
Repeat polymorphisms in non-coding DNA underlie top genetic risk loci for glaucoma 

and colorectal cancer 

Ronen E. Mukamel1,2,3*, Robert E. Handsaker3,4,5*, Maxwell A. Sherman1,2,3,6, Alison R. 

Barton1,2,3,7, Margaux L. A. Hujoel1,2,3, Steven A. McCarroll3,4,5**, Po-Ru Loh1,2,3** 

 

1 Division of Genetics, Department of Medicine, Brigham and Women’s Hospital and Harvard 

Medical School, Boston, Massachusetts, USA. 

2 Center for Data Sciences, Brigham and Women’s Hospital, Boston, Massachusetts, USA. 

3 Program in Medical and Population Genetics, Broad Institute of MIT and Harvard, Cambridge, 

Massachusetts, USA.  

4 Stanley Center for Psychiatric Research, Broad Institute of MIT and Harvard, Cambridge, 

Massachusetts, USA.  

5 Department of Genetics, Harvard Medical School, Boston, Massachusetts, USA. 

6 Computer Science and Artificial Intelligence Laboratory, Massachusetts Institute of 

Technology, Cambridge, Massachusetts, USA. 

7 Bioinformatics and Integrative Genomics Program, Department of Biomedical Informatics, 

Harvard Medical School, Boston, Massachusetts, USA.  

* These authors contributed equally to this work. 

** These authors co-supervised this work. 

Correspondence should be addressed to R.E.M. (rmukamel@broadinstitute.org), R.E.H. 

(handsake@broadinstitute.org), S.A.M. (smccarro@broadinstitute.org), or P.-R.L. 

(poruloh@broadinstitute.org). 

  

All rights reserved. No reuse allowed without permission. 
(which was not certified by peer review) is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity. 

The copyright holder for this preprintthis version posted October 13, 2022. ; https://doi.org/10.1101/2022.10.11.22280955doi: medRxiv preprint 

NOTE: This preprint reports new research that has not been certified by peer review and should not be used to guide clinical practice.

https://doi.org/10.1101/2022.10.11.22280955


Abstract 

 

Many regions in the human genome vary in length among individuals due to variable numbers 

of tandem repeats (VNTRs). We recently showed that protein-coding VNTRs underlie some of 

the strongest known genetic associations with diverse phenotypes. Here, we assessed the 

phenotypic impact of VNTRs genome-wide, 99% of which lie in non-coding regions. We applied 

a statistical imputation approach to estimate the lengths of 9,561 autosomal VNTR loci in 

418,136 unrelated UK Biobank participants.  Association and statistical fine-mapping analyses 

identified 107 VNTR-phenotype associations (involving 58 VNTRs) that were assigned a high 

probability of VNTR causality (PIP≥0.5).  Non-coding VNTRs at TMCO1 and EIF3H appeared to 

generate the largest known contributions of common human genetic variation to risk of 

glaucoma and colorectal cancer, respectively.  Each of these two VNTRs associated with a >2-

fold risk range across individuals.  These results reveal a substantial and previously 

unappreciated role of non-coding VNTRs in human health. 
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Introduction 

 

Thousands of human genome segments are present in variable numbers of tandem repeats 

(VNTRs) in different individuals’ genomes, but the effects of VNTRs on human phenotypes have 

been difficult to measure.  At each VNTR locus, a sequence of nucleotides, from seven to 

thousands of base pairs long, is repeated several to hundreds of times per allele, with the 

number of repeats varying among individuals.  Extreme VNTR alleles have been implicated in 

human diseases including progressive myoclonus epilepsy (Lalioti et al. 1997) and 

facioscapulohumeral muscular dystrophy (Wijmenga et al. 1992).  However, VNTRs have not 

been measured in most genome-wide association studies because such polymorphisms are not 

measured directly by SNP arrays and are challenging to characterize from short sequence 

reads.  

 

Recent computational advances have enabled VNTR lengths to be measured or estimated from 

sequencing data and evaluated for association with phenotypes.  Most studies to date have 

analyzed cohorts in which participants are both phenotyped and sequenced, measuring VNTR 

allele lengths either directly from spanning reads or indirectly from sequencing depth-of-

coverage (Course et al. 2020, Bakhtiari et al. 2021, Eslami Rasekh et al. 2021, Garg et al. 2021, 

Lu et al. 2021, Garg et al. 2022).  This approach has succeeded in identifying associations 

between VNTRs and the expression of nearby genes (Bakhtiari et al. 2021, Eslami Rasekh et 

al. 2021, Garg et al. 2021, Lu et al. 2021), but discovering associations with health and disease 

phenotypes (Garg et al. 2022) has proven more difficult due to the challenge of amassing 

phenotype and VNTR-allele information in the large number of individuals typically needed for 

genetic studies to discover genotype-phenotype associations, and the still-larger sample sizes 

required to distinguish among the effects of genomically nearby variants (such as VNTRs and 
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nearby SNPs).  An approach that has driven discovery of many SNP-phenotype associations is 

to impute untyped alleles based on the SNP haplotypes on which they segregate (Marchini et al. 

2007); this approach has been extended to complex and multi-allelic copy number variations 

(Handsaker et al. 2015; Sekar et al. 2016; Boettger et al. 2016).  We and others recently 

observed that this approach can be extended to tandem repeats (Saini et al. 2018, Mukamel et 

al. 2021, Beyter et al. 2021).  We further demonstrated that analysis of shared haplotypes can, 

at many loci, substantially improve the accuracy of VNTR length estimates from short-read 

sequencing depth by effectively combining measurements across individuals who inherited 

identical VNTR alleles from a recent common ancestor (Mukamel et al. 2021).   

 

Our recent work applied this statistical imputation framework to analyze exome-sequencing data 

in UK Biobank (UKB), showing that protein-coding VNTRs underlie some of the strongest known 

genetic associations with diverse phenotypes including height, serum urea, and hair curl 

(Mukamel et al. 2021).  Here, we applied this approach to whole-genome sequence data to 

estimate VNTR lengths genome-wide in UKB participants and assess the role of non-coding as 

well as coding VNTRs in shaping human phenotypes. 

 

Results 

 

Ascertainment and genotyping of 15,653 VNTR polymorphisms genome-wide 

 

We identified VNTR loci across the human genome by analyzing the GRCh38 reference 

genome in conjunction with 64 haploid genome assemblies generated from long-read 

sequencing by the Human Genome Structural Variant Consortium (HGSVC2; Ebert et al. 2021).  
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At each of 100,844 autosomal repeats with repeat unit ≥7bp (identified in GRCh38 using 

Tandem Repeats Finder (TRF); Benson et al. 1999), we determined the lengths of the 

corresponding repeat alleles in HGSVC2 assemblies by aligning flanking sequences from the 

human reference (Li 2018), excluding a small fraction of repeats (5.2%) for which either of the 

two flanking sequences failed to map uniquely in >50% of assemblies (Supplementary Note). 

Most repeats identified by TRF were either monomorphic (51%) or biallelic (20%) in the 

HGSVC2 assemblies. Restricting to multiallelic repeats (≥3 distinct alleles) and removing 

overlapping repeats left 15,653 multiallelic VNTR loci for downstream analysis in whole-genome 

sequencing (WGS) data (Supplementary Table 1).  These VNTRs had a median repeat unit 

length of 34bp and a median of 6 distinct alleles represented among HGSVC2 assemblies.  

VNTRs with more repeats generally exhibited greater allelic diversity (Fig. 1a).  VNTR allele 

length distributions in HGSVC2 assemblies had a median range of 199bp and median standard 

deviation of 46.8bp (Fig. 1b). 

 

To estimate haplotype-resolved VNTR allele lengths in UK Biobank participants, we applied a 

two-stage approach in which we first generated a reference panel of 9,376 VNTR+SNP 

haplotypes by analyzing short-read whole-genome sequencing (WGS) data from the Simons 

Simplex Collection (SSC; Fischbach and Lord 2010, An et al. 2018) and subsequently imputed 

VNTR alleles from SSC into UKB.  To generate the reference panel, we first estimated 

individual-level VNTR lengths (summed across the two parental alleles) from sequencing depth-

of-coverage in 8,936 SSC participants (including 4,688 unrelated individuals whose haplotypes 

formed the reference panel).  Such read-depth-based analysis is capable of distinguishing allele 

length variation at the scale of hundreds of base pairs (Handsaker et al. 2015); accordingly, 

these initial VNTR length genotypes captured allelic variation accurately (based on sibling 

concordance) for highly length-polymorphic VNTRs but less accurately for VNTRs with less-
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variable lengths (Fig. 1b).  To enable analysis of less-length-variable VNTRs and imputation into 

SNP haplotypes, we next analyzed the SNPs surrounding each VNTR to identify individuals 

who were likely to have inherited identical VNTR alleles from a recent common ancestor, 

allowing us to simultaneously reduce noise in VNTR length measurements and estimate 

haplotype-resolved lengths of individual VNTR alleles.  We additionally determined locus-

specific parameters for imputing VNTR allele lengths into SNP haplotypes, using cross-

validation to assess imputation accuracy and optimize parameters (Mukamel et al. 2021) 

(Supplementary Note). 

 

For most multiallelic VNTRs, this combination of sequencing read-depth analysis with 

haplotype-sharing analysis enabled robust statistical imputation that correlated with actual 

allele-length variation more strongly than any nearby biallelic SNP did (Fig. 1c, Supplementary 

Table 1, and Supplementary Note) – offering the potential for downstream discovery of 

genotype-phenotype associations previously invisible to or only weakly discernible from SNP-

association analyses.  Among 15,653 autosomal, multiallelic repeat loci, this analysis strategy 

typically captured a substantial proportion of allelic variation (median imputation R2=0.48), with 

the most variable VNTRs (allele length s.d. >100bp; 4,462 loci) particularly well-analyzed 

(median imputation R2=0.79).  Excluding poorly-imputed (R2<0.1) VNTRs and VNTR regions at 

which sequencing depth measurements failed quality control filters (Supplementary Note) left 

9,561 VNTRs for imputation into UKB. 

 

Exploring the phenotypic effects of non-coding VNTRs 
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We applied our statistical imputation framework to estimate allele lengths of 9,561 VNTRs in 

418,136 unrelated UKB participants of European ancestry and test these VNTRs for association 

with 786 phenotypes (including quantitative traits and binary disease phenotypes; 

Supplementary Table 2), adjusting for age, age2, sex, UKB assessment center, genotyping 

array, and 20 genetic principal components (Methods).  These analyses identified 4,968 

significant VNTR-phenotype associations (P < 5 x 10-9), of which 107 associations (involving 58 

distinct VNTRs) were assigned a high probability of causality by statistical fine-mapping 

(FINEMAP posterior inclusion probability (PIP)>0.5 (Benner et al. 2016); Fig. 2, Supplementary 

Table 3, and Methods).  These included five associations between non-coding VNTR 

polymorphisms and human diseases, including a previously reported association of a VNTR 

upstream of the insulin gene INS with type 1 diabetes, as well as associations of VNTR length 

polymorphisms with risk of glaucoma, colon polyps, and hypertension that, to our knowledge, 

have not been previously reported.  Two non-coding VNTRs (within TMCO1 and near EIF3H) 

appeared to generate the largest known contributions of common human genetic variation to 

risk of glaucoma and colorectal cancer, respectively.  The remaining 102 associations involved 

quantitative traits.  Several non-coding VNTRs including a large intronic repeat in CUL4A 

associated strongly with blood cell traits (P < 10-50), with association strengths similar to those 

we recently observed for coding VNTRs (Fig. 2).  We also tested each VNTR for association 

with autism in SSC, but did not observe any associations that reached our significance 

threshold (P<5 x 10-9). 

