presented here would have been to use HAPGEN2 (13), but 

we wanted the flexibility of designing a tool that we could easily expand to simulate sibs or other 

relatedness, or ad-mixed samples for other research projects. We started with the samples from the 

1000 Genomes project (phase 3 version 5; downloaded from 

http://bochet.gcc.biostat.washington.edu/beagle/1000_Genomes_phase3_v5a/b37.vcf/) as the 

founders of our simulated samples. We extracted haplotypes from the phased diplotype data and 

stored them in plink format (these are thus stored as homozygous genotypes). Haplotypes were 

randomly paired, and recombination breakpoints were randomly chosen based on an interpolated, 

sex-averaged genetic map (http://compgen.rutgers.edu/rutgers_maps.shtml). The recombinant 



haplotypes could then serve to construct the next generation, even though we did not simulate 

generations per se:  for illustration, we calculated that, in order to grow the 503 EUR from the 

1000 Genomes into a population of 100,000 simulated samples, 15 generations would be sufficient 

(assuming a growth rate of 1.5% per year and 25 years per generation). The genetic length of 

chromosome 1 is about 280 cM, or an average of 2.8 recombination per meiosis (generation). 

Following one lineage over the course of 15 generation, this translates to 42 recombination events 

on chromosome 1. For simplicity, instead of simulating 15 generations of mating, we simulated 

42 recombinations, randomly selecting haplotypes between each event (which increases diversity). 

For other chromosomes, the number of events was proportional to the genetic lengths. The number 

42 of recombination events was fixed and not an average over a probabilistic model. The idea was 

not to mimic a proper genealogy and a probabilistic recombination model that is as close as 

possible to the underlying biology, but rather introduce enough recombination events in order to 

end up with sets of unrelated samples, preserving as much of the original linkage disequilibrium 

as possible. This has the advantage of being easy to implement in a script: we only used plink to 

split and recombine data on both sides of a breakpoint, as well as bcftools, vcftools and standard 

UNIX commands. Using a two-hundred node computer cluster, we simulated 100,000 whole 

genomes over the course of 3 days. Our scripts are available in a package named RECOMB 

available at https://bitbucket.org/mathieu-lemire/sk_recomb/src/master/. 

 

Simulated trait values 

We randomly selected N causal variants (CVs) among the ones having MAF>1% in the 

EUR samples from the 1000 Genomes project. Each were independently assigned an effect size 

drawn from a normal distribution with mean 0 and variance 1, denoted bi for the minor allele of 

the ith CV.  The additive genetic score at these N variants of an individual having gi mean-centered 

minor alleles at CVi is:  

 

𝐴 = ∑ 𝑔%𝛽%% . 

 

To end up with a trait T that has heritability h2, A was complemented with a normally distributed 

environmental residual E that has mean 0 and variance equal to Var(A)*(1-h2)/h2: 

 



𝑇 = 𝐴 + 𝐸. 

 

Trait values can then be standardized to have unit variance if desired. In our simulations, the 

heritability was fixed for EUR (our only ancestry with a significant heritability estimate). For other 

ancestries, the heritability was free to differ according to the allelic spectra of the causal variants.  

In order to do so, the variance of E for other ancestries was taken to be the value calculated in 

EUR. We surmise that the variance of E is driven mostly by the experimental conditions, which 

should not vary based on the ancestry of the participant performing the task.  

 

Some (14–16) have used standardized effect sizes 𝛽%/72𝑓%(1 − 𝑓%) in lieu of 𝛽% (where 𝑓% are allele 

frequencies); i.e. 

 

𝐴 = ∑ 𝑔%𝛽%% /72𝑓%(1 − 𝑓%). 

 

This increases the range of effect sizes for lower frequency variants, motivated by selective 

pressures but also for optimality of the LD score regression framework (14). Since the bi are 

independent with mean 0 and variance 1 and independent of	𝑔%, and the variance of  𝑔% is 

2𝑓%(1 − 𝑓%), then under that model the variance of A is equal to N, irrespective of the allelic 

frequencies of the causal variants, and thus irrespective of the ancestries. This means that the 

heritability would be the same in all ancestries unless we arbitrarily and artificially set it to different 

values by varying Var(E). This motivated our choice for using an un-standardised (neutral 

selection) model for effect sizes. We surmise that our traits are not under strong selective pressures.   

