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1  Quality-control, phasing, and IBD-calling in SNP data from SSC 
WGS 
 
We applied multiple rounds of QC to the SSC WGS 2 hg38 variant call set (9,209 
samples; An et al. 2018) to facilitate generating a high-quality set of phased SNP-
haplotypes for SSC participants. 

We first applied several variant-level filters: 

• Restricted to biallelic SNPs with MAC>=5 and missingness <0.05. 

• Excluded SNPs with allele frequencies (in European-ancestry SSC participants; 
see Methods) that differed by >0.1 compared to allele frequencies in the 
UK10K+1000G reference panel (Huang et al. 2015) (subsetting 1000G samples 
to EUR and lifted from hg19 to hg38) or to allele frequencies in the UK Biobank 
SNP-array data set (restricted to the British-ancestry subset curated by UK 
Biobank (Bycroft et al. 2018) and lifted from hg19 to hg38). 

• Excluded SNPs with 10 or more Mendelian errors among parent-child trios 
(computed using the bcftools +mendelian plugin). 

We then phased the filtered SNPs using Eagle2 (Loh et al. 2016) and post-processed 
the phased haplotypes to incorporate trio relationships using the bcftools +trio-phase 
plugin (a component of the MoChA software package). 

We subsequently observed that the set of SNPs that passed the above filters still 
included a small fraction of SNPs that appeared to have high error rates (often having 
high rates of heterozygous genotype calls and/or clustered in regions of the genome 
that did not lift between hg19 and hg38 and thus were not considered in the allele 
frequency check). 

To detect remaining bad SNPs, we therefore implemented an additional round of QC 
consisting of a Hardy-Weinberg equilibrium check (filtering SNPs with z-score > 5 for 
observed – expected heterozygotes) and a haploid Mendelian error check (filtering 
SNPs with >10 disagreements between phased haplotypes transmitted from parents to 
children in parent-child trios in the SSC data set). To facilitate the latter check, we 
implemented a simple hidden Markov model (HMM) to match computationally phased 
haplotypes of each child to computationally phased haplotypes of the child’s two 
parents (with states corresponding to haplotype assignments, transitions modeling 
phase switch errors or recombinations, and emissions modeling genotype errors 
(treated as 10-fold less costly than state changes)). This algorithm allowed us to 
tabulate the number of haploid Mendelian errors observed at each SNP (based on the 
Viterbi decoding of each child’s HMM). 

After applying the additional two filters above (which together excluded ~1% of the 
SNPs that had passed the previous QC filters), we then reran phasing using Eagle2 



followed by bcftools +trio-phase (in two rounds, first using one sibling from each quartet 
and then using the remaining sibling from each quartet, which appeared to improve 
performance). Finally, we reran the HMM above to obtain an “IBD map” matching 
phased haplotype segments of each child to haplotypes of the child’s two parents for 
use in downstream analyses. 

Sample exclusions for downstream analysis 

Although the SSC WGS 2 variant call set contained 9,209 individuals, only 9,100 of 
these individuals had accessible sequence alignments (i.e., cram files) needed for 
downstream WGS read-depth analysis. Among these 9,100 individuals, we excluded 
160 individuals whose whole-genome sequencing had been performed in a pilot WGS 
analysis with read-depth characteristics very different from the remainder of the data 
set. We further excluded 4 individuals who withdrew from SSC, leaving 8,936 
individuals (including 1901 full quartets) for downstream analysis. 

 
  



2  Estimating diploid VNTR content from WGS read depth in SSC 
 
For each of 100,844 repeat loci we ascertained from the GRCh38 reference (Methods), 
we estimated diploid VNTR content (i.e., the sum of VNTR lengths across an 
individual’s two alleles) for SSC participants by analyzing the aligned WGS reads 
overlapping the VNTR using Genome STRiP (Handsaker et al. 2015). We estimated 
diploid VNTR content using dosage estimates from normalized read depth, without 
running the Genome STRiP Gaussian mixture model to determine integer copy number. 

We benchmarked these VNTR content estimates by analyzing the results from siblings 
in SSC. We computed the following QC metrics: 
 
1. IBD2R. The Pearson correlation between VNTR content measurements of SSC 

siblings that are identical-by-descent (IBD2) at a given VNTR locus. This quantity 
was used to estimate the amount of genetic signal that could be ascertained from 
read-depth analysis at each VNTR. 

2. PARENTR. The correlation between VNTR content measurements among parents 
of IBD2 siblings (which was an indicator of batch effects, as this quantity should 
otherwise be close to zero). 

3. RDIFF. The difference between IBD2R and PARENTR, i.e., RDIFF=IBD2R-
PARENTR. RDIFF is meant to capture the degree to which correlation between 
sibling measurements captures true genetic variation, rather than technical artifacts 
(e.g., batch effects) from sequencing.   

4. FLANKR. For each VNTR locus, we measured read depth within two 1kb segments 
on each side of the VNTR locus, each separated by 100bp from the VNTR. We then 
computed the maximum of the Pearson correlation between the read-depth 
measurements of the segments outside of the VNTR to the read-depth 
measurement of the VNTR itself. This was used to control for VNTRs occurring 
within larger copy number variable regions. 