 

For three VNTRs with particularly strong and interesting phenotype associations—at TMCO1, 

EIF3H, and CUL4A—we performed a rigorous suite of follow-up analyses that confirmed the 

robustness and further elucidated the nature of their phenotype associations.  First, we 

improved accuracy with which VNTR repeat numbers could be inferred from WGS (and directly 
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validated this approach using HGSVC2 long-read assemblies; Supplementary Fig. 1) by 

leveraging subsequent whole-genome sequencing of 200,018 UKB participants and developing 

statistical models tailored to the allele distribution at each locus (Supplementary Note).  In each 

case, the absolute strength of the VNTR’s association with phenotype, as well as its strength 

relative to nearby SNP associations, increased with this improved analysis (Supplementary 

Table 4).  We also refined definitions of disease phenotypes in UKB (Supplementary Note) and 

analyzed data from independent cohorts to replicate associations and search for insights into 

potential molecular mechanisms as detailed below. 

 

Repeat expansion at TMCO1 associates with glaucoma risk more strongly than any SNP 

or indel in the genome 

 

The strongest disease association we observed involved expansion into many repeats of an 

intronic 28bp sequence in TMCO1; this VNTR associated with glaucoma risk more strongly than 

any SNP or indel in the entire genome (P=1.3 x 10-76 vs. 2.8 x 10-68 for the strongest SNP 

association genome-wide; Fig. 3a,b).  All the expanded VNTR alleles (containing 5-11 repeat 

units vs. the one-repeat major allele; Fig. 3a) segregated on a common ~70kb SNP haplotype at 

TMCO1 (AF=12% in UKB) that was among the first-identified and strongest known influences of 

common genetic variation on glaucoma (Burdon et al. 2011) (Fig. 3b); in our analysis, excess 

cases among carriers of expanded alleles accounted for ~10% of primary open-angle glaucoma 

cases in UKB.  Glaucoma is the leading cause of irreversible blindness worldwide (Steinmetz et 

al. 2021), characterized by optic nerve damage caused in most cases by elevated intraocular 

pressure (IOP). Even after excluding glaucoma cases, TMCO1 VNTR length associated with 

IOP more strongly than any SNP in the genome did, providing independent statistical evidence 

that the VNTR rather than nearby SNPs underlies the GWAS signal at TMCO1 (P=6.5 x 10-60 
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vs. P>2.9 x 10-51 for SNPs in analyses of N=94,877 UKB participants with IOP phenotypes and 

no reported glaucoma; Fig. 3c), and that the VNTR affects glaucoma risk through its effect on 

IOP. 

 

Repeat alleles of the TMCO1 VNTR formed an allelic series with increasing effects on IOP and 

glaucoma risk at longer repeat lengths (Fig. 3d,e).  The longest VNTR alleles (top 3%) 

associated with larger effects on IOP and glaucoma risk than any common SNP elsewhere in 

the genome (glaucoma OR=1.51 [95% CI, 1.42–1.60] vs. OR≤1.34 for unlinked SNPs with 

MAF>0.01; IOP β=0.185 s.d. (SE, 0.013 s.d.) vs. β≤0.155 s.d. for SNPs).  Individuals 

homozygous for long alleles (top 0.3% of summed allele length) exhibited >2-fold increased 

glaucoma risk relative to individuals with no repeat expansion (OR=2.27 [1.82-2.85]). 

 

SNPs at TMCO1 that tagged expanded VNTR alleles offered the opportunity to replicate these 

associations in independent, well-powered glaucoma and IOP genetic association data sets 

(Gharahkhani et al. 2021, Bonnemaijer et al. 2019) (Fig. 3d,e). In these replication cohorts, 

carriers of rs116089225:C>T, the SNP allele associated with greatest mean VNTR allele length 

among carriers in UKB (AF=0.01; 11 repeats in a genotyped carrier in HGSVC2; Methods), 

exhibited significantly elevated glaucoma risk (OR=1.70 [1.43–2.01]; Fig. 3d) and IOP (β=0.201 

(0.043) s.d.; Fig. 3e) relative to carriers of the common risk haplotype that segregated with all 

expanded alleles (AF=0.12, carrier mean allele length = 7.6 repeats in UKB; glaucoma OR=1.34 

[1.29–1.39], IOP β=0.084 (0.012) s.d.; Fig. 3d,e). These results from studies that excluded UK 

Biobank provided confirmatory evidence for the series of VNTR allele effects we observed in 

UKB. 
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Though the statistical evidence points to the VNTR as the causal variant driving glaucoma 

associations at TMCO1, the molecular mechanism and causal gene underlying this association 

remain elusive.  Consistent with previous reports (Sharma et al, 2012), carriers of a rare 

TMCO1 loss-of-function mutation (rs752176040:ACT>A, AF=0.00034 in exome-sequenced 

UKB participants; Backman et al. 2021) did not appear to have elevated IOP (β=0.114 (0.135) 

s.d.) or increased glaucoma risk (OR=1.07 [0.58–1.96]).  Analysis of loss-of-function mutation 

carriers for other nearby genes also did not provide any clues toward a candidate gene 

(Supplementary Fig. 2).  In RNA sequencing data from GTEx (Aguet et al. 2020), VNTR length 

associated with expression at TMCO1 in most tissues (e.g., in sun-exposed skin, P=2.9 x 10-11 

for TMCO1 expression and P=8.3 x 10-26 for TMCO1-AS1 expression), consistent with recent 

SNP-based colocalization analyses (Hamel et al. 2022).  However, these associations did not 

display evidence of an allelic series (Supplementary Fig. 3).  Additionally, in joint models 

including both the VNTR and nearby SNPs, VNTR length did not significantly associate with 

expression, whereas SNPs retained significance (e.g., P=0.5 for the VNTR vs. P=0.00011 for 

rs2790052 for association with TMCO1-AS1 expression in sun-exposed skin).  These results 

suggest that a variant other than the VNTR, possibly rs2790052 or rs2251768 in the promoter 

region of TMCO1, is responsible for the main eQTL at this locus and that the expression signal 

is unrelated to the glaucoma and IOP associations. 

 

Common repeat polymorphism at EIF3H associates with a twofold range of colorectal 

cancer risk 

 

Colorectal cancer is a heritable complex disease for which more than one hundred common risk 

alleles have been identified, each with a subtle influence on disease risk (OR<1.2) (Huyghe et 

al. 2019).  By contrast, the length of a 27bp repeat (usually ranging from 2-6 repeat units) ~20kb 
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downstream of EIF3H associated strongly with risk of colorectal cancer and colon polyps (P= 

1.3 x 10-24 and P=9.3 x 10-34, respectively; Fig. 4a,b), with the longest common allele (6 repeat 

units; AF=0.04) conferring higher colorectal cancer risk (OR=1.34 [1.24–1.45]) than any 

common SNP or indel in the genome (Fig. 4c).  The VNTR appeared to explain nearby SNP 

associations that were among the first associations reported for colorectal cancer (Tomlinson et 

al. 2008).  Moreover, the explanatory power of this locus, which ranked first among all colorectal 

cancer loci genome-wide (P=1.3 x 10-24 for the VNTR vs. P=2.2 x 10-19 for the strongest SNP 

association; Fig. 4a), had previously been underestimated by ~50% in association studies that 

considered only SNPs which are in partial LD with the VNTR (maximum R2=0.27; Fig. 4a,b).  

Imputation of the VNTR association into summary statistics (Pasaniuc et al. 2014) (that 

excluded UKB) from a large colorectal cancer meta-analysis (Huyghe et al. 2019) replicated the 

VNTR association as the strongest at the locus (imputed P=6.7 x 10-11 for the VNTR vs. P≥7.3 x 

10-9 for nearby SNPs; Supplementary Fig. 4).  In UKB, the VNTR’s association was driven by a 

series of four common alleles (3-6 repeat units) which exhibited increasing effects on risk of 

colorectal cancer and colon polyps.  Disease risk increased linearly (on the log-odds scale) with 

VNTR length (Fig. 4c), with each additional repeat unit associating with a 14% (11–17%) 

increased risk of colorectal cancer (9% [7–10%] for colon polyps).  The effects of an individual's 

two alleles appeared to be additive (P=0.68 for interaction term), such that common repeat 

length variation at EIF3H appeared to produce a >2-fold range of colorectal cancer risk across 

individuals (Supplementary Fig. 5). 

 

The length of this VNTR did not associate with expression of any nearby gene in analyses of 

RNA sequencing data, either from healthy tissue sequenced by GTEx (Aguet et al. 2020) 

(P≥0.002 for each of 11 genes within 1Mb and each of up to 49 tissues) or from colorectal tumor 

tissues from the Cancer Genome Atlas (Cancer Genome Atlas Network 2012) (P≥0.1 for each 

All rights reserved. No reuse allowed without permission. 
(which was not certified by peer review) is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity. 

The copyright holder for this preprintthis version posted October 13, 2022. ; https://doi.org/10.1101/2022.10.11.22280955doi: medRxiv preprint 

https://doi.org/10.1101/2022.10.11.22280955


of 8 protein-coding genes in analysis of 465 tumor samples).  The gene EIF3H, which encodes 

a subunit of a translation initiation factor, has been nominated as a potential causative gene at 

this locus (Tomlinson et al. 2008).  However, definitive evidence linking colorectal cancer risk 

variants at 8q23.3 to a gene has remained elusive, and, consistent with our findings, risk alleles 

at this locus have not been shown to associate with EIF3H expression (Carvajal-Carmona et al. 

2011).  Though we have identified the VNTR as a promising candidate for the causal variant at 

this locus (with statistical support from analyses of two distinct phenotypes – colorectal cancer 

and colon polyps; between-phenotype R2=0.02 – as well as independent replication), 

deciphering the molecular mechanism will require new kinds of data. 

