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Abstract: Responding to a rapidly evolving pandemic like COVID-19 is challenging, and involves
anticipating novel variants, vaccine uptake, and behavioral adaptations. Human judgment systems can
complement computational models by providing valuable real-time forecasts. We report findings from a
study conducted on Metaculus, a community forecasting platform, in partnership with the Virginia
Department of Health, involving six rounds of forecasting during the Omicron BA.1 wave in the United
States from November 2021 to March 2022. We received 8355 probabilistic predictions from 129 unique
users across 60 questions pertaining to cases, hospitalizations, vaccine uptake, and peak/trough activity.
We observed that the case forecasts performed on par with national multi-model ensembles and the
vaccine uptake forecasts were more robust and accurate compared to baseline models. We also
identified qualitative shifts in Omicron BA.1 wave prognosis during the surge phase, demonstrating rapid
adaptation of such systems. Finally, we found that community estimates of variant characteristics such as
growth rate and timing of dominance were in line with the scientific consensus. The observed accuracy,
timeliness, and scope of such systems demonstrates the value of incorporating them into pandemic
policymaking workflows.

The COVID-19 pandemic represents one of the most devastating pandemics in over a century,
leading to more than 6 million deaths globally in the past two years. In addition to its huge toll on
human life, it has led to an enormous economic and societal burden that will continue to impact
the world long after the epidemiological effects subside. As of Spring 2022, there have been six
prominent waves of infection at the national level in the United States, driven by various factors
ranging from behavioral and policy changes, seasonality, and emergence of novel variants. The
first Omicron wave, from November 2021 to March 2022, was caused primarily by the BA.1
sublineage of the Omicron variant (B.1.1.529). As seen in [1], this variant was the fastest until
then to go from emergence to dominance (50% prevalence) to 100% prevalence, all within 5
weeks. Recent seroprevalence surveys [2] suggest that the BA.1 wave caused a significant
number of infections, with nearly 25% of the population additionally infected (seroprevalence
increase from 33.5% to 57.7% from December 2021 to February 2022), and up to a third of
infected children aged 0-11 becoming newly seropositive in this period. This wave also led to
sizable increases in at-home testing [3], event cancellations [4], and a renewal of widespread
mask usage, in addition to other behavioral adaptations. While the Omicron BA.1 wave led to
fewer deaths and hospitalizations per infection compared to the previous Delta wave, recent
studies show that the variant could have been as deadly as prior waves upon adjusting for
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vaccinations, demographics, and comorbidities [5]. Furthermore, long-lasting physiological
changes with poorly understood effects may remain even for those who have had mild cases.

Policy making during a pandemic is fraught with uncertainty in situational awareness (i.e.,
fog-of-war). Although epidemiological surveillance systems improved significantly during this
pandemic, they still lag behind where they could be, given accessible, proven, and cost-effective
capabilities that exist today. Further, recent advances in data science and availability of diverse
streams of information (e.g., wastewater, genomics, case surveillance, search trends) allow us
to assimilate them into a coherent picture and provide a reasonable prognosis [6]. Since early
2020, computational models have been influential in shaping a shared understanding of both
facts on the ground and likely future scenarios within the scientific and policy communities,
providing timely short-term forecasts and medium-term scenario-based projections for guiding
policymakers and the general public. They have ranged from statistical and machine learning
approaches that aim to exploit the patterns in the available data to mechanistic approaches that
integrate available datasets with domain knowledge about their interactions and evolution.
Multi-model ensembles have become the norm at the federal level [7, 8] for providing robust
forecasts and projections. While the number of models range from 6-10 (for scenario-based
projections) to more than 40 (for short-term forecasts), a rapidly spreading variant like Omicron
requires quickly integrating emerging insights from preprints and adapting these models
on-the-fly to reporting artifacts in the data, which is a significant undertaking.

In recent years, a complementary approach to model-driven epidemiological forecasting has
emerged in the form of human judgment. Building upon the success of ‘wisdom-of-crowds’
approaches in other contexts [9, 10, 11], crowdsourced efforts for forecasting infectious disease
outbreaks have been developed and have found reasonable success and adoption. Examples
of early work in this area include [12, 13, 14]. [12] built an interactive platform for a small
collection of disease modeling experts to ‘draw’ future trajectories of an ongoing influenza
season, which are combined to provide short-term forecasts 1 to 4 weeks into the future. While
this method performed among the best even amid computational models, the authors
subsequently noted that this was difficult to scale and operationalize with the right incentives.
[13, 14] have aimed to incorporate model-based forecasts and have allowed users to choose,
rank, or combine them to create their forecast. A more detailed review of techniques prior to
COVID-19 can be found in [15]. During the COVID-19 pandemic, this crowd-sourced approach
has been used to evaluate vaccine policies [16] and combined with computational models to
produce hybrid/ensemble forecasts [17, 18]. Recently, for the emerging monkeypox outbreak,
human judgment forecasts were used to estimate cases, deaths, and impact across Europe, US
and Canada [19].

