SUPPLEMENTAL MATERIAL

Multi-population genome-wide association study implicates both immune and non-immune factors in the etiology of pediatric steroid sensitive nephrotic syndrome

Alexandra Barry^{1,2+}, Michelle T. McNulty^{1,2+}, Xiaoyuan Jia^{3,4+}, Yask Gupta⁵⁺, Hanna Debiec⁶⁺, Yang Luo^{7,8,9,10}, China Nagano^{1,2,11}, Tomoko Horinouchi¹¹, Seulgi Jung¹², Manuela Colucci¹³, Dina F. Ahram⁵, Adele Mitrotti^{5,14}, Aditi Sinha¹⁵, Nynke Teeninga¹⁶, Gina Jin⁵, Shirlee Shril^{17,18}, Gianluca Caridi¹⁹, Monica Bodria²⁰, Tze Y Lim⁵, Rik Westland²¹, Francesca Zanoni^{6,22}, Maddalena Marasa⁵, Daniel Turudic²³, Mario Giordano²⁴, Loreto Gesualdo²⁵, Riccardo Magistroni^{26,27}, Isabella Pisani²⁸, Enrico Fiaccadori²⁸, Jana Reiterova²⁹, Silvio Maringhini³⁰, William Morello³¹, Giovanni Montini^{31,32}, Patricia L. Weng³³, Francesco Scolari³⁴, Marijan Saraga³⁵, Velibor Tasic³⁶, Domenica Santoro³⁷, Joanna A.E. van Wijk²¹, Danko Milošević²³, Yosuke Kawai^{3,4}, Krzysztof Kiryluk⁵, Martin Pollak^{38,39}, Ali Gharavi⁵, Fangmin Lin³⁹, Ana Cristina Simœs e Silva⁴⁰, Ruth Loos⁴¹, Eimear Kenny^{42,43,44}, Michiel Schreuder¹⁶, Aleksandra Zurowska⁴⁵, Claire Dossier⁴⁶, Gema Ariceta⁴⁷, Magdalena Drozynska-Duklas⁴⁵, Julien Hogan⁴⁶, Augustina Janauskiene⁴⁸, Friedhelm Hildebrandt^{1,18}, Larisa Prikhodina⁴⁹, Kyuyoung Song¹², Arvind Bagga¹⁵, Hae II Cheong⁵⁰, Gian Marco Ghiggeri^{51,52,53}, Prayong Vachvanichsanong⁵⁴, Kandai Nozu¹¹, Marina Vivarelli⁵⁵, Soumya Raychaudhuri^{8,9,10,56,57}, Katsushi Tokunaga^{3,4*}, Simone Sanna-Cherchi^{5*}, Pierre Ronco^{6,58*}, Kazumoto Iijima^{59,60*}, Matthew G. Sampson^{1,2,18*}

Figure S1. Flow-chart of GWAS. EUR= European, AFR= African, EAS= East Asian, SAS = South Asian

GWAS Cohort	Ancestry	n cases	n controls	n total	GC-lambda	PCs	n SNPs
Nephrovir/EU	European	313	2,508	2,821	1.05	3	8,112,877
US Cohort	European	361	4,309	4,670	1.06	5	8,316,416
US Cohort	African	65	7,335	7,400	0.84	2	13,421,506
Nephrovir/EU	African	44	179	223	1.02	5	12,413,167
US Cohort	East Asian	16	439	455	1.00	4	6,196,585
Japanese	East Asian	987	3,206	4,193	1.05	4	6,088,373
Korean	East Asian	243	4,041	4,284	1.03	0	2,912,065
Thai	East Asian	65	94	159	1.00	0	4,946,221
US Cohort	South Asian	31	338	369	0.93	3	7,637,355
Indian	South Asian	162	98	260	1.03	3	8,159,073
Maghrebian	Maghrebian	55	228	283	0.90	3	10,072,905
Admixed American	Admixed American	98	13,248	13,346	0.98	3	9,264,840
Total		2,440	36,023	38,463			

Table S1. Summary of GWAS datasets

Figure S2: 'LocusZoom' of genome-wide significant loci.