 

Intronic repeat expansion in CUL4A influences alternative splicing and erythrocyte traits 

 

At CUL4A, expansion of a highly polymorphic intronic repeat (commonly consisting of ~3–100 

copies of a 29-32bp repeat unit; Fig. 5a) associated with decreased mean corpuscular 

hemoglobin (P=6.4 x 10-61, Fig. 5b,c) and nine other erythrocyte-related traits (Fig. 2, Fig. 5c, 

and Supplementary Table 4).  The VNTR association was >3-fold stronger than that of nearby 

SNPs (none of which could effectively tag the VNTR polymorphism: maximum R2=0.30; Fig. 5b) 

and was driven by a series of alleles with monotonically strengthening effects on the associated 

phenotypes (Fig. 5c).  UK Biobank participants carried a multimodal allele distribution with a 

long tail of expanded alleles (Fig. 5c), consistent with expanded alleles observed in HGSVC2 

assemblies (Supplementary Fig. 1).  The longest alleles (top 1%, >2.1kb) associated with 0.075 

(0.010) s.d. reduced mean corpuscular hemoglobin (Fig. 5c). 
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Analysis of GTEx RNA-seq data revealed that VNTR allele length strongly associated with an 

apparent splice defect in CUL4A , in which individuals carrying longer VNTR alleles were less 

likely to make the canonical splice over the VNTR in intron 5 (which varies in length from ~3–

6kb owing to the VNTR polymorphism), instead splicing to a much more proximal sequence 

(122bp from the splice donor) that results in premature truncation of the CUL4A reading frame 

without the 15 downstream canonical exons (P=1.0 x 10-73 in cultured fibroblasts; P≤0.05 in 47 

of 48 additional tissues tested; Fig. 5a,d,e,f).  This splice event associated with the VNTR much 

more strongly than with any SNP, in each of the 30 tissues for which a variant reached 

Bonferroni significance (Fig. 5f).  In each case, longer alleles associated with greater usage of 

the protein-truncating isoform (Fig. 5e). 

 

The gene CUL4A encodes a ubiquitin ligase with an ortholog (Cul4A) that is required for 

hematopoiesis in mice (Waning et al. 2008), suggesting a molecular mechanism in which the 

VNTR length polymorphism might influence erythrocyte traits by interfering with CUL4A splicing 

and thereby modulating production of a truncated CUL4A isoform with reduced or lost function.  

Beyond the influence of the VNTR, the proportion of CUL4A transcripts that are mis-spliced in 

this way varies considerably across tissues (from an average of ~0.03 in skeletal muscle to 

~0.75 in whole blood and testis; Fig. 5g), suggesting that cellular context, as well as VNTR 

length, affect splicing outcome.   

 

Non-coding repeat polymorphisms near SIRPA, DOCK8, and PLEC associate with platelet 

traits 
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The three strongest non-coding VNTR associations supported by statistical fine-mapping 

involved repeats near SIRPA, DOCK8 and PLEC, with each VNTR appearing to underlie one of 

the top 40 associations genome-wide for a platelet phenotype, explaining >0.1% of variance 

(Fig. 2, Supplementary Fig. 6, and Supplementary Table 4).  Approximately 50kb upstream of 

SIRPA, a 45bp repeat (with common 6-repeat and 10-repeat alleles) residing within a predicted 

enhancer of SIRPA (Fishilevich et al. 2017) associated with mean platelet volume (MPV; P=1.6 

x 10-167; FINEMAP PIP=1.00).  Within DOCK8, a gene harboring rare coding variants previously 

linked to MPV (Barton et al. 2021), the length of a highly length-polymorphic (~100bp–6kb) 

intronic 61bp repeat also associated strongly with MPV (P=6.5 x 10-129; PIP=1.00).  At PLEC, 

which encodes plectin, an intermediate filament binding protein with roles in cytoarchitecture 

and cell shape (Svitkina et al. 1996), the length of a 76bp intronic repeat (2-13 repeats per 

allele) associated with platelet distribution width (P=1.2 x 10-96; PIP=0.99). 

 

Other fine-mapped associations provided additional examples of ways in which previously-

hidden repeat polymorphisms appear to influence human phenotypes. VNTR length 

polymorphisms in introns of CHMP1A and SBNO2 associated with decreased hypertension risk 

(P=1.5 x 10-12; PIP=1.00) and bone mineral density (P=3.4 x 10-45; PIP=0.97), respectively, 

apparently by modulating splicing of these genes (Supplementary Figs. 7 and 8). Bone mineral 

density was also significantly associated (P=1.8 x 10-12; PIP=1.00; Supplementary Fig. 6) with 

length of a VNTR in the promoter region of ITGB2 (encoding CD18), a gene which previous 

work has implicated in osteogenesis (Miura et al. 2005). These associations provide plausible 

bases for further investigation of the function of tandem repeat polymorphisms in specific clinical 

contexts. 

 

Discussion 
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These results identify many VNTRs that appear to have strong effects on human phenotypes, 

including five VNTR length polymorphisms that are associated with risk of common diseases.  

Two disease associations we observed, involving VNTRs at TMCO1 and EIF3H, appeared to be 

the strongest known genetic influences of common inherited variation on glaucoma and 

colorectal cancer risk, respectively.  These discoveries were enabled by a computational 

approach to VNTR genotype estimation that integrated sequencing depth-of-coverage analysis 

with statistical phasing and imputation into SNP-array genotyping data – a framework that can 

similarly be applied to other genetic data sets. 

 

Most of the phenotype-associated VNTRs identified by our study lie in non-coding regions of the 

genome, modifying DNA sequence length by hundreds to thousands of base pairs, yet with no 

obvious molecular mechanism to explain their apparent impact on phenotype.  A notable 

exception is the hemoglobin-associated VNTR we identified in CUL4A, which appeared to 

strongly attenuate the excision of the intron in which it resides, drastically affecting the mature 

mRNA sequence and, presumably, the function of the translated protein.  Non-coding variants 

linked to phenotype pose a central challenge in human genetics.  Consistent with other studies, 

available RNA sequencing data sets helped interpret only a small fraction of the non-coding 

associations we observed.  Other techniques and further study will be required to elucidate the 

“missing regulation” and identify the mechanisms underlying the associations observed here 

(Connally et al. 2021). 

 

Despite considerably expanding the set of known associations between VNTRs and human 

phenotypes, the results presented here likely represent an incomplete look into the landscape of 
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repeat-mediated trait heritability, owing to genotyping challenges that we could only partially 

overcome as well as inherent limitations of the UK Biobank cohort we analyzed.  Our read-depth 

and haplotype-modeling approach accurately captured larger-scale VNTR length variation 

(>100bp) but produced noisier genotype estimates for less-variable VNTRs, reducing power to 

analyze such VNTRs.  Moreover, we excluded all short tandem repeat (STR) loci from analysis, 

for which other methods are required (Saini et al. 2018, Margoliash et al. 2022).  The set of 

VNTRs we considered was also limited by our GRCh38-based VNTR ascertainment strategy 

(which required multiple repeat units to be present in the human reference) and the need for 

mappability of short reads.  Additionally, our ability to detect VNTR-phenotype associations was 

limited by the demographics of the UK Biobank cohort, which enrolled generally healthy 

participants of predominantly European ancestry.  Analyses in case-control cohorts enriched for 

heritable diseases will be needed to power discovery of further influences of VNTR variation on 

human health.  Many of these limitations are now beginning to be overcome as long-read 

sequencing data sets scale to thousands of samples (Beyter et al. 2021) and short-read WGS 

data sets scale to hundreds of thousands of samples (Halldorsson et al. 2022), including in 

diverse populations (All of Us Research Program 2019).  We anticipate that these recently-

generated and upcoming data resources will enable many further insights into the contribution 

of repeat polymorphisms to heritable complex traits in the years to come. 

  

All rights reserved. No reuse allowed without permission. 
(which was not certified by peer review) is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity. 

The copyright holder for this preprintthis version posted October 13, 2022. ; https://doi.org/10.1101/2022.10.11.22280955doi: medRxiv preprint 

https://doi.org/10.1101/2022.10.11.22280955


Acknowledgments 

We would like to thank A. Segre, A. Lee, N. Kamitaki, and R. Gupta for helpful discussions 

related to this work.  This research was conducted using the UK Biobank Resource under 

application #40709. Computational analyses were performed on the O2 High Performance 

Compute Cluster, supported by the Research Computing Group, at Harvard Medical School 

(http://rc.hms.harvard.edu) and the UK Biobank Research Analysis Platform (RAP). We are 

grateful to all of the families at the participating Simons Simplex Collection (SSC) sites, as well 

as the principal investigators (A. Beaudet, R. Bernier, J. Constantino, E. Cook, E. Fombonne, D. 

Geschwind, R. Goin-Kochel, E. Hanson, D. Grice, A. Klin, D. Ledbetter, C. Lord, C. Martin, D. 

Martin, R. Maxim, J. Miles, O. Ousley, K. Pelphrey, B. Peterson, J. Piggot, C. Saulnier, M. State, 

W. Stone, J. Sutcliffe, C. Walsh, Z. Warren, E. Wijsman).  We appreciate obtaining access to 

genetic data on SFARI Base. The results presented here are in part based upon data generated 

by the TCGA Research Network: https://www.cancer.gov/tcga.  The Genotype-Tissue 

Expression (GTEx) Project was supported by the Common Fund of the Office of the Director of 

the National Institutes of Health, and by NCI, NHGRI, NHLBI, NIDA, NIMH, and NINDS. 

Funding: R.E.M. was supported by US National Institutes of Health (NIH) grant K25 HL150334. 

R.E.H. and S.A.M. were supported by NIH grant R01 HG006855. M.A.S. was supported by the 

MIT John W. Jarve (1978) Seed Fund for Science Innovation and NIH fellowship F31 

MH124393. A.R.B. was supported by NIH fellowship F31 HL154537 and training grant T32 HG 

2295-16. M.L.A.H. was supported by US NIH Fellowship F32 HL160061.  P.-R.L. was supported 

by NIH grant DP2 ES030554, a Burroughs Wellcome Fund Career Award at the Scientific 

Interfaces, the Next Generation Fund at the Broad Institute of MIT and Harvard, and a Sloan 

Research Fellowship. Author contributions: R.E.M., R.E.H., S.A.M., and P.-R.L. conceived 

and designed the study.  R.E.M., R.E.H., and P.-R.L. designed and implemented the statistical 

methods and performed the computational analyses.  R.E.M., R.E.H, A.R.B., M.A.S., M. L. A. 

All rights reserved. No reuse allowed without permission. 
(which was not certified by peer review) is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity. 

The copyright holder for this preprintthis version posted October 13, 2022. ; https://doi.org/10.1101/2022.10.11.22280955doi: medRxiv preprint 

https://doi.org/10.1101/2022.10.11.22280955


H., S.A.M., and P.-R.L interpreted analytical results.  All authors wrote and edited the 

manuscript.   

Competing interests 

The authors declare no competing interests. 

 

References 

(Aguet et al. 2020) Aguet, François, Alvaro N. Barbeira, Rodrigo Bonazzola, Andrew Brown, and 
Stephane E. Castel. “The GTEx Consortium Atlas of Genetic Regulatory Effects across 
Human Tissues.” Science 369, no. 6509 (September 11, 2020): 1318–30. 
https://doi.org/10.1126/science.aaz1776. 

(All of Us Research Program 2019) “All of Us” Research Program Investigators. “The ‘All of Us’ 
Research Program.” The New England Journal of Medicine 381 (2019): 668–76. 

(An et al. 2018) An, Joon-Yong, Kevin Lin, Lingxue Zhu, Donna M. Werling, Shan Dong, 
Harrison Brand, Harold Z. Wang, et al. “Genome-Wide de Novo Risk Score Implicates 
Promoter Variation in Autism Spectrum Disorder.” Science 362, no. 6420 (December 14, 
2018): eaat6576. https://doi.org/10.1126/science.aat6576. 