In order to evaluate and effectively integrate such human judgment into real-time policy making,
we conducted a Real-time Pandemic Decision Making (RPDM) tournament
(https://www.metaculus.com/tournament/realtimepandemic/) in partnership with the Virginia
Department of Health, on the community forecasting platform Metaculus. While other similar
tournaments (https://www.metaculus.com/tournament/vdh/) focused on social, economic, and
allied indicators over a longer horizon, the RPDM tournament focused on regularly renewed
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forecast questions pertaining to epidemic time series of reported cases, hospitalizations, and
vaccine uptakes. Further, during the Omicron wave, a set of independent questions related to
the pathogen’s characteristics and potential policy decisions were posted on the same platform
(https://www.metaculus.com/questions/8759/forecasting-coronavirus-variant-omicron/).
In addition to individual forecasts, the platform generated a weighted ensemble (hereon referred
to as the Metaculus Prediction). More details on the tournament structure, the questions,
scoring rules, and ensemble generation are described in the Methods Section. In this paper, we
primarily focus on the performance of the Metaculus prediction across various questions during
the Omicron wave and summarize insights from a few key questions as part of the independent
Omicron set. It is to be noted that the tournament structure and platform allowed for real-time
updates to forecasts, as well as reformulation of the question set at different key points during
the BA.1 wave, thus providing a unique lens into adaptation of human judgment systems during
a rapidly evolving phase in the COVID-19 pandemic characterized by high uncertainty.

Results
Quantitative evaluation of forecasts
The forecasts were gathered through 6 tournament rounds spanning 18 weeks during
November 2021 through March 2022. These rounds can be roughly grouped into two phases, of
approximately 2 months each, namely: the surge phase (Rounds R1-R3 spanning Nov 12th,
2021 to Jan 14th, 2022), and the decline phase (Rounds R4-R6 spanning Jan 14th, 2022 to
March 18th, 2022) of the Omicron wave. These two phases are divided by a central week-long
peak period in cases and hospitalizations: the seven-day average of reported cases in Virginia
peaked on January 13th, 2022, while hospitalizations peaked roughly a week later on January
21st, 2022. Some forecasting questions were modified between the phases to target the
variables of interest better (see Table S1). Also, multiple forecast horizons were elicited for each
variable to compare forecast uncertainty over time (see Table S2). Additionally, for variant
characteristics, we use forecasts from a set of questions launched separately on the platform
(see Data section in Methods).

Figures 1 and 2 show the performance metrics of these forecasts across targets and forecast
horizons. Further, these metrics are captured at the beginning as well as the end of the forecast
period (see Methods). As can be seen in case forecasts, they were mostly underestimated
during the surge phase, whereas the decline phase was characterized by overestimates. This
was especially true of longer forecast horizons (4wk ahead and 8wk ahead). While the
performance generally improved over the forecast period, there were instances where the final
estimates were less accurate than the early estimates (especially for 8wk ahead). At the time of
closing, most vaccination forecasts were within a percentage point (pp.) of the ground truth,
even in cases where they originally were off by up to 10 pp. For long-term case trends, the peak
magnitude was mostly underestimated (during the surge phase), while the trough magnitude
was mostly overestimated (during the decline phase). Further, as seen for R6 peak timing, the
Metaculus prediction did not anticipate the surge due to subsequent Omicron variants (BA.2,
BA.2.12.1), thus leading to the maximum error of 84 days (12 weeks).
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(a) (b)

(c)
Figure 1: Performance metrics for case (%), hospitalization (%), vaccine forecasts (pp.)
Underpredictions are shown in shades of blue, while overpredictions are shown in shades of red. The errors shown
correspond to the first (day 1) and last (day 7 or 21 depending on the question) estimates during the open period.
While case and hospitalization forecasts are summarized through percentage errors of the median, vaccination
forecasts are summarized in percentage point difference. (a) Early rounds (R1-3) are characterized by case
underpredictions, especially for the period around Omicron peak, whereas later rounds (R4-6) have overpredictions
for both cases and hospitalizations (b). (c) Vaccine uptake, especially for boosters, is overestimated in the beginning
but converges near the ground truth by the end of the forecast period. Comparison of case forecasts to those from
multi-model ensemble is shown in Figure 3(a) & 3(b), while vaccine forecasts are compared to baseline models in
Figure 4(c). Qualitative trajectories of the case and vaccination forecasts during R1-3 are available in Figures 5 & 6.
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(a) (b)