We observed that diploid VNTR content estimates in SSC appeared to have significant 
batch effects, which were only partially correlated with SSC sequencing wave. To better 
control for these batch effects, we first excluded 160 SSC participants whose whole-
genome sequencing had been performed in a pilot WGS analysis with read-depth 
characteristics very different from the remainder of the data set. To correct for additional 
batch effects, we then clustered the remaining samples as follows: 

1. We selected 2,655 VNTR loci across the genome that (a) had strong evidence of 
batch effects (PARENTR > 0.1) and (b) were unlikely to be truly polymorphic 
(absolute value of RDIFF < 0.1). 



2. We computed the top 100 principal components (PCs) based on read-depth 
estimates at these loci, and performed k-nearest-neighbor (k=25) clustering on 
the samples based on their coordinates in PC-space. 

3. We performed Leiden clustering with resolution parameter R=1.0 on the neighbor 
graph, which partitioned the SSC samples into 18 clusters. 

We normalized VNTR content estimates by scaling the estimates within each cluster so 
the median content across clusters was equal to the population median length.  This 
clustering method and parameters described above were selected after evaluation of 
several strategies (hclust2 and cutree functions in R, and Louvain and Leiden 
clustering).  We found that Leiden clustering produced the greatest decrease in 
PARENTR (indicating successful correction of batch effects). 

  



3  Identifying VNTR loci by analysis of human reference and HGSVC2 
long-read assemblies 
We analyzed the 100,844 repeat regions we identified in GRCh38 (Methods) in 
HGSVC2 long-read haploid genome assemblies (Ebert et al. 2021) to determine which 
were multiallelic VNTR loci.  As a preliminary step, we removed duplicate loci with 
greater than 50% reciprocal overlap, prioritizing the loci to keep based on IBD2 sibling 
correlation in SSC (see Section 2 above).  For each remaining repeat locus, we 
attempted to measure repeat length in each assembly by mapping surrounding 
sequence from GRCh38 to the assembly. 

In detail, we extracted the flanking sequence from the reference (1kb upstream and 
downstream) using bedtools v2.27.1 (Quinlan and Hall 2010) and aligned the flanks to 
the assembly using minimap2 v2.18-r1015 (Li 2018) (options --cs -x map-pb -t 7 -r 2000 
-z 2000).  We parsed the output, in the pairwise mapping format (PAF), to compute the 
length of the repeat allele in the long-read assembly.  Specifically, for each flank, we 
selected the alignment with the largest number of matching residues (Nres, column 10 in 
PAF file), requiring: 

1. Nres>900bp, 

2. The length of the target contig containing the matched assembly sequence 
(column 7 in PAF file) is >10kb, and 

3. No competing matches with “Number of residue matches”>0.97*Nres 

We proceeded with analysis if both flanks had an alignment satisfying (1-3).  In this 
case, we further required that 

A. The two flanks mapped to the same contig (column 6 in PAF file), and 

B. The alignment directions (column 5 in PAF file) of the two flanks were consistent. 

If both flanks had alignments satisfying (A-B), we measured the length of the repeat 
allele in the assembly by computing the distance between the flanking alignments, 
adjusting for any non-aligned bases at the ends of the flanks (columns 3 and 4 in the 
PAF file).  We finally required that the computed allele length to be greater than –500bp 
and less than 200*(length of the repeat in GRCh38).  Note that we allowed alleles to 
have negative lengths, possibly reflecting deletions that occurred near the ends of the 
VNTR or repeat loci whose boundaries were called incorrectly. 

We next estimated the number of distinct alleles at each repeat locus (across the subset 
of the 64 HGSVC2 assemblies for which the algorithm above produced a length 
measurement).  To do so, we counted the number of distinct allele length genotypes, 
requiring distinct alleles to differ by at least one-quarter of an estimated repeat unit.  For 
repeats with short repeat units, we additionally required distinct alleles to differ by at 
least 7bp. 



To obtain our final list of VNTRs for phasing and imputation optimization, we applied the 
following filters to the candidate VNTR loci: 

1. >50% genotyping rate among HGSVC2 assemblies  

2. ≥3 alleles represented among all N=64 assemblies 

3. ≥2 alleles represented among N=12 assemblies from individuals of European 
descent 

Finally, among all loci that satisfied (1-3), we removed regions that had substantial 
overlap with another VNTR. To do so, we iteratively removed each locus that had 
substantial overlap with another region (overlap spanning >10% of one of the two 
regions) where the overlapping region had higher estimated pre-refinement genotyping 
accuracy (estimated from IBD2 sibling correlation in all SSC participants). 

This yielded a filtered set of 15,653 multi-allelic VNTR loci for further analysis. 