(Backman et al. 2021) Backman, Joshua D., Alexander H. Li, Anthony Marcketta, Dylan Sun, 
Joelle Mbatchou, Michael D. Kessler, Christian Benner, et al. “Exome Sequencing and 
Analysis of 454,787 UK Biobank Participants.” Nature 599, no. 7886 (November 2021): 
628–34. https://doi.org/10.1038/s41586-021-04103-z. 

(Bakhtiari et al. 2018) Bakhtiari, Mehrdad, Sharona Shleizer-Burko, Melissa Gymrek, Vikas 
Bansal, and Vineet Bafna. “Targeted Genotyping of Variable Number Tandem Repeats with 
AdVNTR.” Genome Research 28, no. 11 (November 2018): 1709–19. 
https://doi.org/10.1101/gr.235119.118. 

(Bakhtiari et al. 2021) Bakhtiari, Mehrdad, Jonghun Park, Yuan-Chun Ding, Sharona Shleizer-
Burko, Susan L. Neuhausen, Bjarni V. Halldórsson, Kári Stefánsson, Melissa Gymrek, and 
Vineet Bafna. “Variable Number Tandem Repeats Mediate the Expression of Proximal 
Genes.” Nature Communications 12, no. 1 (December 2021): 2075. 
https://doi.org/10.1038/s41467-021-22206-z. 

(Barton et al. 2021) Barton, Alison R., Maxwell A. Sherman, Ronen E. Mukamel, and Po-Ru 
Loh. “Whole-Exome Imputation within UK Biobank Powers Rare Coding Variant Association 
and Fine-Mapping Analyses.” Nature Genetics, July 5, 2021, 1–10. 
https://doi.org/10.1038/s41588-021-00892-1. 

(Benner et al. 2016) Benner, Christian, Chris C.A. Spencer, Aki S. Havulinna, Veikko Salomaa, 
Samuli Ripatti, and Matti Pirinen. “FINEMAP: Efficient Variable Selection Using Summary 

All rights reserved. No reuse allowed without permission. 
(which was not certified by peer review) is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity. 

The copyright holder for this preprintthis version posted October 13, 2022. ; https://doi.org/10.1101/2022.10.11.22280955doi: medRxiv preprint 

https://doi.org/10.1101/2022.10.11.22280955


Data from Genome-Wide Association Studies.” Bioinformatics 32, no. 10 (May 15, 2016): 
1493–1501. https://doi.org/10.1093/bioinformatics/btw018. 

(Benson 1999) Benson, Gary. “Tandem Repeats Finder: A Program to Analyze DNA 
Sequences.” Nucleic Acids Research 27, no. 2 (January 1, 1999): 573–80. 
https://doi.org/10.1093/nar/27.2.573. 

(Beyter et al. 2021) Beyter, Doruk, Helga Ingimundardottir, Asmundur Oddsson, Hannes P. 
Eggertsson, Eythor Bjornsson, Hakon Jonsson, Bjarni A. Atlason, et al. “Long-Read 
Sequencing of 3,622 Icelanders Provides Insight into the Role of Structural Variants in 
Human Diseases and Other Traits.” Nature Genetics, May 10, 2021, 1–8. 
https://doi.org/10.1038/s41588-021-00865-4. 

(Boettger et al. 2016) Boettger, Linda M., Rany M. Salem, Robert E. Handsaker, Gina M. 
Peloso, Sekar Kathiresan, Joel N. Hirschhorn, and Steven A. McCarroll. “Recurring Exon 
Deletions in the HP (Haptoglobin) Gene Contribute to Lower Blood Cholesterol Levels.” 
Nature Genetics 48, no. 4 (April 2016): 359–66. https://doi.org/10.1038/ng.3510. 

(Bonnemaijer et al. 2019) Bonnemaijer, Pieter W. M., Elisabeth M. van Leeuwen, Adriana I. 
Iglesias, Puya Gharahkhani, Veronique Vitart, Anthony P. Khawaja, Mark Simcoe, et al. 
“Multi-Trait Genome-Wide Association Study Identifies New Loci Associated with Optic Disc 
Parameters.” Communications Biology 2, no. 1 (November 27, 2019): 1–12. 
https://doi.org/10.1038/s42003-019-0634-9. 

(Buniello et al. 2019) Buniello, Annalisa, Jacqueline A L MacArthur, Maria Cerezo, Laura W 
Harris, James Hayhurst, Cinzia Malangone, Aoife McMahon, et al. “The NHGRI-EBI GWAS 
Catalog of Published Genome-Wide Association Studies, Targeted Arrays and Summary 
Statistics 2019.” Nucleic Acids Research 47, no. D1 (January 8, 2019): D1005–12. 
https://doi.org/10.1093/nar/gky1120. 

(Burdon et al. 2011) Burdon, Kathryn P., Stuart Macgregor, Alex W. Hewitt, Shiwani Sharma, 
Glyn Chidlow, Richard A. Mills, Patrick Danoy, et al. “Genome-Wide Association Study 
Identifies Susceptibility Loci for Open Angle Glaucoma at TMCO1 and CDKN2B-AS1.” 
Nature Genetics 43, no. 6 (June 2011): 574–78. https://doi.org/10.1038/ng.824. 

(Bycroft et al. 2018) Bycroft, Clare, Colin Freeman, Desislava Petkova, Gavin Band, Lloyd T. 
Elliott, Kevin Sharp, Allan Motyer, et al. “The UK Biobank Resource with Deep Phenotyping 
and Genomic Data.” Nature 562, no. 7726 (October 2018): 203–9. 
https://doi.org/10.1038/s41586-018-0579-z. 

(Byrska-Bishop et al. 2022) Byrska-Bishop, Marta, Uday S. Evani, Xuefang Zhao, Anna O. 
Basile, Haley J. Abel, Allison A. Regier, André Corvelo, et al. “High-Coverage Whole-
Genome Sequencing of the Expanded 1000 Genomes Project Cohort Including 602 Trios.” 
Cell 185, no. 18 (September 2022): 3426-3440.e19. 
https://doi.org/10.1016/j.cell.2022.08.004. 

(Cancer Genome Atlas Network 2012) Muzny, Donna M., Matthew N. Bainbridge, Kyle Chang, 
Huyen H. Dinh, Jennifer A. Drummond, Gerald Fowler, Christie L. Kovar, et al. 

All rights reserved. No reuse allowed without permission. 
(which was not certified by peer review) is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity. 

The copyright holder for this preprintthis version posted October 13, 2022. ; https://doi.org/10.1101/2022.10.11.22280955doi: medRxiv preprint 

https://doi.org/10.1101/2022.10.11.22280955


“Comprehensive Molecular Characterization of Human Colon and Rectal Cancer.” Nature 
487, no. 7407 (July 2012): 330–37. https://doi.org/10.1038/nature11252.  

(Carvajal-Carmona et al. 2011) Carvajal-Carmona, Luis G., Jean-Baptiste Cazier, Angela M. 
Jones, Kimberley Howarth, Peter Broderick, Alan Pittman, Sara Dobbins, et al. “Fine-
Mapping of Colorectal Cancer Susceptibility Loci at 8q23.3, 16q22.1 and 19q13.11: 
Refinement of Association Signals and Use of in Silico Analysis to Suggest Functional 
Variation and Unexpected Candidate Target Genes.” Human Molecular Genetics 20, no. 14 
(July 15, 2011): 2879–88. https://doi.org/10.1093/hmg/ddr190. 

(Chang et al. 2015) Chang, Christopher C, Carson C Chow, Laurent CAM Tellier, Shashaank 
Vattikuti, Shaun M Purcell, and James J Lee. “Second-Generation PLINK: Rising to the 
Challenge of Larger and Richer Datasets.” GigaScience 4, no. s13742-015-0047–8 
(December 1, 2015). https://doi.org/10.1186/s13742-015-0047-8. 

(Chen et al. 2013) Chen, Chia-Yen, Samuela Pollack, David J. Hunter, Joel N. Hirschhorn, Peter 
Kraft, and Alkes L. Price. “Improved Ancestry Inference Using Weights from External 
Reference Panels.” Bioinformatics 29, no. 11 (June 1, 2013): 1399–1406. 
https://doi.org/10.1093/bioinformatics/btt144. 

(Connally et al. 2021) Connally, Noah, Sumaiya Nazeen, Daniel Lee, Huwenbo Shi, John 
Stamatoyannopoulos, Sung Chun, Chris Cotsapas, Christopher Cassa, and Shamil 
Sunyaev. “The Missing Link between Genetic Association and Regulatory Function.” 
Preprint. medRxiv, June 11, 2021. https://doi.org/10.1101/2021.06.08.21258515. 

(Course et al. 2020) Course, Meredith M., Kathryn Gudsnuk, Samuel N. Smukowski, Kosuke 
Winston, Nitin Desai, Jay P. Ross, Arvis Sulovari, et al. “Evolution of a Human-Specific 
Tandem Repeat Associated with ALS.” The American Journal of Human Genetics 107, no. 3 
(September 3, 2020): 445–60. https://doi.org/10.1016/j.ajhg.2020.07.004. 

(Course et al. 2021) Course, Meredith M., Arvis Sulovari, Kathryn Gudsnuk, Evan E. Eichler, 
and Paul N. Valdmanis. “Characterizing Nucleotide Variation and Expansion Dynamics in 
Human-Specific Variable Number Tandem Repeats.” Genome Research 31, no. 8 (August 
1, 2021): 1313–24. https://doi.org/10.1101/gr.275560.121. 

(Delaneau et al. 2013) Delaneau, Olivier, Bryan Howie, Anthony J. Cox, Jean-François Zagury, 
and Jonathan Marchini. “Haplotype Estimation Using Sequencing Reads.” The American 
Journal of Human Genetics 93, no. 4 (October 3, 2013): 687–96. 
https://doi.org/10.1016/j.ajhg.2013.09.002. 

(Dolzhenko et al. 2017) Dolzhenko, Egor, Joke J. F. A. van Vugt, Richard J. Shaw, Mitchell A. 
Bekritsky, Marka van Blitterswijk, Giuseppe Narzisi, Subramanian S. Ajay, et al. “Detection 
of Long Repeat Expansions from PCR-Free Whole-Genome Sequence Data.” Genome 
Research, September 8, 2017. https://doi.org/10.1101/gr.225672.117. 

(Ebert et al. 2021) Ebert, Peter, Peter A. Audano, Qihui Zhu, Bernardo Rodriguez-Martin, David 
Porubsky, Marc Jan Bonder, Arvis Sulovari, et al. “Haplotype-Resolved Diverse Human 
Genomes and Integrated Analysis of Structural Variation.” Science 372, no. 6537 (April 2, 
2021). https://doi.org/10.1126/science.abf7117. 

All rights reserved. No reuse allowed without permission. 
(which was not certified by peer review) is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity. 

The copyright holder for this preprintthis version posted October 13, 2022. ; https://doi.org/10.1101/2022.10.11.22280955doi: medRxiv preprint 

https://doi.org/10.1101/2022.10.11.22280955


(Eslami Rasekh et al. 2021) Eslami Rasekh, Marzieh, Yözen Hernández, Samantha D Drinan, 
Juan I Fuxman Bass, and Gary Benson. “Genome-Wide Characterization of Human 
Minisatellite VNTRs: Population-Specific Alleles and Gene Expression Differences.” Nucleic 
Acids Research 49, no. 8 (April 13, 2021): 4308–24. https://doi.org/10.1093/nar/gkab224. 