 

GWAS with simulated traits and genomes 

The simulated trait and genomes were assessed for association as described in the main 

text. Since trait values were not simulated to be associated with covariates, covariates were not 

included in the analyses (alternatively, trait can be viewed as residuals after covariate adjustment). 

The simulated sample sizes were taken to be the ones from Table 1 (GoRT SD). CVs were assumed 

to be ungenotyped and were removed from the analyses. A CV was deemed to have been 

“discovered” if at least one SNV in LD with it (r2>0.5 in at least one ancestry) reached genome-

wide significance p<5x10-8 (for computational speed we only analysed SNVs in LD with CVs, 



except for ℎ&'()  validation from LDSC where all HapMap3 SNPs were analysed). Power was 

defined to be the proportion of simulated replicates where at least one CV was discovered at 

genome-wide significance. The number of causal variants (N) varied from 100 to 2000; 200 

simulated replicates were used for each N.    



SUPPLEMENTARY FIGURES 

 
Figure S1. Fine scale EUR ancestry in SPIT1 sample. First four principal components representing the fine scale 
population structure: A) PC1 vs PC2; B) PC2 vs PC3; C) PC3 vs PC4. The different symbols indicate the common 
ancestry (self-reported) of the four grandparents of the participants. Dots without symbols represent participants 
whose four grandparents do not share the same fine-scale European ancestry or have missing data. No additional 
ancestry clusters can be derived from the fourth component and likely represent technical variations.  

 

 
Figure S2. Multidimensional scaling. Three axes of genetic variations (MDS) used in the trans-ethnic regression 
framework, calculated with MR-MEGA from allele frequencies derived from summary statistics: A) MDS1 vs MDS2; 
B) MDS1 vs MDS3; C) MDS2 vs MDS3. Each point represents an individual study, color-coded based on participant 
ancestry.  
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Figure S3. GWAS for GoRT SD by ancestry. Manhattan plots and corresponding qq-plot for (A) AFR; (B) EAS; 
(C) EUR; (D) SAS. Dashed lines on the Manhattan plots indicate p<5x10-8 threshold. Gray lines on the QQ plots 
represent 95% confidence bands. 
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Figure S4. GWAS for mean GoRT by ancestry. Manhattan plots and corresponding qq-plot for (A) AFR; (B) 
EAS; (C) EUR; (D) SAS. Dashed lines on the Manhattan plots indicate p<5x10-8 threshold. Gray lines on the QQ 
plots represent 95% confidence bands. 
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Figure S5. GWAS for SSRT by ancestry. Manhattan plots and corresponding qq-plot for (A) AFR; (B) EAS; (C) 
EUR; (D) SAS. Dashed lines on the Manhattan plots indicate p<5x10-8 threshold. Gray lines on the QQ plots 
represent 95% confidence bands. 
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SUPPLEMENTARY TABLES 

 
Supplementary Table S1. Genotyping arrays used in each study.  

Study Genotyping arrays 

ABCD Study Affymetrix NIDA SmokeScreen Array 

SPIT1 

Illumina HumanCoreExome-12v1.0_B (EAS, EUR) 

Illumina HumanOmni1-Quad V1.0_B (192 EUR) 

Illumina GlobalDiversityArray-8v1-0_A1 (SAS) 

SPIT2 Illumina GlobalScreeningArray-24v3-0_A1 

MELBOURNE Illumina Innium PsychArray-24v1.2 BeadChip 

IMAGEN Illumina Human610-Quad Beadchip and Illumina Human660-Quad Beadchip 

COLORADO Axiom Precision Medicine Research Array 2.0 

OHSU Illumina PsychArray v1-1 

MSU Illumina PsychArray v1-1 
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