Figure 2: Performance of peak and trough forecasts (days, %) Underpredictions are shown in shades of
blue, while overpredictions are shown in shades of red. The errors shown correspond to the first (day 1) and last (21)
estimates during the open period. Note that peak and trough forecasts are sought for the trajectory over the next 12
weeks, hence the maximum error can be +/- 84 days. (a) Peak timing forecasts during the early rounds, especially for
the BA.1 surge, were within approximately a week compared to ground truth. (b) Similarly, the trough timing forecasts
during R2-4 were within a week. Peak magnitude forecasts during R1-3 are characterized by significant
underestimation, while the trough magnitudes are overestimated during R3-5. Qualitative evolution of the peak and
trough forecasts through rounds R1-6 are shown in Figure 7.

Comparing case forecasts to multi-model ensemble
In order to further quantify the evolution of forecast performance over the forecast horizon, we
utilize two metrics, namely ( for vaccine uptake) and (see Methods𝑚𝑒𝑑𝑀𝐴𝑃𝐸 𝑚𝑒𝑑𝑀𝐴𝐸 𝑖𝑞𝑟𝐶𝑂𝑉
for details). As seen in Figure 3, these can be computed for each question across rounds and
forecast horizons. The performance of the Metaculus prediction is then summarized by
combining across forecasts at a given horizon, and compared with a similar metric for all
forecasts from the unweighted ensemble of the CDC ForecastHub spanning the same period as
the six rounds. While the Metaculus prediction is sampled at a daily resolution, the ForecastHub
ensemble is only sampled at a weekly resolution thus we obtain performance metrics for
forecast horizons corresponding to 7, 14, 21, 28 days.

We note that the Metaculus prediction has comparable to the ForecastHub ensemble𝑚𝑒𝑑𝑀𝐴𝑃𝐸
through the entire window (from the forecast horizon of 28 days ahead). Further, the of𝑖𝑞𝑟𝐶𝑂𝑉
the Metaculus prediction is comparable to that of ForecastHub during the same window, with
marginally better performance for a forecast horizon less than 2 weeks. As seen in the visual
comparison (also presented in log scale), while both approaches underestimated the Omicron
surge, the Metaculus prediction has tighter uncertainty bounds post-peak.
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(a) (b)

(c) (d)
Figure 3: ForecastHub vs. Case forecasts Round 1-6. (a) ForecastHub forecasts have comparable MAPE to the
median Metaculus prediction for the same forecast horizon across Rounds 1-6, except around 1-week ahead when
Metaculus prediction is marginally better. (b) Similarly, the average coverage of IQR is generally comparable for the
Metaculus prediction to the ForecastHub ensemble, with higher coverage around 1-week ahead. The forecasts are
shown in (c) linear and (d) log scales to highlight the differences at peak and trough.

Comparing vaccine forecasts to linear baseline
As for vaccine uptake forecasts (Figure 4), we use medMAE to quantify the error in percentage
points for each of the variables, and note that with an exception of 5-11 year-old uptake in R1,
they are within 1% point of the ground truth with at least 3 weeks lead time. They also
demonstrated higher IQR coverage (nearly 70%) through most of the forecast horizon. Further,
to evaluate the utility of these forecasts, we compare them with linear baselines using different
past regression windows (W = 3,5,7 days). Each of these models (labeled as ‘lincastW’ in
Figure 4 where W is the regression window) perform linear regression on the recent W days of
data and project forward with the same slope. We note that, in most instances, the Metaculus
median prediction is more accurate at longer horizons than the linear estimate. Although there
are instances where the linear model has a lower error, there is a good lagged correlation
between the baseline and Metaculus prediction in trends.
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(a) (b)

(c)
Figure 4: Vax forecast metrics: Round 1-3. (a) Except for 5-11 year-old vaccine uptake in the early phase during
Round 1, others have consistent error performance, achieving within 1 percentage point of the target at least 3 weeks
out. (b) The uncertainty intervals also seem to cover the ground truth on an average 70% of the time over the 4-week
forecast horizon. (c) Compared to linear model baselines with different regression windows (3,5,7 days), the
Metaculus median prediction is more robust and accurate for longer horizons.