(Fischbach and Lord, 2010) Fischbach, Gerald D., and Catherine Lord. “The Simons Simplex 
Collection: A Resource for Identification of Autism Genetic Risk Factors.” Neuron 68, no. 2 
(October 21, 2010): 192–95. https://doi.org/10.1016/j.neuron.2010.10.006. 

(Fishilevich et al. 2017) Fishilevich, Simon, Ron Nudel, Noa Rappaport, Rotem Hadar, Inbar 
Plaschkes, Tsippi Iny Stein, Naomi Rosen, et al. “GeneHancer: Genome-Wide Integration of 
Enhancers and Target Genes in GeneCards.” Database 2017 (January 1, 2017): bax028. 
https://doi.org/10.1093/database/bax028. 

(Garg et al. 2021) Garg, Paras, Alejandro Martin-Trujillo, Oscar L. Rodriguez, Scott J. Gies, 
Elina Hadelia, Bharati Jadhav, Miten Jain, Benedict Paten, and Andrew J. Sharp. “Pervasive 
Cis Effects of Variation in Copy Number of Large Tandem Repeats on Local DNA 
Methylation and Gene Expression.” The American Journal of Human Genetics 108, no. 5 
(May 6, 2021): 809–24. https://doi.org/10.1016/j.ajhg.2021.03.016. 

(Garg et al. 2022) Garg, Paras, Bharati Jadhav, William Lee, Oscar L. Rodriguez, Alejandro 
Martin-Trujillo, and Andrew J. Sharp. “A Phenome-Wide Association Study Identifies Effects 
of Copy-Number Variation of VNTRs and Multicopy Genes on Multiple Human Traits.” The 
American Journal of Human Genetics 109, no. 6 (June 2022): 1065–76. 
https://doi.org/10.1016/j.ajhg.2022.04.016. 

(Gharahkhani et al. 2021) Gharahkhani, Puya, Eric Jorgenson, Pirro Hysi, Anthony P. Khawaja, 
Sarah Pendergrass, Xikun Han, Jue Sheng Ong, et al. “Genome-Wide Meta-Analysis 
Identifies 127 Open-Angle Glaucoma Loci with Consistent Effect across Ancestries.” Nature 
Communications 12, no. 1 (February 24, 2021): 1258. https://doi.org/10.1038/s41467-020-
20851-4. 

(Halldorsson et al. 2022) Halldorsson, Bjarni V., Hannes P. Eggertsson, Kristjan H. S. Moore, 
Hannes Hauswedell, Ogmundur Eiriksson, Magnus O. Ulfarsson, Gunnar Palsson, et al. 
“The Sequences of 150,119 Genomes in the UK Biobank.” Nature 607, no. 7920 (July 
2022): 732–40. https://doi.org/10.1038/s41586-022-04965-x. 

(Hamel et al. 2022) Hamel, Andrew R., John M. Rouhana, Wenjun Yan, Aboozar 
Monovarfeshani, Xinyi Jiang, Qingnan Liang, Puja A. Mehta, et al. “Integrating Genetic 
Regulation and Single-Cell Expression with GWAS Prioritizes Causal Genes and Cell Types 
for Glaucoma.” Preprint. medRxiv, May 19, 2022. 
https://doi.org/10.1101/2022.05.14.22275022. 

(Handsaker et al. 2015) Handsaker, Robert E., Vanessa Van Doren, Jennifer R. Berman, Giulio 
Genovese, Seva Kashin, Linda M. Boettger, and Steven A. McCarroll. “Large Multiallelic 
Copy Number Variations in Humans.” Nature Genetics 47, no. 3 (March 2015): 296–303. 
https://doi.org/10.1038/ng.3200. 

All rights reserved. No reuse allowed without permission. 
(which was not certified by peer review) is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity. 

The copyright holder for this preprintthis version posted October 13, 2022. ; https://doi.org/10.1101/2022.10.11.22280955doi: medRxiv preprint 

https://doi.org/10.1101/2022.10.11.22280955


(Huang et al. 2015) Huang, Jie, Bryan Howie, Shane McCarthy, Yasin Memari, Klaudia Walter, 
Josine L. Min, Petr Danecek, et al. “Improved Imputation of Low-Frequency and Rare 
Variants Using the UK10K Haplotype Reference Panel.” Nature Communications 6, no. 1 
(September 14, 2015): 8111. https://doi.org/10.1038/ncomms9111. 

(Huyghe et al. 2019) Huyghe, Jeroen R., Stephanie A. Bien, Tabitha A. Harrison, Hyun Min 
Kang, Sai Chen, Stephanie L. Schmit, David V. Conti, et al. “Discovery of Common and 
Rare Genetic Risk Variants for Colorectal Cancer.” Nature Genetics 51, no. 1 (January 
2019): 76–87. https://doi.org/10.1038/s41588-018-0286-6. 

(Khawaja et al. 2018) Khawaja, Anthony P., Jessica N. Cooke Bailey, Nicholas J. Wareham, 
Robert A. Scott, Mark Simcoe, Robert P. Igo, Yeunjoo E. Song, et al. “Genome-Wide 
Analyses Identify 68 New Loci Associated with Intraocular Pressure and Improve Risk 
Prediction for Primary Open-Angle Glaucoma.” Nature Genetics 50, no. 6 (June 2018): 
778–82. https://doi.org/10.1038/s41588-018-0126-8. 

(Lalioti et al. 1997) Lalioti, Maria D., Hamish S. Scott, Catherine Buresi, Colette Rossier, 
Armand Bottani, Michael A. Morris, Alain Malafosse, and Stylianos E. Antonarakis. 
“Dodecamer Repeat Expansion in Cystatin B Gene in Progressive Myoclonus Epilepsy.” 
Nature 386, no. 6627 (April 1997): 847–51. https://doi.org/10.1038/386847a0. 

(Li 2018) Li, Heng. “Minimap2: Pairwise Alignment for Nucleotide Sequences.” Bioinformatics 
34, no. 18 (September 15, 2018): 3094–3100. https://doi.org/10.1093/bioinformatics/bty191. 

(Li et al. 2018) Li, Yang I., David A. Knowles, Jack Humphrey, Alvaro N. Barbeira, Scott P. 
Dickinson, Hae Kyung Im, and Jonathan K. Pritchard. “Annotation-Free Quantification of 
RNA Splicing Using LeafCutter.” Nature Genetics 50, no. 1 (January 2018): 151–58. 
https://doi.org/10.1038/s41588-017-0004-9. 

(Liao et al. 2022) Liao, Wen-Wei, Mobin Asri, Jana Ebler, Daniel Doerr, Marina Haukness, 
Glenn Hickey, Shuangjia Lu, et al. “A Draft Human Pangenome Reference.” bioRxiv, July 9, 
2022. https://doi.org/10.1101/2022.07.09.499321. 

(Loh et al. 2015) Loh, Po-Ru, George Tucker, Brendan K. Bulik-Sullivan, Bjarni J. Vilhjálmsson, 
Hilary K. Finucane, Rany M. Salem, Daniel I. Chasman, et al. “Efficient Bayesian Mixed-
Model Analysis Increases Association Power in Large Cohorts.” Nature Genetics 47, no. 3 
(March 2015): 284–90. https://doi.org/10.1038/ng.3190. 

(Loh et al. 2016) Loh, Po-Ru, Petr Danecek, Pier Francesco Palamara, Christian Fuchsberger, 
Yakir A. Reshef, Hilary K. Finucane, Sebastian Schoenherr, et al. “Reference-Based 
Phasing Using the Haplotype Reference Consortium Panel.” Nature Genetics 48, no. 11 
(November 2016): 1443–48. https://doi.org/10.1038/ng.3679. 

(Loh et al. 2018) Loh, Po-Ru, Gleb Kichaev, Steven Gazal, Armin P. Schoech, and Alkes L. 
Price. “Mixed-Model Association for Biobank-Scale Datasets.” Nature Genetics 50, no. 7 
(July 2018): 906–8. https://doi.org/10.1038/s41588-018-0144-6. 

(Lu et al. 2021) Lu, Tsung-Yu, The Human Genome Structural Variation Consortium, and Mark 
J. P. Chaisson. “Profiling Variable-Number Tandem Repeat Variation across Populations 

All rights reserved. No reuse allowed without permission. 
(which was not certified by peer review) is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity. 

The copyright holder for this preprintthis version posted October 13, 2022. ; https://doi.org/10.1101/2022.10.11.22280955doi: medRxiv preprint 

https://doi.org/10.1101/2022.10.11.22280955


Using Repeat-Pangenome Graphs.” Nature Communications 12, no. 1 (July 12, 2021): 
4250. https://doi.org/10.1038/s41467-021-24378-0. 

(Marchini et al. 2007) Marchini, Jonathan, Bryan Howie, Simon Myers, Gil McVean, and Peter 
Donnelly. “A New Multipoint Method for Genome-Wide Association Studies by Imputation of 
Genotypes.” Nature Genetics 39, no. 7 (July 2007): 906–13. https://doi.org/10.1038/ng2088. 

(Margoliash et al. 2022) Margoliash, Jonathan, Shai Fuchs, Yang Li, Arya Massarat, Alon 
Goren, and Melissa Gymrek. “Polymorphic Short Tandem Repeats Make Widespread 
Contributions to Blood and Serum Traits.” Preprint.bioRxiv, August 3, 2022. 
https://doi.org/10.1101/2022.08.01.502370. 

(Miura et al. 2005) Miura, Yasuo, Masako Miura, Stan Gronthos, Matthew R. Allen, Chunzhang 
Cao, Thomas E. Uveges, Yanming Bi, et al. “Defective Osteogenesis of the Stromal Stem 
Cells Predisposes CD18-Null Mice to Osteoporosis.” Proceedings of the National Academy 
of Sciences 102, no. 39 (September 27, 2005): 14022–27. 
https://doi.org/10.1073/pnas.0409397102. 

(Mukamel et al. 2021) Mukamel, Ronen E., Robert E. Handsaker, Maxwell A. Sherman, Alison 
R. Barton, Yiming Zheng, Steven A. McCarroll, and Po-Ru Loh. “Protein-Coding Repeat 
Polymorphisms Strongly Shape Diverse Human Phenotypes.” Science 373, no. 6562 
(September 24, 2021): 1499–1505. https://doi.org/10.1126/science.abg8289. 

(Ongen et al. 2016) Ongen, Halit, Alfonso Buil, Andrew Anand Brown, Emmanouil T. 
Dermitzakis, and Olivier Delaneau. “Fast and Efficient QTL Mapper for Thousands of 
Molecular Phenotypes.” Bioinformatics 32, no. 10 (May 15, 2016): 1479–85. 
https://doi.org/10.1093/bioinformatics/btv722. 

(Pasaniuc et al. 2014) Pasaniuc, Bogdan, Noah Zaitlen, Huwenbo Shi, Gaurav Bhatia, 
Alexander Gusev, Joseph Pickrell, Joel Hirschhorn, David P. Strachan, Nick Patterson, and 
Alkes L. Price. “Fast and Accurate Imputation of Summary Statistics Enhances Evidence of 
Functional Enrichment.” Bioinformatics 30, no. 20 (October 15, 2014): 2906–14. 
https://doi.org/10.1093/bioinformatics/btu416. 