4  Phasing and imputing VNTR lengths using surrounding SNPs 
 
We performed statistical phasing on WGS read-depth-derived VNTR length estimates 
(“diploid VNTR content”; see Section 2 above) to estimate haploid allele lengths in SSC 
participants, which we then imputed from SSC into the UK Biobank cohort based on 
surrounding SNP-haplotypes. To do so, we adapted the computational algorithm that 
we previously used to efficiently phase and impute multiallelic protein-coding VNTRs 
with real-valued length estimates derived from whole-exome sequencing read-depth 
within UKB (Mukamel et al. 2021). This algorithm is described in detail in 
Supplementary Text 3 of (Mukamel et al. 2021); in brief, it employs an iterative 
approach (broadly similar to many algorithms that have been developed for phasing 
biallelic SNPs) in which haploid allele lengths of each individual in turn are updated 
according to a probabilistic haplotype-copying model using all other haplotypes as a 
reference panel, prioritizing copying from haplotypes closely matching the individual’s 
SNP-haplotypes. 

To make use of familial relatedness within the SSC cohort and to facilitate imputation 
from the SSC data set (containing WGS-based SNP calls in hg38 coordinates) to the 
UK Biobank data set (containing SNP-array genotypes in hg19 coordinates), we made 
the following minor modifications to our previous phasing and imputation approach. At 
each VNTR locus: 

• We used the IBD maps we generated within SSC families (see above) to identify 
sib-pairs who inherited the same allele from their mother and inherited the same 
allele from their father (“IBD2” sibs, which we used for accuracy benchmarks; see 
below). 

• When optimizing parameters for phasing and imputation (using the cross-
validation-based procedure described in (Mukamel et al. 2021)), we held out 
diploid VNTR content estimates for: 

o 400 children (to enable optimization of phasing parameters by maximizing 
concordance with allele lengths estimated for transmitted parental 
haplotypes); 

o 400 individuals of European ancestry (to estimate European-ancestry 
imputation accuracy as described below, holding out full families to 
prevent relatedness from inflating the benchmark); and 

o 400 individuals of non-European ancestry (again holding out full families). 

• For phasing (within SSC), we computed SNP-haplotype similarity based on 
identity-by-state (IBS) length as described in (Mukamel et al. 2021), which we 
computed using SNPs with MAF>0.01 in our QC-ed and phased version of the 
SSC WGS 2 (hg38) variant call set. 



• For imputing from SSC into UK Biobank, we computed IBS (at the VNTR’s hg19 
location) using SNPs with MAF>0.001 that were present in the UKB SNP-array 
data set (hg19) as well as the SSC data set (lifted from hg38 to hg19). 

• For imputation, we restricted VNTR+SNP haplotypes to parents in SSC (N=4,688 
individuals after sample exclusions; N=9,376 haplotypes) to avoid redundancy 
given the family structure of the SSC cohort. We post-processed the VNTR allele 
length assigned to each parental haplotype by taking the average of the allele 
length estimated for that haplotype by our phasing algorithm as well as the allele 
lengths estimated in any children to which the allele had been transmitted (based 
on our IBD maps; we restricted to confident transmissions with >2Mb of IBD-
sharing).  



5  Estimating VNTR genotyping and imputation accuracy and VNTR-
SNP linkage disequilibrium 
 
To estimate the accuracy of VNTR length estimates derived from WGS read-depth in 
individual genomes (before incorporating information from SNP-haplotypes, i.e., 
“genotype accuracy pre-refinement” in Fig. 1b,c), we used correlations among IBD2 sib-
pairs as in our previous work (Mukamel et al. 2021). Explicitly, assuming unbiased error 
in read-depth-based measurements of diploid VNTR content, we can estimate the 
accuracy (i.e., 𝑅! vs. truth) of these measurements as: 

𝑅!"(diploid	estimates, truth) = 𝑅(diploid	estimate	in	sib	1, diploid	estimate	in	sib	2) = "IBD2	𝑅" 

To estimate imputation accuracy, we used a cross-validation-based approach as in our 
previous work: for 400 individuals held-out from phasing, we imputed VNTR lengths into 
the held-out individuals and then estimated imputation accuracy as: 

𝑅!"(imputed	estimates, truth) =
𝑅!(imputed	estimates, held	out	estimates)

IBD2	𝑅  

where dividing out by IBD2	𝑅 (an estimate of 𝑅!(held	out	estimates, truth)) accounts for 
measurement error in the held-out values. To obtain accuracy estimates indicative of 
imputation performance into the predominantly European-ancestry UK Biobank cohort, 
we restricted to SSC participants of European ancestry when selecting IBD2 sib-pairs 
and held-out individuals. 

Two potentially counterintuitive features of these accuracy estimates are worth noting: 

• Imputation accuracy can sometimes exceed pre-refinement genotype accuracy 
(i.e., accuracy of the diploid VNTR content measurements on which imputation is 
based). This behavior typically occurs if a VNTR has a narrow allele length 
distribution (such that alleles are difficult to distinguish from read-depth) but 
alleles are well-tagged by nearby SNPs, such that the phasing and imputation 
model is able to learn which SNP-haplotypes carry which alleles (and use SNPs 
to predict alleles more accurately than possible from read-depth). 