Each figure is labeled by closest gene. Linkage disequilibrium (LD/r^2) with the most significant SNP in the reference panel (purple diamond) is estimated from all 1000 genomes populations. P-values are from MR-MEGA association. Horizontal line indicates genome-wide significance threshold ($5x10^{-8}$).

Figure S3. 'LocusZoom' of significant loci from conditional analysis. Conditioned on: rs55730955, rs28862935, rs1063355, rs2637681, rs7759971, rs10817678, rs8062322, rs56117924. rs2256318 and rs1794497 are ~1.3Mb apart with r^2 =0.04 in all 1,000 Genomes samples.

Table S2. Summary of population-specific meta-analyses.

GWAS Cohort	n cases	n controls	n total	GC-lambda	n SNPs
African	109	7,514	7,623	0.85	14,302,064
East Asian	1,311	7,780	9,091	0.99	8,644,038
European	674	6,817	7,491	1.07	8,414,111
South Asian	193	436	629	0.95	8,460,574

Table S3: Genome-wide significant SNPs from population-specific meta-analyses

All SNP are > 1Mb from each other with $r^2 < 0.1$. Variants showing high within population heterogeneity are removed (HetPVal < 0.05). We found no genome-wide significant associations in the South Asian, African, Admixed American and Maghrebian meta-analyses.

Population	Top SNP	Position (hg19)	Nearest Gene	EA	NEA	OR [95% CI]	Р
East Asian	rs9274740	6:32637968	HLA-DQB1	А	Т	0.41 [0.36, 0.47]	1.25 x 10 ⁻³⁹
East Asian	rs412175	19:36342103	NPHS1	Т	С	0.53 [0.47, 0.60]	7.47 x 10 ⁻²⁵
East Asian	rs2596485	6:31364870	MICA	Т	С	0.61 [0.53, 0.69]	2.46 x 10 ⁻¹⁵
East Asian	rs7848647	9:117569046	TNFSF15	Т	С	0.70 [0.63, 0.77]	9.57 x 10 ⁻¹³
East Asian	rs1181388	2:204575951	CD28	А	G	0.73 [0.66, 0.80]	4.93 x 10 ⁻¹¹
East Asian	rs115180879	6:28984623	ZNF311	Т	С	3.00 [2.09, 4.32]	3.10 x 10 ⁻⁹
East Asian	rs8062322	16:11092319	CLEC16A	А	С	0.68 [0.59, 0.77]	5.48 x 10 ⁻⁹
European	rs9271747	6:32626037	HLA-DQB1	Т	G	3.30 [2.82, 3.86]	5.69 x 10 ⁻⁵¹
European	rs2637678*	6:116787378	CALHM6	Т	С	1.74 [1.58, 1.93]	2.35 x 10 ⁻²⁷
European	rs2857607	6:31517248	NFKBIL1	Т	С	1.95 [1.66, 2.31]	1.18 x 10 ⁻¹³
European	rs2746419*	6:135653855	AHI1	А	С	1.34 [1.22, 1.47]	1.63 x 10 ⁻¹⁰
European	rs111796602*	7:37402490	ELMO1	Т	С	0.68 [0.59, 0.78]	1.72 x 10 ⁻⁸
European	rs12911841	15:79162355	MORF4L1	Т	С	2.95 [2.01, 4.34]	3.88 x 10 ⁻⁸

*European meta-analysis includes summary statistics from the GWAS Catalogue from Dufek et.al., for a total of 1,096 cases and 12,459 controls.

Figure S4. Manhattan plots of ancestry-specific meta-analyses.

Red line indicated genome-wide significance threshold (5 x 10^{-8}); blue line is suggestive significance (5 x 10^{-5}). Number of cases and controls and genomic controls lambda are reported for each dataset.

Figure S5. Dataset principal components (PCs) used in MR-MEGA meta-regression analysis. Labeled by dataset, colored by population. PCs based off allele frequencies across all GWAS variants.