(Quinlan and Hall 2010) Quinlan, Aaron R., and Ira M. Hall. “BEDTools: A Flexible Suite of 
Utilities for Comparing Genomic Features.” Bioinformatics 26, no. 6 (March 15, 2010): 841–
42. https://doi.org/10.1093/bioinformatics/btq033. 

(Saini et al. 2018) Saini, Shubham, Ileena Mitra, Nima Mousavi, Stephanie Feupe Fotsing, and 
Melissa Gymrek. “A Reference Haplotype Panel for Genome-Wide Imputation of Short 
Tandem Repeats.” Nature Communications 9, no. 1 (October 23, 2018): 4397. 
https://doi.org/10.1038/s41467-018-06694-0. 

(Sekar et al. 2016) Sekar, Aswin, Allison R. Bialas, Heather de Rivera, Avery Davis, Timothy R. 
Hammond, Nolan Kamitaki, Katherine Tooley, et al. “Schizophrenia Risk from Complex 
Variation of Complement Component 4.” Nature 530, no. 7589 (February 2016): 177–83. 
https://doi.org/10.1038/nature16549. 

(Sharma et al. 2012) Sharma, Shiwani, Kathryn P. Burdon, Glyn Chidlow, Sonja Klebe, April 
Crawford, David P. Dimasi, Alpana Dave, et al. “Association of Genetic Variants in the 

All rights reserved. No reuse allowed without permission. 
(which was not certified by peer review) is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity. 

The copyright holder for this preprintthis version posted October 13, 2022. ; https://doi.org/10.1101/2022.10.11.22280955doi: medRxiv preprint 

https://doi.org/10.1101/2022.10.11.22280955


TMCO1 Gene with Clinical Parameters Related to Glaucoma and Characterization of the 
Protein in the Eye.” Investigative Ophthalmology & Visual Science 53, no. 8 (July 24, 2012): 
4917–25. https://doi.org/10.1167/iovs.11-9047. 

(Steinmetz et al. 2021) Steinmetz, Jaimie D, Rupert R A Bourne, Paul Svitil Briant, Seth R 
Flaxman, Hugh R B Taylor, Jost B Jonas, Amir Aberhe Abdoli, et al. “Causes of Blindness 
and Vision Impairment in 2020 and Trends over 30 Years, and Prevalence of Avoidable 
Blindness in Relation to VISION 2020: The Right to Sight: An Analysis for the Global Burden 
of Disease Study.” The Lancet Global Health 9, no. 2 (February 2021): e144–60. 
https://doi.org/10.1016/S2214-109X(20)30489-7. 

(Sayaman et al. 2021) Sayaman, Rosalyn W., Mohamad Saad, Vésteinn Thorsson, Donglei Hu, 
Wouter Hendrickx, Jessica Roelands, Eduard Porta-Pardo, et al. “Germline Genetic 
Contribution to the Immune Landscape of Cancer.” Immunity 54, no. 2 (February 9, 2021): 
367-386.e8. https://doi.org/10.1016/j.immuni.2021.01.011. 

(Sudlow et al. 2015) Sudlow, Cathie, John Gallacher, Naomi Allen, Valerie Beral, Paul Burton, 
John Danesh, Paul Downey, et al. “UK Biobank: An Open Access Resource for Identifying 
the Causes of a Wide Range of Complex Diseases of Middle and Old Age.” PLOS Medicine 
12, no. 3 (March 31, 2015): e1001779. https://doi.org/10.1371/journal.pmed.1001779. 

(Svitkina et al. 1996) Svitkina, T M, A B Verkhovsky, and G G Borisy. “Plectin Sidearms Mediate 
Interaction of Intermediate Filaments with Microtubules and Other Components of the 
Cytoskeleton.” Journal of Cell Biology 135, no. 4 (November 15, 1996): 991–1007. 
https://doi.org/10.1083/jcb.135.4.991. 

(Tomlinson et al. 2008) Tomlinson, Ian PM, Emily Webb, Luis Carvajal-Carmona, Peter 
Broderick, Kimberley Howarth, Alan M. Pittman, Sarah Spain, et al. “A Genome-Wide 
Association Study Identifies Colorectal Cancer Susceptibility Loci on Chromosomes 10p14 
and 8q23.3.” Nature Genetics 40, no. 5 (May 2008): 623–30. https://doi.org/10.1038/ng.111. 

(Waning et al. 2008) Waning, David L., Binghui Li, Nan Jia, Yahaira Naaldijk, W. Scott Goebel, 
Harm HogenEsch, and Kristin T. Chun. “Cul4A Is Required for Hematopoietic Cell Viability 
and Its Deficiency Leads to Apoptosis.” Blood 112, no. 2 (July 15, 2008): 320–29. 
https://doi.org/10.1182/blood-2007-11-126300. 

(Wiggs and Pasquale 2017) Wiggs, Janey L., and Louis R. Pasquale. “Genetics of Glaucoma.” 
Human Molecular Genetics 26, no. R1 (August 1, 2017): R21–27. 
https://doi.org/10.1093/hmg/ddx184. 

(Wijmenga et al. 1992) Wijmenga, Cisca, Jane E. Hewitt, Lodewijk A. Sandkuijl, Lorraine N. 
Clark, Tracy J. Wright, Hans G. Dauwerse, Anne-Marie Gruter, et al. “Chromosome 4q DNA 
Rearrangements Associated with Facioscapulohumeral Muscular Dystrophy.” Nature 
Genetics 2, no. 1 (September 1992): 26–30. https://doi.org/10.1038/ng0992-26. 

  

All rights reserved. No reuse allowed without permission. 
(which was not certified by peer review) is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity. 

The copyright holder for this preprintthis version posted October 13, 2022. ; https://doi.org/10.1101/2022.10.11.22280955doi: medRxiv preprint 

https://doi.org/10.1101/2022.10.11.22280955


 
Data availability 

Individual-level VNTR genotypes imputed into UKB will be returned to the UK Biobank 

Resource.  The VNTR+SNP reference panel in SSC will be returned to SFARI Base.  Summary 

statistics for VNTR-phenotype association tests are available at 

https://data.broadinstitute.org/lohlab/UKB_genomewideVNTR_sumstats/.  Access to the 

following data resources used in this study is available to all approved researchers upon 

application: UK Biobank (http://www.ukbiobank.ac.uk/), Simons Simplex Collection (SSC Whole-

genome 2, https://base.sfari.org), TCGA (via dbGaP, https://www.ncbi.nlm.nih.gov/gap/, 

accession phs000178.v11.p8), GTEx (via dbGaP, https://www.ncbi.nlm.nih.gov/gap/, accession 

phs000424.v8.p2; the GTEx Portal http://www.gtexportal.org). The following data resources 

used in this study are publicly available: 1000 Genomes Project (including HGSVC2 long-read 

assemblies, http://www.internationalgenome.org/), NHGRI-EBI GWAS Catalog 

(http://ebi.ac.uk/gwas/, accessions GCST009413, GCST90011767, and GCST012879). 

 

Code availability 

The following publicly available software resources were used to perform analyses in this work 

BOLT-LMM (v2.3.6), https://data.broadinstitute.org/alkesgroup/BOLT-LMM/; FINEMAP (v1.3.1), 

http://www.christianbenner.com/; plink (v1.9 and v2.0), https://www.cog-genomics.org/plink2/; 

Tandem Repeats Finder (v4.09.1), tandem.bu.edu/trf/trf.html; minimap2 (v2.18-r1015), 

https://github.com/lh3/minimap2; fastQTL (v2.0), https://github.com/francois-a/fastqtl/; Genome 

STRiP, https://software.broadinstitute.org/software/genomestrip/. 
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Figure 1. Ascertainment, genotyping 
and imputation of 15,653 multiallelic 
VNTR loci. a) Counts of VNTR loci 
stratified by number of distinct alleles 
observed among N=64 long-read haploid 
genome assemblies from HGSVC2 (x-
axis) and the median number of repeats 
per allele (blue/orange bars). Inset, same 
counts binned at coarser scale.  b) 
Counts of VNTR loci stratified by 
HGSVC2 allele length distribution width 
(standard deviation) and estimated 
accuracy of VNTR genotypes pre-
refinement (i.e., measured from WGS 
depth-of-coverage in individual genomes; 
Supplementary Note). c) Scatter of 
imputation accuracy vs. level of linkage 
disequilibrium with the best tag SNP for 
each VNTR.  Color indicates pre-
refinement genotype accuracy as in b); 
VNTRs with noisy estimates of imputation 
accuracy due to low pre-refinement 
genotype accuracy (R2<0.25) were 
omitted, leaving N=7,145 VNTRs for 
plotting.  Lines represent mean imputation 
accuracy at loci binned by level of linkage 
with SNPs.  Error bars, 95% CIs; EUR, 
European-ancestry; est., estimated. 
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Figure 2.  Phenome-wide association and statistical fine-mapping analyses identify 58 
VNTRs linked to complex traits.  Manhattan plot displaying 107 VNTR-phenotype 
associations (involving 58 distinct VNTRs) that reached Bonferroni significance (P<5 x 10-9) and 
for which the VNTR was assigned a high posterior probability of causality by FINEMAP 
(PIP>0.5).  Marker color indicates phenotype category, and marker shape indicates genic 
context.  Outlined markers indicate associations for which we improved VNTR genotyping or 
refined the associated phenotype (Supplementary Table 4). For context, the plot also includes 
two associations to protein-coding VNTRs (at MUC1 and TENT5A, Mukamel et al. 2021) that 
we previously identified in analysis of whole-exome sequencing data. 
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Figure 3.  An intronic repeat expansion within TMCO1 associates with glaucoma risk and 
intraocular pressure. a) Frequencies of the 1-, 2-, and ≥5 repeat unit alleles in each of the 
continental populations represented in the 1000 Genomes Project.  Expanded alleles (5-11 
repeat units) segregated with a ~70kb SNP haplotype (red) represented by rs2790052:G.  Each 
allele in HGSVC2 also contains a partial repeat (7bp of the 28bp unit) depicted in the haplotype 
diagrams.  b,c) Associations of SNPs and VNTR with glaucoma (b) and intraocular pressure (c). 
SNP and VNTR associations are shown at the TMCO1 locus (top) and genome-wide (bottom). 
Colored markers in locus plots, variants in partial LD with the VNTR (R2>0.01).  d,e)  Effect 
sizes of VNTR alleles for glaucoma risk (d, left axis) and mean intraocular pressure in carriers of 
each allele (e, left axis).  Values in UK Biobank are shown in blue; values inferred based on 
SNP associations in independent replication cohorts are shown in gray (Supplementary Note).  
Histograms (right axis), frequencies of VNTR allele lengths estimated in European-ancestry 
UKB participants.  Error bars, 95% CIs. 
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Figure 4.  A repeat expansion 
downstream of EIF3H associates 
with colorectal cancer risk and 
colon polyps. a,b) Associations of 
inherited variants with colorectal 
cancer (a) and colon polyps (b) at the 
EIF3H locus (top) and genomewide 
(bottom).  Colored markers in locus 
plots, variants in partial LD with the 
VNTR (R2>0.01). c)  Frequencies of 
VNTR alleles observed in European-
ancestry UKB participants (histogram, 
right axis) and their effect sizes 
(markers, left axis) for colorectal 
cancer (red) and colon polyps (blue). 
Error bars, 95% CIs. 
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Figure 5. An intronic repeat expansion at CUL4A associates with erythrocyte traits and 
splice isoform usage. a) Alternative splicing of two commonly expressed CUL4A isoforms. The 
fifth intron of the canonical transcript contains a highly length-polymorphic VNTR (0.1-3kb, 
green).  The image on the right is zoomed in on the region of CUL4A containing the alternative 
splice. b) VNTR and SNP associations with mean corpuscular hemoglobin at the CUL4A locus. 
Colored markers, variants in partial LD with the VNTR (R2>0.01). c) VNTR allele length 
distribution in European-ancestry UKB participants (histogram, right axis) and mean phenotype 
in carriers of VNTR alleles (binned by length) for the four most strongly associated blood cell 
traits (lines, left axis).  d) VNTR and SNP associations with CUL4A alternative splicing usage in 
cultured fibroblasts. Colored markers, variants in partial LD with the VNTR (R2>0.01).  e) VNTR 
allele distribution in GTEx (histogram, right axis) and mean alternative splice usage in carriers of 
VNTR alleles (binned by length) for the five tissues with the strongest VNTR association (lines, 
left axis).  Alternative splice usage is the proportion of CUL4A transcripts that are alternatively 
spliced as indicated in panel (a) (as quantified by LeafCutter (Li et al. 2018); Methods).  f) 
Scatter plot of VNTR association strength vs. strength of the strongest SNP association with 
alternative splicing in each of the N=49 tissues analyzed by GTEx.  Gray dots, tissues for which 
no variant significantly associated with splicing.  g) Scatter of median alternative splice usage 
vs. median CUL4A expression for each of N=49 tissues. Error bars, 95% CIs. 
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Methods 
UK Biobank genetic data.   
The UK Biobank resource contains extensive genetic and phenotypic data for ~500,000 
participants recruited from across the UK (Sudlow et al. 2015).  We analyzed SNP and 
indel genotypes available from blood-derived SNP-array genotyping of 805,426 variants 
in 488,377 participants and subsequent imputation to 93,095,623 autosomal variants 
(using the Haplotype Reference Consortium and UK10K + 1000 Genomes Phase 3 
reference panels) in a subset of 487,409 participants (Bycroft et al. 2018).  We further 
analyzed alignments from whole-genome sequencing (WGS) of 200,018 participants 
(>20x coverage by 151bp paired-end reads) (Halldorsson et al. 2022).   