• Imputation accuracy estimates are noisier for VNTRs with lower pre-refinement 
genotype accuracy (i.e., lower IBD2	𝑅). This behavior is driven by the need to 
divide by IBD2	𝑅 (which can be a small quantity with sizable uncertainty) when 
estimating imputation accuracy using cross-validation. While our IBD2	𝑅 
estimates typically used ~400 IBD2 sib-pairs at each locus, providing reasonable 
precision, noise in IBD2	𝑅 occasionally resulted in imputation accuracy estimates 
that exceeded 1 (presumably due to IBD2	𝑅 having been underestimated by 
chance). 

One caveat of the above benchmarks is that they assume unbiasedness of errors in 
read-depth-based estimates of diploid VNTR content. We previously observed that 



exome sequencing coverage depths at VNTRs can be biased by the presence of 
paralogous sequence variants (PSVs) within repeat units (that can subtly affect exome 
capture) or by read-mapping biases for very short alleles (Mukamel et al. 2021). While 
the first issue has much less of an effect on whole-genome sequencing (which does not 
involve a capture step), to ensure robustness of our results, we performed follow-up 
analyses of VNTRs of particular interest in which we (i) used a variety of locus-specific 
techniques to optimize genotyping accuracy (see below); and (ii) validated WGS-
derived genotypes against allele lengths directly measured from long-read sequencing 
data (Supplementary Fig. 1). 

Computing VNTR-SNP linkage disequilibrium 

To estimate VNTR-SNP linkage disequilibrium (LD) (Fig. 1c, Supplementary Table 1), 
we computed the correlation coefficient between “pre-refinement” VNTR genotypes 
(estimated in individual genomes from WGS depth-of-coverage) and SNP genotypes, 
and adjusted for the estimated accuracy of VNTR genotypes: 

𝑅!"(VNTR, SNP) =
𝑅!(est. prerefinement	VNTR	genotypes, SNP	genotypes)

IBD2	𝑅 . 

We restricted analysis to 3,904 unrelated SSC participants of European descent.  We 
additionally restricted to SNPs within 500kb of the VNTR, excluded variants within the 
VNTR, and excluded very rare (MAF<0.0005) variants.  For VNTRs at TMCO1, EIF3H, 
and CUL4A, we additionally estimated VNTR-SNP LD using optimized VNTR genotypes 
and imp_v3 SNPs dosages in N=16,728 UKB participants, obtained by 25x-
downsampling the set of 418,136 unrelated, PC-filtered individuals used in our primary 
analysis.  (We did not adjust for VNTR genotype accuracy in UKB).  We used these 
UKB-derived estimates for correlations reported in the main text and to color Manhattan 
plots (Figs. 3b,c, 4a,b, and 5b,d; Supp. Fig. 4) . 

Selection of final VNTR list for imputation into UKB 

We applied the following set of QC filters to select variants suitable for taking forward for 
imputation into UKB: 

1. IBD2R > 0.1 (in SSC) 

2. RDIFF > 0.1 (in SSC) 

3. FLANKR < 0.5 (in SSC) 

4. Imputation R2 > 0.1 (in SSC participants of European descent) 

5. We excluded variants with the major histocompatibility comples (MHC) locus 
(chr6:29mb-33mb) 

This resulted in the final set of 9,561 multiallelic VNTR loci for analysis in UKB. 



6  Optimizing genotyping of VNTRs of particular interest 
 
For each VNTR for which our association analysis and fine-mapping pipeline identified a 
potentially-causal phenotype association of particular interest (specifically, associations 
with disease traits and associations of CUL4A with erythrocyte traits), we performed 
follow-up analyses to optimize accuracy of VNTR allele length estimates and verify 
robustness of results. We did so by analyzing WGS data subsequently released for 
N=200K UKB participants (Halldorsson et al. 2022), which we then used as a reference 
panel for imputation into the remainder of the UK Biobank cohort. Beyond the increased 
phasing and imputation accuracy afforded by the much larger size of this reference 
panel (compared to our initial analysis of N=8,936 SSC participants), we also obtained 
further improvements in VNTR genotyping accuracy by developing statistical models 
tailored to the allele distribution at each locus. Specifically, we incorporated information 
from 151bp reads that spanned short VNTR alleles (at TMCO1 and EIF3H), and we 
optimized the selection of reads counted in read-depth-based measurements of VNTR 
length. 

TMCO1 

Improved TMCO1 VNTR genotyping by combining spanning-read and read-depth 
information. 

The TMCO1 VNTR has a bimodal allele length distribution, with the 1-repeat allele 
having high frequency (>0.85) in all continental populations, alleles containing 2 to 4 
repeats being very rare, and expanded alleles with ≥5 repeats comprising the remainder 
of the allele distribution (Fig. 3a,d). The repeat unit length of 28bp meant that TMCO1 
VNTR alleles with 1 to 4 repeats were consistently spanned by multiple 151bp reads 
indicating their presence. (We also searched for evidence of 0-alleles but did not find 
any evidence that such alleles existed.) While expanded alleles with ≥5 repeats could 
not be distinguished by single reads, the presence of such an allele could easily be 
detected based on observations of 151bp reads that partially overlapped the VNTR, and 
additionally, the lengths of expanded alleles could be estimated by counting the number 
of reads internal to the VNTR (similar to the read-depth-based strategy we used in initial 
genotyping, but greatly reducing noise by restricting to within-VNTR reads). 