 . CC-BY 4.0 International licenseIt is made available under a 
 is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity. (which was not certified by peer review)

The copyright holder for this preprint this version posted October 13, 2022. ; https://doi.org/10.1101/2022.10.12.22280997doi: medRxiv preprint 

https://doi.org/10.1101/2022.10.12.22280997
http://creativecommons.org/licenses/by/4.0/


Qualitative patterns in case and vaccine forecasts
Even within the surge phase, forecasts during the three rounds were qualitatively different. R1
was characterized by limited knowledge of Omicron (except possibly some indicators outside
the US). By R2, we saw a clear increase in infections as Omicron rose to dominance. This was
further accelerated through R3, culminating in a peak of reported cases. Due to these
differences in the information landscape over time, and heightened uncertainty during the surge,
it makes sense to study these three rounds qualitatively in isolation.

From Figure 5, it is interesting to note that in R1, the short-term forecasts are well aligned with
the latest ground truth, indicating limited trend signals being identified by forecasters. It is least
influenced by Omicron, and the Metaculus prediction does not indicate seasonal effects would
result in a new wave either (as seen in the 8wk ahead forecast). During R2, rapid changes in
forecasts for 4wk and 8wk ahead can be seen, although it still matches the most recent ground
truth (instead of projecting the exponential growth forward). It is worth noting that the users are
limited by (and potentially influenced by) the range set as part of the question (indicated by the
dashed blue line in Figure 1), and thus the upper bound limits some of these forecasts (see
Table S1 and Table S3). In R3, even as the ground truth exceeded the upper bound, the
Metaculus prediction was noticeably below it until the final few days. Finally, the 8wk ahead
forecast in R3 can be seen as an early estimate of how long the Omicron wave may last,
although predicting a slower decline than what eventually played out.

Figure 5: Case forecasts during the surge phase across different forecast horizons: Each column corresponds
to a round (R1, R2, or R3), and each row corresponds to a forecast target horizon (2wk, 4wk, 8wk). Each panel
shows the ground truth during the open period (black) and further extended beyond forecast horizon (gray).
Metaculus predictions (blue) are shown with median and interquartile range during the open period for each question.
The forecasts correspond to the time point denoted by the orange line. Final Metaculus prediction and the resolutions
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are shown as blue and orange diamonds. Dashed blue lines show the upper bound of the forecast range. While R1
(pre-Omicron) is characterized by forecasts tracking the ground truth, subsequent rounds show rapid adaptations as
the surge becomes evident. Some of these forecasts (e.g., R3_2wk, R3_4wk) are concentrated around the upper
bound. See Figure 1 for quantitative evaluation at the beginning and end of forecast period, and Figure 3 for
comparison to the multi-model ensemble.

As for vaccine uptake forecasts (Figure 6), the surge phase covered various facets, ranging
from rollout among 5-11 year olds, booster coverage, and overall full vaccination coverage.
Since it corresponded to the early days in the rollout of vaccines for children under 12, R1
forecasts for uptake among 5-11 year-olds are more unstable. Across all these forecasts, the
early estimates are optimistic, and a downward trend is observed as forecasts are continuously
updated, and we approach the closing time for forecaster input. Some of these are also possibly
influenced by the hidden period – the first 3/7th of the forecast horizon of each question, during
which the community median is not publicly displayed – and post-holiday effects, as seen in R3
booster coverage forecasts.

Figure 6: Vaccine forecasts during the surge phase across different forecast horizons: Each column
corresponds to a round (R1, R2, or R3), and each row corresponds to a forecast target (5-11 year olds, at least 1
dose, boosters) at the one-month horizon. Each panel shows the ground truth during the open period (black) and
further extended beyond forecast horizon (gray). Metaculus predictions (blue) are shown with median and
interquartile range during the open period for each question. The forecasts correspond to the time point denoted by
the orange line. Final Metaculus prediction and the resolutions are shown as blue and orange diamonds. Dashed
blue lines show the upper bound of the forecast range. Most vaccine uptake forecasts begin as overestimates and
subsequently are adjusted downward. This is especially evident for booster uptake forecasts during R3, with a nearly
10 percentage point drop over 3 weeks. Higher variability is seen in R1 5-11 year due to limited historical data. See
Figure 1 for quantitative evaluation at the beginning and end of forecast period, and Figure 4 for comparison to
baseline models.
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Qualitative trends in peak and trough forecasts
Long-term forecasts are inherently challenging to make due to changing behavioral variables
(e.g., mask usage, social isolation, work-from-home, restricted travel) and policy changes. This
is further accentuated during the emergence of novel variants since the exact magnitude and
duration of their impact are unclear. We notice (Figure 7) that through the surge phase, this is
reflected in the questions pertaining to peaks and troughs in the next 12 weeks for each round.
While the peak timing forecast is set around mid-January from Round 1, this is more indicative
of a historical estimate (from Winter 2020-21), hence the higher uncertainty. As Omicron
emerges and surges, this estimate becomes tighter but does not change in median value.
However, the effect of Omicron is observable through the increasing values for the peak
magnitude forecast through Rounds 1-3. Likewise, while there is significant uncertainty
regarding the ‘trough’ point in R1, by R2, the impact of the Omicron surge is evident, with most
forecasters estimating the wave to last at least 12 weeks (until Feb 25th, 2022) from the start of
R2 (Dec 3rd, 2021). It is also interesting that by R3, this estimate ‘switches’ to the right extreme
of the forecast range, indicating that forecasters estimated the wave to be below the starting
levels (on Dec 24th, 2021) in 12 weeks (by Mar 18th, 2022). With the benefit of hindsight, we now
observe that both these forecasts were quite reasonable. During the decline phase, the peak
forecasts were less informative, since they defaulted to the start of the forecast range (implying
a continued decline from the Omicron wave). While this turned out to be true for rounds 4 and 5,
for Round 6, due to the BA.2 wave, the true maximum was on May 20th, 2022, thus leading to
an error of 84 days. One can also observe that the trough timings were overestimated for R5-6
(hinting at continued decline), while the magnitude forecasts were roughly aligned with the
ground truth.
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(a)