UK Biobank phenotype data.   
We performed initial analyses on a set of 786 phenotypes (Supplementary Table 2) that 
we curated from the UK Biobank “core” data set as described in (Mukamel et al. 2021).  
This set of phenotypes consisted of: (i) 636 diseases collated by UKB from several 
sources (self-report and accruing linked records from primary care, hospitalizations, and 
death registries) into single “first occurrence” data fields indexed by ICD-10 diagnosis 
codes; and (ii) 150 continuous and categorical traits selected based on high heritability 
or common inclusion in genome-wide association studies.  Phenotypes in the latter set 
were derived from physical measurements and touchscreen interviews; blood count, 
lipid and biomarker panels of biological samples; and follow-up online questionnaires.  
For continuous traits, we performed quality control and normalization (outlier removal, 
covariate adjustment, and inverse normal transformation) as previously described 
(Barton et al. 2021, Loh et al. 2018).  In follow-up analyses at TMCO1 and EIF3H, we 
refined associated disease phenotypes (related to ICD-10 codes H40 and K63) and 
curated related phenotypes (intraocular pressure and colorectal cancer) not in our initial 
analysis set (Supplementary Note).  

Simons Simplex Collection genetic data. 
We analyzed aligned sequencing reads and the hg38 variant call set derived from SSC 
WGS 2.  The SSC cohort consists of individuals from 2,600 families, each of which has 
one child affected with an autism spectrum disorder. Each participant was deeply 
whole-genome sequenced (30x mean coverage, 150bp paired-end reads).  We 
analyzed genetic data obtained from a subset of 8,936 participants, which included 
1,901 quartets (parents, proband, and unaffected sibling) and 440 trios (parents and 
child).  In total, the analysis set contained 4,688 unrelated parents whose 9,376 
haplotypes we included in our VNTR+SNP reference panel.  We applied multiple rounds 
of quality control to generate a high-quality set of phased SNP haplotypes for SSC 
participants (Supplementary Note). 

Sample filters for ancestry and relatedness.   
For genetic association analyses in UKB, we applied strict filters to avoid confounding 
from population stratification and relatedness among individuals.  We performed all 
analyses on a filtered set of 418,136 individuals that we identified by: (i) removing 
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principal component (PC) outliers (more than six standard deviations from the mean 
among individuals who reported White ethnicity in any of the first 10 genetic PCs); and 
(ii) removing one individual from each ≤2nd-degree related pair (kinship coefficient > 
0.0884) previously identified by UKB (Bycroft et al. 2018).   
 
For benchmarking accuracy of VNTR length estimation in SSC, we assigned ancestry to 
SSC participants using the software SNPweights v2.1 (Chen et al. 2013). Using pre-
computed SNP weights for European, West African, East Asian and Native American 
ancestral populations (accessed from https://cdn1.sph.harvard.edu/wp-
content/uploads/sites/181/2014/03/snpwt.NA_.zip on 08/20/2019), we estimated the 
proportion of each SSC participant’s genome that derived from each ancestral 
population. We identified 3,904 unrelated parents whose genetic ancestry was 
estimated to be largely (>80%) European. 

VNTR ascertainment and genotyping pipeline.   
We identified VNTR loci and genotyped VNTR allele length variation from whole-
genome sequencing data using an analysis pipeline consisting of three main steps 
(detailed in the Supplementary Note): 
 

1. Identify VNTR loci from analysis of the human reference and HGSVC2 long-
read assemblies.  We started by searching the GRCh38 reference for tandem 
repeats using two approaches:  

a. Tandem Repeats Finder (Benson 1999) v4.09, which we ran using its 
suggested parameters 2 5 7 80 10 50 2000 -l 6 -h to detect patterns up to 
2kb.  We filtered to autosomal repeats with length ≥100bp, period ≥10bp, 
#repeats ≥2, and sequence identity ≥75%, and we applied a rough 
deduping of duplicated regions (overlap (intersection/union) >75% or both 
endpoints within 75bp); and 

b. VNTRScanner and VNTRPartitioner, algorithms we had previously 
developed to detect larger repeats with potentially greater variability within 
the repeat units (Mukamel et al. 2021).   

The combination of the two methods resulted in an initial set of 100,844 
autosomal repeat loci with an estimated repeat unit ≥7bp long.  We then 
analyzed each tandem repeat in 64 HGSVC2 long-read-based haploid genome 
assemblies (Ebert et al. 2021) to identify which regions were multiallelic.  We 
filtered to loci with ≥3 distinct alleles represented among the 64 HGSVC2 long-
read assemblies, applied several additional quality control filters, and removed 
duplicated regions (using benchmarks from SSC WGS to adjudicate among 
substantially-overlapping regions), resulting in 15,653 VNTR loci for further 
analysis (Supplementary Note). 
  

2. Estimate VNTR lengths from WGS depth-of-coverage in SSC.  At each 
VNTR, we estimated diploid VNTR content (i.e., the sum of VNTR lengths across 
an individual’s two alleles) for SSC participants by analyzing the aligned WGS 
reads overlapping the VNTR using Genome STRiP (Handsaker et al. 2015), 
using dosage estimates from normalized read depth to estimate VNTR length 
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(summed across parental alleles).  We corrected for observed batch effects using 
Leiden clustering.  We benchmarked the resulting (pre-refinement) VNTR 
genotypes using measurements from related individuals in SSC, and applied 
several additional variant-level quality control filters derived from these 
benchmarks (Supplementary Note). 
 

3. Phase and impute VNTR allele length estimates by modeling haplotype 
sharing.  We performed statistical phasing on estimates of diploid VNTR content 
to estimate haploid allele lengths, and we used the resulting VNTR+SNP 
haplotypes for imputation of VNTR allele lengths into the UKB cohort.  To do so, 
we adapted the computational algorithm we had previously used (Mukamel et al. 
2021; Supplementary Note). 

 
Of the 15,653 multiallelic VNTR loci identified in the first step of this pipeline, we 
identified a subset of 9,561 loci suitable for downstream association analyses in UKB 
based on genotyping quality (estimated R2>0.1), imputation quality (estimated R2>0.1), 
and other quality control filters (Supplementary Note; Supplementary Table 1). 
 
We also considered applying other methods previously developed for genotyping 
repeats such as adVNTR (Bakhtiari et al. 2018) and ExpansionHunter (Dolzhenko et al. 
2017).  However, we were unable to use adVNTR because it requires sequencing reads 
to span a VNTR, and the majority of VNTR loci (90%) had an allele longer than the read 
length in SSC (150bp).  While ExpansionHunter is capable of genotyping repeats longer 
than the read length, it was designed primarily for STR genotyping and assumes that 
different repeat units are mostly identical in sequence, whereas many VNTRs exhibit 
repeat motif variability (Course et al. 2021).  Beyond needing to overcome these 
specific limitations, we were also motivated to apply methods that leverage haplotype 
sharing among unrelated individuals in large cohorts to refine genotypes, increasing 
power to detect downstream associations (Mukamel et al. 2021). 

VNTR-phenotype association and fine-mapping analyses.   
We performed association tests between the 9,561 imputed VNTRs and 786 
phenotypes in our analysis set of 418,136 unrelated UK Biobank participants of 
genetically-determined European ancestry (see above).  We computed linear regression 
association statistics using BOLT-LMM (Loh et al. 2015) v2.3.6 including a standard set 
of covariates (20 genetic PCs, assessment center, genotyping array, sex, age, and 
age2), and found 4,968 VNTR-phenotype pairs that passed a Bonferroni-corrected 
significance threshold of P<5 x 10-9 (reflecting the ~10,000 VNTRs x ~1,000 phenotypes 
we tested for association; Supplementary Table 3).  Linear regression produced well-
calibrated P-values given that the VNTRs we analyzed exhibited common multiallelic 
variation and the binary phenotypes we analyzed were not ultra-rare (at least a few 
hundred cases in UKB; Mukamel et al. 2021). 
 
To determine which of these VNTR-phenotype associations were likely to represent 
causal effects of VNTR allele length variation (vs. tagging of nearby causal SNPs), we 
first computed linear regression association statistics for all nearby SNPs and indels 
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imputed by UKB (within 500kb of the VNTR) as we had for the VNTR.  We then applied 
the Bayesian fine-mapping software FINEMAP (Benner et al. 2016) v1.3.1 (options --
corr-config 0.999 --sss --n-causal-snps 5) to estimate the likelihood of causality for the 
VNTR, accounting for linkage disequilibrium with 500 of the most strongly associated 
nearby variants.  For fine-mapping, we excluded SNPs at multiallelic sites, rare variants 
(MAF<0.001), and variants called within the VNTR region.  For associations for which 
the VNTR was assigned a high posterior probability of causality (PIP>0.5), we ran a 
second round of fine-mapping including 2,000 of the most strongly associated nearby 
variants.  The results of these analyses are summarized in Supplementary Table 3.  In 
total, 107 VNTR-phenotype associations involving 58 distinct VNTRs were assigned a 
high posterior probability of causality by FINEMAP (PIP>0.5 in both rounds; 
Supplementary Table 4, Fig. 2). 
 