We therefore implemented a hybrid genotyping strategy (similar to the approach we 
previously used to genotype TENT5A alleles from WES (Mukamel et al. 2021)) that 
combined direct read-level information (used to identify short alleles and to detect the 
presence of expanded alleles) with read-depth information (used to estimate the lengths 
of longer alleles). Specifically, for each individual, we applied the following procedure: 

• Identify the minimum- and maximum-length allele indicated by direct read-level 
evidence (which could be the same allele, indicating a homozygote). 

• If the maximum-length allele indicated has length ≤4, set the individual’s 
(unphased) genotype to be the minimum-length and maximum-length allele. 



• Otherwise: 
o If the minimum-length allele has length ≤4 (i.e., the individual is 

heterozygous for an expanded allele), then estimate the number of 
repeats in the expanded allele as: 
    5 + (# within-VNTR reads) / (# reads in ±5kb flanks) x (calibration 
factor). 

o Otherwise, estimate the total number of repeats in the two expanded 
alleles as: 
    10 + (# within-VNTR reads) / (# reads in ±5kb flanks) x (calibration 
factor). 

 
Based on empirical analyses of WGS data from SSC, UKB, 1000 Genomes 30x, and 
GTEx, the calibration factor above that is required to convert read counts to absolute 
estimates of expanded allele lengths appeared to be data set-specific. We therefore 
estimated this calibration factor independently for each data set in which we performed 
analysis using the following approach: 

• First, we estimated the calibration factor in the 1000 Genomes 30x data set 
(Byrska-Bishop et al. 2022) by identifying 17 heterozygous carriers of expanded 
alleles with lengths that could be exactly determined from a long-read assembly 
of either the carrier or a related individual included in HGSVC2 (Ebert et al. 2021) 
or HPRC (Liao et al. 2022). We set the calibration factor for 1000 Genomes 30x 
to the value that caused the mean estimated length of expanded alleles in these 
17 individuals to equal the mean of the exact long-read-derived lengths. 

• Next, we estimated mean lengths of expanded alleles in heterozygous carriers in 
each 1000 Genomes Project continental population (Fig. 3a) by applying the 
calibration factor estimated above to all samples in the 1000 Genomes 30x WGS 
data set. 

• Finally, for each other WGS data set we analyzed (all of which were 
predominantly EUR-ancestry), we set the calibration factor to the value that 
caused the mean estimated length of expanded alleles in heterozygous carriers 
to match the mean expanded allele length we estimated in the previous step for 
1000 Genomes EUR participants. 

Optimized phasing and imputation of TMCO1 VNTR genotypes. 

For each whole-genome-sequenced individual, the above strategy produced a pair of 
(unphased) allele length estimates with the property that calls of short alleles (≤4 
repeats; usually the 1-allele) were discrete and nearly always correct, and detection of 
expanded alleles (≥5 repeats) was also nearly always correct, but lengths of expanded 
alleles were only approximately measured (by read-counting). We next needed to phase 
these estimates onto SNP-haplotypes in order to denoise estimated lengths of 
expanded alleles (by averaging estimates across individuals with long shared SNP-



haplotypes) and to enable imputation into SNP-haplotypes of unsequenced UKB 
participants. While we could do so using our standard phasing and imputation algorithm 
(which treated all genotype estimates as continuous, real-valued measurements), the 
discrete information available here from read-level analysis allowed a simpler, more 
accurate approach. 

To phase each individual’s pair of allele length estimates onto the individual’s SNP-
haplotypes and refine estimates of expanded allele lengths, we did the following: 

1. Determine which of the individual’s two SNP-haplotypes carries the shorter allele 
and which SNP-haplotype carries the longer allele. We did so by counting, for 
each of the target individual’s two SNP-haplotypes, how many of the carriers of 
the top 20 longest SNP-haplotype-matches had read-level support for the target 
individual’s longer allele. We then assigned the target individual’s longer allele to 
the SNP-haplotype with more “votes” from top haplotype matches. 

2. Refine the length estimate of each detected expanded allele by taking a weighted 
average of the allele length estimated in the target individual together with allele 
lengths estimated in individuals who (i) shared a long SNP-haplotype with the 
target allele; and (ii) carried exactly one expanded allele (presumably on the 
shared haplotype). We computed this weighted average using the haplotype-
copying probabilities we used in our previous work (Mukamel et al. 2021), which 
are a function of IBS-sharing length and three tunable parameters (𝐾"#$, ℓ%, and 
𝑝&'(). We tuned these parameters using a grid search that utilized cross-
validation in IBD2 sib-pairs heterozygous for an expanded allele. Specifically, we 
held out one member of each sib-pair and chose the parameter combination that 
maximized correlation between held-out estimates of expanded allele lengths 
and refined estimates of expanded allele lengths in the non-held-out siblings. 