(b)

Figure 7: Comparison of peak/trough forecasts over R1-6. The median and interquartile ranges for (a) peak and
(b) trough timing and count forecasts are combined and tracked over the 21-day forecast period. The final forecasts
from each round are shown with a black outline on the marker. Both peak and trough forecasts during the Omicron
BA.1 surge phase are characterized by significant updates. During the decline phase, while peak forecasts default to
the left end of the forecast range, the trough forecasts are reasonably consistent.

Crowdsourced estimates for variant characteristics
Finally, Figure 8 shows that the value of such human judgment platforms go beyond just
time-series forecasting. In both these cases, they are used to obtain timely best-guess
estimates of variant characteristics and act as a crowdsourced curation of emerging literature.
Figure 8(a) and 8(b) shows sharp adjustments in Omicron dominance time during December
along with the underlying growth rate advantage relative to Delta. While initially forecast to be
dominant only by mid-March 2022, the ensemble quickly converged in the latter half of
December 2021, which matches now-known CDC estimates available online
(https://covid.cdc.gov/covid-data-tracker/#variant-proportions) [Lambrou2022]. This is especially
notable given that the CDC Nowcast estimates at the time were noisy —the estimate made on
December 20 for the week of December 12-18 was 73.2% (95% CI: 34.0, 94.9) for nationwide
Omicron prevalence. However, many forecasters on the platform quickly took issue with this and
said that this estimate was implausible given the estimated growth rate of Omicron. Revised
estimates for the week of December 12-18 later showed that Omicron prevalence for that week
was much lower — with a point estimate of 22.5%, outside of the confidence interval of the
previous estimate. Omicron indeed would not become the dominant variant until later in
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December. In this way, beyond just forecasting when Omicron would become dominant, the
forecasters also served as a helpful check on the plausibility of modeled real-time estimates.

(a) (b)

(c)
Figure 8: (a) Omicron prevalence forecasts; (b) Omicron growth rate forecasts; (c) Likelihood of Omicron
severity. Early convergence on severity. Compare with literature. (a) After initial noisy estimates, the forecast for
Omicron dominance timing steadily declines from mid-March to mid-December through the forecasting period. (b)
This is also reflected in the estimated growth rate advantage, which steadily climbs from 10% to 30% during the
forecast period. (c) Finally, the likelihood of relative severity shows significant updates around December 23rd

corresponding to new evidence becoming available through preprints.

Likewise, growth rate forecasts increased from almost 20% (nearly twice as fast as Delta over
Alpha) to 30% (unprecedented in prior variants but observed in other countries like South Africa,
Denmark, and Belgium) over the forecasting period from late November to mid-December. This
estimate of the growth rate advantage of Omicron over Delta was a real-time attempt to
estimate this key parameter to inform the answers to other questions (e.g., when Omicron would
overtake Delta as the dominant variant). This question was purposefully set up to resolve soon
after the forecasting period and preclude the possibility of other sub-variants of Omicron
influencing the growth rate estimate. Notably, we experimented with lax resolution criteria in
which pre-prints and other non-peer-reviewed analyses would count toward a resolution so long
as the authors were known to be reliable, which indicates substantial flexibility in approaches to
human judgmental forecasting. The final resolution value of 37% was higher than the final
Metaculus prediction of 30% but still within the IQR.