Figure S6. Population-specificity of heterogeneous GWAS variants. Left: correlation of MR-MEGA PCs and logOR for each dataset. Each SNP is labeled with the nearest gene. Right: Forrest plot for population analysis. Significant odds ratios are labeled. logOR = logarithm of the odds ratio, OR [95%CI] = odds ratio with 95% confidence interval.

Table S4. Suggestive Significant SNPs, Multi-population Meta-analysis.

					Fixed-e	ffects meta-anal	vsis	Meta-re (MR-N	gression MEGA)
Nearest							Het I ²	(Ancestry het
Gene*	Top SNP	Position (hg19)	EA	NEA	OR [95% CI]	P-value	P-value	P-value	P-value
GSDMB	rs9303279	17:38073968	G	С	1.22 [1.13, 1.31]	1.88 x 10 ⁻⁷	0.16	2.49 x 10 ⁻⁷	0.05
TNSFS4	rs1012507	1:173219471	Т	G	1.20 [1.11, 1.29]	5.73 x 10 ⁻⁶	0.05	2.92 x 10 ⁻⁷	2.52 x 10 ⁻³
DHX15*	rs16875349	4:24215917	С	Т	1.34 [1.21, 1.48]	1.09 x 10 ⁻⁸	0.01	3.56 x 10 ⁻⁷	0.81
PHC1	rs1805732	12:9090892	Т	С	0.82 [0.76, 0.88]	1.71 x 10 ⁻⁷	0.51	4.65 x 10 ⁻⁷	0.10
MORF4L1	rs12911841	15:79162355	Т	С	1.82 [1.43, 2.30]	6.92 x 10 ⁻⁷	0.03	5.82 x 10 ⁻⁷	0.03
CLIC4	rs4649032	1:25197586	Т	С	1.20 [1.12, 1.30]	1.18 x 10 ⁻⁶	0.16	1.18 x 10 ⁻⁶	0.03
KC6	rs16975006	18:39160883	Т	G	1.68 [1.39, 2.02]	6.21 x 10 ⁻⁸	0.39	1.64 x 10 ⁻⁶	0.38
C16orf95	rs7197567	16:86980044	Т	С	1.31 [1.18, 1.45]	3.85 x 10 ⁻⁷	0.75	2.69 x 10 ⁻⁶	0.23
COCH	rs12431424	14:31318179	А	Т	0.78 [0.7, 0.87]	3.67 x 10 ⁻⁶	0.15	3.14 x 10 ⁻⁶	0.03
SRBD1*	rs78341222	2:45539561	А	G	1.51 [1.15, 1.99]	3.27 x 10 ⁻³	5.48 x 10 ⁻⁴	3.71 x 10 ⁻⁶	6.09 x 10 ⁻⁵
BAD	rs477895	11:64048912	С	Т	1.19 [1.1, 1.29]	3.44 x 10 ⁻⁵	0.07	3.81 x 10 ⁻⁶	4.56 x 10 ⁻³
RRP12	rs6584128	10:99171926	G	Т	1.21 [1.13, 1.3]	1.74 x 10 ⁻⁷	0.19	5.10 x 10 ⁻⁶	0.75
NFIA	rs75447844	1:61807924	Т	С	1.71 [1.3, 2.24]	1.12 x 10 ⁻⁴	4.69 x 10 ⁻³	7.36 x 10 ⁻⁶	2.58 x 10 ⁻³

* Closest gene was not protein coding. SNPs with P-value > 0.05 in METAL were excluded.