To impute VNTR allele lengths into unsequenced individuals, we used the same 
haplotype-copying model but re-optimized the three parameters to maximize imputation 
accuracy in cross-validation (using 400 held-out samples). 

Validating accuracy of TMCO1 VNTR allele length estimates. 

To verify the accuracy of our genotyping strategy at TMCO1, we compared VNTR allele 
lengths we estimated in 1000 Genomes 30x WGS (after phasing together with allele 
lengths we estimated in UKB N=200K WGS) to allele lengths derived from long-read 
assemblies of HGSVC2 samples (summing across each individual’s two alleles). This 
comparison demonstrated high accuracy (𝑅! = 0.99; Supplementary Fig. 1a). 

Estimating TMCO1 VNTR allele lengths in GTEx. 

To estimate unphased TMCO1 allele lengths in GTEx, we used the same strategy of 
combining spanning-read and read-depth information that we used to analyze the UKB 
N=200K WGS and 1000 Genomes 30x WGS data, with just one minor difference that 
arose from 58 GTEx samples having been sequenced using 100bp reads instead of 



151bp reads. We could still use read-level information to determine which of these 
individuals carried expanded (≥5-repeat) alleles, but we did not attempt to use within-
VNTR read counts to estimate the lengths of these expanded alleles, instead setting 
their initial length estimates to the mean expanded allele length. We then phased the 
allele length estimates in GTEx together with allele lengths estimated in UKB N=200K 
WGS and 1000 Genomes 30x WGS to maximize accuracy. 

EIF3H 

Improved EIF3H VNTR genotyping by modeling read-level information. 

Most EIF3H VNTR alleles contain 2 to 6 repeats of a 27bp unit followed by a partial 
repeat unit (13bp). Consequently, alleles with ≤4 full repeats could usually be detected 
from spanning 151bp reads in the UKB N=200K WGS data set. Alleles with ≥5 repeats 
were too long to genotype from spanning reads, but reads that partially overlapped the 
VNTR could be informative of the presence of a ≥5-repeat allele, and reads internal to 
the VNTR indicated the presence of a ≥6-repeat allele. Altogether, read-level 
information was thus usually sufficient to deduce a confident (unphased) genotype call 
in a given individual. However, synthesizing all of this information while accounting for 
occasional false-positives (i.e., observations of reads putatively supporting an allele that 
is not actually present) and false-negatives (i.e., absence of observations of reads 
supporting an allele that is present) was not straightforward, as we needed to consider 
how to weigh evidence from counts of reads in seven different categories: 

• span1, span2, span3, span4 (i.e., reads spanning VNTR alleles with 1-4 full 
repeat units) 

• flank4+, flank5+ (i.e., reads partially overlapping the VNTR indicating ≥4 or ≥5 
repeats) 

• internal (i.e., reads completely within the VNTR indicating ≥6 repeats). 

We therefore developed a Bayesian genotyping strategy based on a generative model 
in which we assumed reads from each of the seven categories were generated 
independently (conditional on an individual’s genotype). Letting CN1, CN2 denote the 
numbers of full repeat copies on the individual’s two haplotypes, we assumed: 

𝑃( CN1, CN2 ∣ obs. reads ) ∝ 𝑃(CN1)	𝑃(CN2)	∏"#$%&'()	𝑃(#	reads	in	category ∣ CN1, CN2) 

where for each of the seven categories of reads, we modeled 𝑃(#	reads	in	category ∣
CN1, CN2) using a Poisson distribution with 

𝜆 = 	𝜆#(+,-,+,!	0#1"&234"21(	"#	05"'(#&6) ⋅ (local	read	depth	in	5kb	flanks) 

where the rate parameters 𝜆%, 𝜆-, 𝜆! are defined as follows: 

• 𝜆% (neither CN1 nor CN2 should generate reads in the category): estimate based 
on empirical frequency of observing false-positive reads (in samples with strong 



evidence that they carry only alleles that should not produce reads in the 
category) 

• 𝜆- (exactly one of the two alleles generates reads in the category): estimate 
based on empirical frequency of observed reads in samples with good evidence 
that they carry exactly one such allele 

• 𝜆! = 2𝜆- (both alleles generate reads in the category, so twice as many reads 
are expected). 

After estimating 𝜆%, 𝜆-, 𝜆! as indicated above, we then used an expectation-maximization 
(EM) algorithm to estimate the frequencies of alleles with 1 to 6 repeat units to use as 
priors 𝑃(CN1), 𝑃(CN2). (We did not observe evidence of 0-repeat alleles, and while 
analysis of within-VNTR read counts indicated that rare 7-repeat alleles also exist, they 
are sufficiently rare that modeling them distinctly from 6-alleles was not necessary.) 

Optimized phasing and imputation of EIF3H VNTR genotype probabilities. 