Finally, we also note the quick emergence of consensus concerning Omicron’s relative severity
over Delta (Figure 8c). At the time Omicron emerged, reports from South Africa indicated that on
a per-case basis, the severity of Omicron was lower than that of Delta. However, it was difficult
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for researchers and public health officials to quantify the likelihood of this being true. By
December 6, Metaculus forecasters consistently assigned a greater than 50% chance of
Omicron being less lethal than Delta and a 20% or lower chance of it being more lethal than
Delta. Forecasters gradually updated until they sharply adjusted their forecasts for Omicron
being less lethal from 67% on December 21 to 80% on December 23. This is likely attributable
to two pre-prints being released on December 22, which both found Omicron is associated with
a reduction in the risk of COVID-19 hospitalization when compared to Delta [20, 21], which
prompted discussion on the relevant Metaculus question
(https://www.metaculus.com/questions/8766/omicron-variant-less-deadly-than-delta/#comment-
76033). By December 24, forecasters were consistently assigning a greater than 80% chance to
this being the case. The rapid emergence of this consensus on the relative severity of the
disease due to the Omicron variant could have played a pivotal role in public health
decision-making.

Discussion
The Omicron BA.1 wave highlighted the rapidity with which novel variants or emerging
pathogens can sweep through a population even with sufficient prior immunity (in this case
through previous waves of infection and vaccinations). Decision-making under such settings is
time-sensitive, but there is scant evidence for informing such decisions. While computational
models can be repurposed to accommodate available data, robust parameter estimates can
only be obtained through careful coordination and deliberation across multiple groups of
scientists. This pilot study demonstrates that human judgment ensembles provide valuable
signals for real-time pandemic decision-making during such high uncertainty. In addition to
forecasts of comparable accuracy to that of computational models, such systems could provide
timely updates to a diverse set of questions. Further, with the decision maker in the loop, such
systems allowed for iterations on the question set, thus focusing on the appropriate variables of
interest during different phases.

It has to be noted that such human judgment systems do not exist in a vacuum. They operate in
an environment with widely available and well-maintained disease surveillance dashboards,
publicly available model forecasts, active social and news media discussion, and rapid
dissemination of scientific findings via preprints. The human participants then serve as effective
information aggregators who can produce forecasts for variables of interest through mental
models. Platforms such as Metaculus are essential for the effective collection, tracking, and
ensembling of such forecasts to be useful for policymakers.

The pilot study is not without limitations. Experiment design is a time-consuming process that
involves careful choice of questions, exact phrasing, forecast range, cadence, and resolution
criteria. Further, there is limited understanding on how and when individual users update
forecasts, and whether they ensure consistency across questions. Linking the user updates to
changes in the information environment is crucial to filter out spurious changes, and interpret
such ensembles. While comments and discussion can be solicited, a more formal mechanism
for specifying their mental models and data inputs is needed, much like the metadata
associated with computational models. Further, understanding the causal linkages between the
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variables of interest will allow better sampling of the information space, and enable soliciting the
most relevant inputs at an appropriate frequency from the forecasters to minimize their cognitive
load. Better ensembles can also be constructed by exploiting similarities in user forecasts and
expertise (e.g., domain scientists, quantitative analysts, regular citizens) across questions.

We believe that the utility of such systems go beyond providing direct forecasts. One must
consider combining them with computational models to make the most of such ensembles.
Since they can aggregate information available via preprints on parameter estimates, they can
subsequently be used in computational models to provide projections. Forecast information
could also provide ‘public pulse’ estimates of behavioral aspects such as mask use and vaccine
uptake, which can augment traditional survey-based and participatory surveillance mechanisms.
Further, forecasts from such systems can be included in a statistical ensemble (much like the
ForecastHub) along with other model-based forecasts to provide robust inputs for the
policymaker. Human forecasters can be aided by interactive computational models and other
analytical tools to help assimilate domain knowledge and minimize certain cognitive biases.
Finally, experiment design can be significantly improved by focusing on data gaps in the
surveillance or the computational models that can benefit from such a system. Exploring the role
of policy decisions through conditional questions will allow for anticipating system dynamics and
provide more valuable forecasts.