We additionally tested each VNTR for association with autism directly in SSC.  To do 
so, we computed linear regression association statistics, restricting to the probands and 
siblings in 1,901 complete quartets and including sex as a covariate.  None of the 
VNTRs we tested reached our study-wide significance threshold (P<5 x 10-9). 
 
For VNTRs at loci of particular interest, we ran additional analyses after improved 
genotyping and refined phenotyping of disease traits as detailed in the Supplementary 
Note.  

SNP-based corroboration of TMCO1 VNTR length associations with glaucoma 
and intraocular pressure in independent cohorts. 
Previous genome-wide association studies of glaucoma and intraocular pressure 
provided the opportunity to replicate (in part) the allelic series we observed at TMCO1 in 
UK Biobank (in which TMCO1 VNTR alleles of increasing length associated with 
increasing glaucoma risk and IOP). To do so, we identified SNPs that tagged VNTR 
alleles of different lengths and then examined their effect sizes in publicly available 
summary association statistics from the NHGRI-EBI GWAS Catalog (Buniello et al. 
2019) for study GCST90011767 (Gharahkhani et al. 2021; glaucoma GWAS, 
downloaded on 07/15/2022) and GCST009413 (Bonnemaijer et al. 2019; IOP GWAS, 
downloaded on 07/21/2022). These studies did not include UK Biobank data and were 
thus suitable for independent replication. 

For this corroboratory analysis, we sought to identify a SNP that segregated with 
particularly long VNTR alleles and then compare its effect size to that of rs2790053, a 
representative of the common risk haplotype (AF=0.12) that segregates with all 
expanded alleles (5 or more repeats; Fig. 1a) – the idea being that a SNP tagging extra-
long VNTR alleles should associate with even higher glaucoma risk and IOP than the 
common risk haplotype that tags a mixture of all long alleles. 

To find such a SNP, we examined heterozygous carriers of each SNP within 500kb of 
the VNTR with MAF between 0.1% and 10% and computed the mean length of the 
longer allele present in each carrier (which should almost always be the desired allele 
for SNPs that tag very long VNTR alleles). We performed this analysis using imputed 

All rights reserved. No reuse allowed without permission. 
(which was not certified by peer review) is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity. 

The copyright holder for this preprintthis version posted October 13, 2022. ; https://doi.org/10.1101/2022.10.11.22280955doi: medRxiv preprint 

https://doi.org/10.1101/2022.10.11.22280955


genotypes available for UK Biobank participants of European ancestry (from the UKB 
imp_v3 data set (Bycroft et al., 2018), reasoning that summary statistics available from 
previous GWAS rely on similar imputation. We restricted analysis to individuals in the 
UKB N=200K WGS data set and used allele lengths that we estimated via our optimized 
genotyping of TMCO1 (Supplementary Note). 

Upon ranking SNPs in descending order of mean estimated VNTR length in carriers, 
two low-frequency SNPs – rs35310077 and rs116089225, the top two SNPs on the list 
– were clearly the best candidates for replication, segregating with VNTR alleles with 
mean estimated lengths of ~9.7 repeat units. (This length estimate is probably 
downward-biased by imputation error resulting in regression to the mean; a single 
carrier of both SNPs in HGSVC2 carried an 11-repeat allele.) Closer inspection of these 
two SNPs showed that rs35310077 (MAF=0.007 in UKB imp_v3) tagged a sub-
haplotype of rs116089225 (MAF=0.009 in UKB imp_v3), with the latter SNP exhibiting 
higher imputation accuracy (INFO=0.95 for rs116089225 vs. INFO=0.89 for 
rs35310077). We therefore proceeded with rs116089225 (and rs2790053, the 
aforementioned tag SNP for the AF=0.12 common risk haplotype) for lookup in 
glaucoma and IOP summary statistics. 

Imputation-based corroboration of EIF3H VNTR length association with colorectal 
cancer risk. 
We sought to replicate the association we observed between EIF3H VNTR length and 
colorectal cancer risk by imputing the VNTR’s association statistic into SNP association 
statistics from an independent colorectal cancer GWAS.  We employed the approach of 
ImpG (Pasaniuc et al. 2014), which estimates a variant’s association statistic based on 
the association statistics of variants in LD (using a multivariate normal with covariance 
derived from the LD matrix).  Summary statistics were downloaded from the NHGRI-EBI 
GWAS Catalog (Buniello et al. 2019) for study GCST012879 (Huyghe et al. 2019, 
accessed on 07/15/2022).  We extracted statistics for all SNPs within 300kb of the 
VNTR that were also present in the UKB imp_v3 data set (Bycroft et al. 2018).  We 
computed LD using VNTR+SNP genotypes for 16,728 UKB participants, obtained by 
25x-downsampling the set of 418,136 individuals used in our association analyses.  
EIF3H VNTR genotypes were estimated from refined genotyping using UKB N=200K 
WGS data (Supplementary Note). Since the published implementation of ImpG requires 
variants to be biallelic, we re-implemented the method (using the same default 
regularization parameter L=0.1) to apply it to continuous-valued VNTR allele length 
estimates; we previously validated this re-implementation of ImpG (Mukamel et al. 
2021).  Consistent with our observations in UK Biobank, the imputed association 
statistic for the VNTR in these independent summary statistics (from Huyghe et al. 
2019, excluding UKB) was larger than that of any nearby SNP or indel (imputed P=6.7 x 
10-11 for the VNTR vs. P=7.3 x 10-9 for to the top SNP at the EIF3H locus). 

Expression and splicing quantitative trait association analyses in GTEx. 
We performed expression and splicing quantitative trait association analyses using data 
from the Genotype-Tissue Expression (GTEx) project (V8).  The GTEx project analyzed 
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49 human tissues, measuring DNA and RNA collected from 15,201 biosamples 
contributed by 838 post-mortem donors (Aguet et al. 2020).  We estimated VNTR allele 
lengths for GTEx participants by imputation into WGS-derived SNP genotypes 
previously phased by GTEx using SHAPEIT2 (Delaneau et al. 2013) (accessed on 
07/22/2021 via the Terra data platform) and, at certain loci, WGS read alignments.  
Specifically: 

• At EIF3H, CHMP1A and SBNO2, we imputed VNTR allele lengths using the 
reference VNTR+SNP haplotypes and imputation parameters we obtained from 
analysis of SSC.   

• At TMCO1, we adapted the strategy for improved genotyping that we used in 
UKB, combining read-level information from WGS reads spanning short alleles, 
counts of WGS reads internal to long alleles, and nearby SNP genotypes 
(Supplementary Note). 

• At CUL4A, we imputed VNTR allele lengths using reference VNTR+SNP 
haplotypes and imputation parameters we obtained from analysis of N=200K 
WGS UKB samples (Supplementary Note).  We imputed into SNP haplotypes 
that we rephased using Eagle2 (Loh et al. 2016) (--Kpbwt=100000, --
pbwtIters=3) using the full UKB cohort (N~487K) as a reference panel, restricting 
analysis to variants typed on the UKB SNP-array with concordant EUR allele 
frequencies (absolute difference <0.1).  For analyses at CUL4A that did not 
require haplotype-resolved estimates (Fig. 5d,f), we estimated the diploid content 
of the highly polymorphic VNTR directly from depth-of-coverage of aligned 
whole-genome sequencing reads (Supplementary Note), providing estimates 
which sibling-derived benchmarks in SSC indicated were more accurate than 
imputed values. 

To quantify association strengths with expression and splicing quantitative traits, we 
emulated the analyses performed by GTEx (Aguet et al. 2020): we obtained normalized 
expression and splicing quantitative trait phenotypes, as well as covariates, from the 
GTEx Portal (https://gtexportal.org/home/datasets (V8) accessed on 08/01/2021 and 
09/08/2021), and used the software fastQTL v2.0 (Ongen et al. 2016) to compute linear 
regression VNTR association statistics.  We quantified (unnormalized) alternative splice 
usage at CUL4A (Fig. 5e,g) using the intron excision ratio 

 
𝑁!"#

𝑁!"# + 𝑁$!%
, 

 
where Nalt and Ncan are counts of reads from LeafCutter (Li et al. 2018) (accessed on 
12/12/2021 from Terra) for reads supporting excision of the alternative intron 
(chr13:113229519-113229642) and the canonical intron (chr13:113229519-
113233177), respectively (Fig. 5a).  We obtained tissue-level estimates of median 
CUL4A expression (Fig. 5g) from the GTEx Portal (accessed from 
https://storage.googleapis.com/gtex_analysis_v8/rna_seq_data/GTEx_Analysis_2017-
06-05_v8_RNASeQCv1.1.9_gene_median_tpm.gct.gz on 07/08/2022). 
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Expression quantitative trait association analyses in TCGA. 
We performed expression quantitative trait association analysis in colorectal cancer 
tissue using data from the Cancer Genome Atlas (TCGA; Cancer Genome Atlas 
Network 2012).  We obtained phased SNP data from the National Cancer Institute’s 
Genomic Data Commons (GDC, http://gdc.cancer.gov/, accessed on 03/31/2022), 
previously generated (Sayaman et al. 2021) using the TOPMed imputation server.  For 
VNTR imputation, we used VNTR+SNP reference haplotypes and parameters obtained 
from analysis of EIF3H in UKB N=200K WGS samples (Supplementary Note).  We 
obtained gene expression quantification, measured in fragments per kilobase per million 
mapped reads (FPKM), in colorectal cancer tissue derived from RNA-sequencing via 
the GDC portal (http://portal.gdc.cancer.gov/, accessed on 08/23/2022; files matching 
search terms primary site=colon or rectum, program=TCGA, sample type=primary 
tumor, workflow=STAR – Counts, data category=transcriptome profiling, data 
format=tsv, and data type=gene expression quantification).  We performed linear 
regression association tests to quantify the strength of association between imputed 
VNTR lengths and expression at each of 8 measured genes within 1Mb of the VNTR 
(465 samples with imputed VNTR lengths and expression data available). 

Assessing the impact of LOF variants near TMCO1 on glaucoma and IOP 
We identified variants predicted to cause loss-of-function (pLoF) of genes near TMCO1 
using data derived from whole-exome sequencing of 454,787 UK Biobank participants 
(Backman et al. 2021).  We first extracted a set of pLoF variants for each gene, 
selecting variants previously annotated as “LoF” by SnpEff.  We then used plink2 
(Chang et al. 2015) to extract carriers of each pLoF variant from the 450k interim 
release of population level exome OQFE variants derived from WES.  We computed 
effects on glaucoma risk via logistic regression (including age, age2, sex and 20 PCs as 
covariates) and effects on IOP by taking the phenotypic mean among carriers (adjusted 
for the same covariates) (Supplementary Fig. 2). 
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