For each whole-genome-sequenced individual, the above algorithm produced posterior 
probabilities for each possible genotype {CN1, CN2} with no information about phase. For 
most individuals, a single genotype was by far the most likely (with only the phase of the 
alleles being unknown), but for some individuals, multiple genotypes had similar 
posterior probabilities. We therefore leveraged information from shared SNP-haplotypes 
to help resolve uncertain genotypes and to phase each individual’s pair of alleles onto 
the individual’s SNP-haplotypes. We did so by running four iterations of the following 
algorithm, applied to each individual in turn: 

• For each of the individual’s two SNP-haplotypes, count how many of the five 
longest SNP-haplotype matches are believed to carry a 1-allele, 2-allele, …, 6-
allele (adding a pseudocount of 0.5 for each allele). 

• Adjust the likelihood of each {CN1, CN2} genotype by multiplying by the relevant 
numbers of votes of support from SNP-haplotype-matches. 

• Select the {CN1, CN2} genotype with highest adjusted likelihood. 

• Set the phase of the shorter/longer allele to match the shorter/longer of the mean 
allele length estimated in the five best matches for each SNP-haplotype. 

We imputed VNTR allele lengths into unsequenced individuals using the same 
approach as at TMCO1 (again optimizing imputation parameters via cross-validation in 
400 held-out samples). 

Validating accuracy of EIF3H VNTR genotypes. 

To verify the accuracy of our genotyping strategy at EIF3H, we compared VNTR 
genotypes we estimated in 1000 Genomes 30x WGS (after phasing within this cohort) 
to allele lengths derived from long read assemblies of HGSVC2 samples (summing 



across each individual’s two alleles). This comparison demonstrated high accuracy 
(𝑅! = 0.99; Supplementary Fig. 1b). 

CUL4A 

Estimating CUL4A VNTR allele lengths from WGS read-depth. 

To efficiently estimate diploid VNTR content at CUL4A in the N=200K UKB WGS data 
release, we counted reads aligning fully within the VNTR region in GRCh38 as well as 
in 10kb flanks on each side (restricting to reads with SAM flags 0x53, 0x63, 0x93, 
0xA3, 0x51, 0x61, 0x91, or 0xA1). The count of flanking reads served as an 
approximate measure of local sequencing coverage for each sample, allowing us to 
estimate VNTR allele length (up to a constant calibration factor; see below) as the ratio 
of the number of within-VNTR reads to the number of flanking reads. To account for the 
possibility of copy-number variants influencing flanking read counts in a small fraction of 
samples, we excluded samples with outlier flank read counts (>2.5 s.d. from the mean 
on a log scale). We then phased these length estimates and imputed into the remainder 
of the UKB cohort using the same approach as in our previous analysis of UKB N=50K 
WES data (Mukamel et al. 2021). 

Calibrating CUL4A VNTR allele length estimates. 

The above pipeline produced unscaled allele length estimates that were not calibrated 
to absolute (base pair) lengths. We therefore calibrated CUL4A allele length estimates 
derived from WGS read-depth in UKB by imputing allele lengths from UKB into SNP-
haplotypes for 1000 Genomes Project participants (Byrska-Bishop et al. 2022) and 
calibrating against allele lengths derived from long-read assemblies in the HGSVC2 
data set (Ebert et al. 2021). Specifically, we estimated a single scaling factor by 
regressing long-read-derived allele lengths on WGS-read-depth-derived (imputed) 
estimates (summed across each individual’s two alleles), setting the intercept to 300bp 
(because only VNTR alleles >150bp can produce 151bp reads that align fully within the 
VNTR region in GRCh38). We performed this regression using the six EUR individuals 
included in HGSVC2 (because imputation accuracy was highest in EUR). 

Validating accuracy of CUL4A VNTR allele lengths derived from WGS read-depth.  

Separately, to verify the accuracy of our WGS read-depth-based approach to measuring 
CUL4A VNTR allele lengths, we subsequently ran the same read-counting pipeline 
directly on WGS read alignments in the 1000 Genomes 30x data set (Byrska-Bishop et 
al. 2022). We then compared these diploid VNTR content estimates to allele lengths 
derived from long read assemblies of HGSVC2 samples (summing across each 
individual’s two alleles), observing high concordance (𝑅! = 0.97; Supplementary Fig. 
1c). 

CHMP1A, INS, and METRNL 



Similar to CUL4A, we estimated diploid VNTR content at CHMP1A, INS, and METRNL 
in N=200K UKB WGS data by counting reads aligning fully within the VNTR region and 
dividing by the count of reads aligning to the 10kb flanks on each side. (For each of 
these four VNTRs, nearly all alleles are >150bp, so counting reads aligning fully within 
the VNTR – i.e., excluding reads that span its left or right edges – reduces noise.) We 
again excluded samples with particularly low or high counts of reads aligning to the 
10kb flanks, restricting to the middle 95% of the distribution (i.e., excluding samples in 
the top or bottom 2.5%). We then phased and imputed into the remainder of the UKB 
cohort as before. 

Rerunning the association and fine-mapping analysis using the updated allele length 
estimates increased confidence in causality for the associations of the CHMP1A and 
INS VNTRs with hypertension and type 1 diabetes (FINEMAP posterior probability = 
1.00 and 0.91, respectively) but decreased confidence in causality of the association of 
the METRNL VNTR with cataracts (FINEMAP posterior probability = 0.03). These 
results are reported in Supplementary Table 4.  