Methods
Data
Human judgment forecasts were compared against ground truth datasets compiled by the
Virginia Department of Health (reported cases, vaccine uptake) and the Virginia Hospital &
Healthcare Association (for current hospitalizations). These were obtained from the Virginia
Open Data Portal (see Data Availability Statement). Fully vaccinated coverage is defined as the
fraction of individuals with two doses of a two-dose vaccine or one dose of a single-dose
vaccine, with respect to the overall population. A similar calculation was performed for booster
coverage, although the federal doses were not included as part of the numerator (see Vaccine
Summary Dashboard
https://www.vdh.virginia.gov/coronavirus/see-the-numbers/covid-19-in-virginia/covid-19-vaccine-
summary/ for details). Multi-model ensemble forecasts generated as part of the CDC
ForecastHub effort were obtained from the Github repository
(https://github.com/reichlab/covid19-forecast-hub) spanning the period corresponding to the six
rounds. Ensemble forecasts from Metaculus were obtained through the public API for questions
in the Real-Time Pandemic Decision Making tournament
(https://www.metaculus.com/tournament/realtimepandemic/) and the set of independent
questions pertaining to the Omicron variant
(https://www.metaculus.com/questions/8759/forecasting-coronavirus-variant-omicron/).

Tournament Structure and Interface
The forecasting exercise was conducted as part of the Real-Time Pandemic Decision Making
tournament on the Metaculus platform. It was conducted over six rounds, starting November
12th, 2022, and concluding on March 18th, 2022. Each round had 10-12 questions and was open
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for 3 weeks (with the exception of questions with shorter forecast horizons). Rounds did not
overlap, i.e., when questions for one round closed for forecasting, a new round of questions
opened. More information is provided in the Supplementary Material. Details on the questions
and forecast horizons are provided in Table S1. Start and close times for each round, along with
exact dates for forecast horizons are provided in Table S2.

Each question is provided with relevant background context, and an unambiguous question with
the target date and metric of interest. The resolution criteria are also clearly specified with the
source (dashboards, in this case) and the date when the resolution will be made (allowing for
data stability). Forecasters provide probabilistic forecasts by constructing a mixture of logistic
distributions over the support set specified as part of the question. For binary forecasts,
individuals report their forecasts as a probability. Forecasts can be updated at any point during
the question’s open period. To encourage independent forecasts, forecasters could not see
each others’ forecasts or the community forecast for the first 3/7th (~43%) of the open period of
a question. For the remaining period, the community forecast (pointwise median among
available forecasts with a weighting scheme prioritizing recent forecasts) is made visible. Finally,
while making/updating the forecasts, in addition to the community ensemble, users are also
shown a real-time estimate of current points corresponding to their forecast, depending on the
community prediction and the ultimate result.

We received a total of 8355 probabilistic predictions from 129 unique users across all the 60
questions. On average, there were about 25-30 unique users per question and about 100-200
predictions per question. The number of users and predictions peaked around R3 (see Figure
S1).

Forecast generation
A forecaster on the Metaculus platform can submit a predictive density as a convex𝑓
combination of up to five logistic distributions

𝑓(𝑥) =  
𝑘=1

5

∑ π
𝑘
 𝑔(𝑥 | µ
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,  𝑠

𝑘
)
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where is a nonnegative weight associated with the kth logistic distribution and allπ
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 𝑔(𝑥 | µ

𝑘
,  𝑠

𝑘
)

weights are constrained to sum to one. By default, a forecaster is presented with a single
logistic density and a slider bar underneath this density that contains a square and two circles. A
forecaster can change the value of by shifting the square to the left for lower values and to theµ
right for higher values. The parameter is adjusted by independently sliding the circles left and𝑠
right, thus leading to a generalized asymmetric distribution. Users can add up to 4 additional
components, along with sliders to control the weights for each component. A user’s predictive
density is continually updated in the browser to facilitate building their forecast for submission.
When the forecaster is satisfied with their prediction, they press “submit”. After the first
submission, forecasters may revise their original prediction as often as they choose.
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Forecasters construct a predictive density over a bounded interval that is presented on either a
linear scale or a log scale (base 10). The choice of interval and linear vs. log scale is made by
question developers at Metaculus. Once 10 predictions from 10 unique forecasters are
submitted to the Metaculus platform, an ensemble of these predictions is revealed to the
community after the hidden period. An ensemble predictive density was created as a𝑓
weighted combination of all individual forecaster densities𝑀

𝑓(𝑥) =  
𝑚=1

𝑀

∑ π
𝑚 

𝑓
𝑚

(𝑥) 

where the weight assigned to forecaster , annotated as is a function of the forecaster’s𝑚 π
𝑚 

,

accuracy on past questions where they submitted a prediction with ground truth available and
how recently they submitted a prediction. This ensemble strategy applies to questions that ask a
forecaster to submit a predictive density over a closed interval.