7  Phenotype refinement for disease-associated VNTRs	
For the two strongest disease associations we observed, involving VNTRs at TMCO1 
and EIF3H, we sought to bolster the statistical evidence of association by: 1) refining 
the associated disease phenotypes via ICD-10 subcategories; and 2) curating 
additional, related phenotypes not included in the original set of 786 phenotypes we 
tested for association. 

Glaucoma 

We sought to increase power and statistical resolution to interrogate the relationship 
between the VNTR at TMCO1 and glaucoma by refining the associated glaucoma 
phenotype.  We initially observed a strong association between the VNTR at TMCO1 
and the glaucoma phenotype curated by UKB, categorized under the ICD-10 code H40.  
SNPs at TMCO1 in LD with the VNTR had previously been associated with primary 
open-angle glaucoma (POAG) (Burdon et al. 2011).  A substantial fraction of glaucoma 
cases in UKB are classified as primary angle-closure glaucoma (PACG), a disease that 
has little etiological overlap with POAG (Wiggs and Pasquale 2017).  Therefore, we 
sought to remove known PACG (ICD-10 code H40.2) from the disease phenotype.  To 
do so, we extracted the ICD-10 codes recorded for diagnoses made during hospital 
inpatient admissions (UKB data field 41270, accessed via the Research Analysis 
Platform (RAP) on 06/03/2022).  We then curated a new binary glaucoma phenotype, 
where we included as cases all participants with a glaucoma diagnosis (either in the 
original UKB-curated phenotype, or a H40 code present in data field 41270), and then 
removed all participants with a specific diagnosis of PACG (H40.2).  Individuals with 
diagnoses of both POAG (H40.1) and PACG (H40.2) were considered as cases.  
Among the PC-filtered, unrelated set of 418,136 UKB participants in our primary 
analysis, we identified a total of 15,334 glaucoma cases, 1,216 of which were classified 
as PACG (and not POAG), leaving 14,118 cases in our final analysis.  We used the 
resulting glaucoma phenotype for all follow-up analyses, with the exception of the 
estimation of the overall disease burden of expanded TMCO1 VNTR alleles, for which 
we used explicit diagnoses of POAG (H40.1).  

Intraocular pressure 

We sought independent statistical evidence of the TMCO1 VNTR’s association with 
glaucoma by analysis of intraocular pressure (IOP), a major risk factor for glaucoma that 
was measured in ~130K UKB participants but was not in our initial analysis set.  We 
curated a phenotype derived from IOP measurements following the practices of a recent 
IOP GWAS performed using UKB data (Khawaja et al. 2018).  We extracted UKB data 
fields 5254 and 5262, which recorded measurements of corneal-compensated IOP in 
the left and right eyes, respectively.  Each participant had up to two measurements 
taken from each eye.  We removed outlier measurements (<7 and >30 mmHg, 
approximately ~1% of all measurements), and averaged the remaining measurements 
for each participant.  We used the resulting IOP phenotype for all association analyses.  



To assess the effects of specific TMCO1 VNTR alleles (Fig. 3e), we normalized the 
resulting IOP phenotype by regressing out age, age2, and sex, and applying a linear 
transformation to obtain a distribution with mean 0 and standard deviation 1.  To 
minimize confounding from IOP-lowering drugs administered to glaucoma patients, and 
to ensure the IOP association we observed was statistically independent of the 
glaucoma association, we excluded all participants with a glaucoma diagnosis from all 
IOP analyses. 

Colon polyps 

We sought to increase power and statistical resolution to interrogate the relationship 
between the VNTR at EIF3H by refining the associated phenotype categorized under 
ICD-10 code K63 (other diseases of the intestine).  We extracted the ICD-10 codes 
recorded from hospital inpatient admissions (UKB data field 41270, accessed via the 
RAP on 06/03/2022).  The majority (77%) of K63 reports were subclassified as K63.5 
(colon polyps), and association analyses revealed that K63.5 was the only K63 
subcategory that was significantly associated with the EIF3H VNTR length.  In our final 
analyses, we analyzed a binary phenotype where cases included only individuals with 
specific ICD-10 reports of K63.5 in data field 41270 (22,715 cases among the PC-
filtered, unrelated set of 418,136 UKB participants in our primary analysis). 

Colorectal cancer 

Given the strong association between the EIF3H VNTR and colon polyps, and previous 
reports that SNPs near EIF3H strongly associated with colorectal cancer (CRC), we 
hypothesized that the EIF3H VNTR might also associate with CRC.  We sought to test 
this hypothesis in UKB by direct analysis of CRC, a phenotype not included in our 
original list of 786 phenotypes tested for association. We extracted the ICD-10 codes 
obtained from UK cancer registries (UKB data field 40006 with 17 instances, accessed 
via RAP on 06/03/2022).  We identified 6,824 participants (out of 418,136 PC-filtered 
unrelated individuals) with reports of colorectal cancer (ICD-10 codes C18, C19 or C20).  
Of these CRC cases, N=1,988 participants also had a K63.5 diagnosis. 
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