Scoring and Tournament Leaderboard
Metaculus scoring rules are built on the logarithmic score, a commonly used metric for
probabilistic forecasts. We begin with the description for a binary question and show its
generalization for continuous questions. For a single binary forecast of probability , this𝑝
corresponds to the natural logarithm of the probability assigned to the outcome, i.e., if𝑆 = 𝑙𝑛(𝑝)
the event occurred, and if it did not. To measure the accuracy of a user’s forecast𝑆 = 𝑙𝑛(1 − 𝑝)
probability relative to the community forecast probability , relative log score for a binary𝑝 𝑐𝑝
question is defined as if the event occurred and if it did not occur. For𝑙𝑛(𝑝/𝑐𝑝) 𝑙𝑛(1 −  𝑝/𝑐𝑝)
continuous questions, is the density of user forecast probability distribution at the resolution𝑝
value and is the density of the community probability distribution at the resolution value.𝑐𝑝

Question score is a time average of a user’s relative log score over the duration of a question
(also known as the open period). For periods when the user was not active (i.e., had not yet
made a forecast), the relative log score is set to 0 (i.e., ). Question coverage is the𝑝 = 𝑐𝑝
percentage of the relevant period for which a user has an active forecast. Since community
predictions are hidden in the beginning (for 3/7th of the open period), forecasters must rely on
their independent judgment. A forecaster’s question score is the time average of their relative
log score over the duration of a question. . A user’s tournament score is then the total of their
individual question scores, and the tournament coverage is calculated as the average of their
question coverages. The tournament take, i.e., share of the ultimate prize pool, is defined as the
tournament coverage times the exponential of their tournament score. A real-time leaderboard
for all forecasters is made available through the tournament landing page.

Metaculus Prediction
While the user’s tournament scores are obtained in relation to a community median ensemble,
Metaculus also provides a trained ensemble which, in addition to weighting forecasts for their
recency, also accounts for the individual forecaster’s track record across the entire platform.
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Forecast Evaluation metrics
We define two separate metrics to characterize the performance of the Metaculus prediction and
compare them against the multi-model ForecastHub ensemble. is the absolute𝑚𝑒𝑑𝑀𝐴𝑃𝐸
percentage error between the median of the Metaculus (or ForecastHub) ensemble and the
observed ground truth. is an indicator (0 or 1) of whether the actual ground truth falls𝑖𝑞𝑟𝐶𝑂𝑉
within the interquartile (25th to 75th percentile) of the Metaculus (or ForecastHub) ensemble.

Given the ground truth for a target of interest, and the th percentile of the Metaculus (or𝑦
𝑡

𝑦
^

𝑑,𝑝
𝑝

ForecastHub) forecast days ahead:𝑑
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Since these are available across different timepoints, we group them by forecast horizon (the
duration from forecast date to target date) and compute the median value for and𝑚𝑒𝑑𝑀𝐴𝑃𝐸
average for . Note that, ForecastHub forecasts are made on a weekly cadence for 1, 2,𝑖𝑞𝑟𝐶𝑂𝑉
3, 4 epiweeks (Sunday-Saturday) ahead and are submitted on the Monday of the first epiweek
ahead, whereas Metaculus case forecasts are solicited for the 7-day moving average (right
aligned) on a Friday. For equivalent comparison, ForecastHub forecasts are converted to 7-day
moving average on Saturdays (right aligned) before evaluation. Since vaccine uptake forecasts
are already in percentages, hence is replaced by (mean absolute error of𝑚𝑒𝑑𝑀𝐴𝑃𝐸 𝑚𝑒𝑑𝑀𝐴𝐸
median of the Metaculus prediction) and reported in percentage points.

Ethics Statement
No identifiable information was collected, and no additional recruiting was done for this study
beyond the users who were already part of the Metaculus platform. Users were incentivized only
through the overall prize pool, and were not individually contacted. The study was approved by
The University of Virginia Institutional Review Board for Social & Behavioral Sciences.

Data Availability Statement
Metaculus predictions for all the RPDM questions are available for public viewing on the
platform (https://www.metaculus.com/tournament/realtimepandemic/). Further, the cleaned data
used for analyses is available at (https://github.com/NSSAC/metaculus-rpdm-data). Cases,
hospitalizations, and vaccination data were obtained from the public datasets maintained by the
Virginia Department of Health
(https://data.virginia.gov/Government/VDH-COVID-19-PublicUseDataset-Cases/bre9-aqqr,
https://data.virginia.gov/Government/VDH-COVID-19-PublicUseDataset-KeyMeasures-Hospital/
28wk-762y,
https://data.virginia.gov/Government/VDH-COVID-19-PublicUseDataset-Vaccines-DosesAdmini/
28k2-x2rj) . Forecasts from COVID-19 Forecast Hub were obtained from their Github repository
(https://github.com/reichlab/covid19-forecast-hub) .
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