			Eur	ropean	Sout	h Asian	Eas	t Asian	A	frican	Mag	hrebian	Admixe	d American
Nearest Gene	Top SNP	EA	Case	Control	Case	Control								
HLA-DQB1	rs1063355	Т	0.22	0.40	0.35	0.49	0.28	0.44	0.28	0.46	0.15	0.38	0.17	0.34
NPHS1	rs412175	C	0.05	0.04	0.10	0.06	0.24	0.15	0.46	0.34	0.12	0.14	0.18	0.15
CALHM6	rs2637678	C	0.33	0.43	0.21	0.26	0.40	0.44	0.22	0.29	0.52	0.50	0.43	0.38
AHI1	rs7759971	Т	0.40	0.35	0.42	0.39	0.26	0.22	0.19	0.21	0.35	0.21	0.37	0.30
TNSFS15	rs10817678	G	0.29	0.33	0.26	0.22	0.34	0.44	0.13	0.17	0.15	0.18	0.23	0.24
CLEC16A	rs8062322	A	0.31	0.34	0.30	0.38	0.14	0.19	0.46	0.44	0.20	0.34	0.33	0.30
CD28	rs55730955	A	0.05	0.06	0.09	0.09	0.45	0.55	0.07	0.08	0.05	0.10	0.08	0.11
BTC	rs28862935	A	0.23	0.16	0.28	0.25	0.06	0.05	0.48	0.36	0.44	0.30	0.34	0.23
GSDMB	rs9303279	G	0.50	0.45	0.41	0.42	0.30	0.26	0.11	0.21	0.42	0.33	0.35	0.34
TNSFS4*	rs1012507	Т	0.37	0.34	0.32	0.32	0.25	0.23	0.24	0.29	0.21	0.26	0.34	0.39
DHX15*	rs16875349	C	0.07	0.06	0.14	0.12	0.24	0.18	0.17	0.14	0.05	0.06	0.06	0.09
PHC1	rs1805732	Т	0.40	0.43	0.47	0.47	0.42	0.48	0.15	0.21	0.30	0.38	0.35	0.38
MORF4L1	rs12911841	Т	0.03	0.01	-	-	-	-	0.27	0.18	0.18	0.18	0.10	0.05
CLIC4	rs4649032	Т	0.50	0.49	0.43	0.35	0.49	0.44	0.44	0.40	0.47	0.48	0.44	0.41
KC6	rs16975006	Т	0.03	0.02	0.04	0.02	0.01	0.01	0.25	0.20	0.12	0.06	0.12	0.06
C16orf95	rs7197567	Т	0.09	0.06	0.06	0.07	0.21	0.18	0.54	0.42	0.23	0.19	0.22	0.20
COCH	rs12431424	A	0.13	0.15	0.10	0.15	0.16	0.18	0.12	0.19	0.12	0.10	0.09	0.21
SRBD1*	rs78341222	A	0.03	0.03	0.05	0.04	-	-	-	-	0.07	0.03	0.05	0.02
BAD	rs477895	C	0.19	0.18	0.26	0.27	0.25	0.21	0.56	0.43	0.49	0.34	0.31	0.21
RRP12	rs6584128	G	0.37	0.34	0.42	0.40	0.36	0.30	0.64	0.53	0.55	0.51	0.43	0.37
NFIA	rs75447844	Т	0.02	0.02	0.09	0.05	0.13	0.15	-	-	0.01	0.01	0.06	0.14

Table S5. Allele frequency of genome-wide and suggestive significant SNPs across ancestries.

* Closest gene was not protein coding. The group with higher frequency is indicated in bold. EA = effect allele

-

Table S6. SNPs that significantly colocalize with tissue and cell type eQTLs.

Top colocalized SSNS GWAS / eQTL loci (RCP > 0.2). Each row represents a SSNS associated SNP that also associates with tissue/cell-type gene expression. The top SNP (highest SCP) for each gene-tissue association is included. RCP = regional colocalization probability, SCP = SNP colocalization probability.

RS ID	Position (hg19)	Ensembl Gene ID	Gene Symbol	Study	Tissue/Cell type	RCP	SCP
rs7759971	6:135746884	ENSG00000135541	AHI1	DICE	Monocytes, classical	0.65	0.23
rs6908428	6:135793706	ENSG00000135541	AHI1	DICE	T cell, CD4, memory TREG	0.65	0.62
rs6908428	6:135793706	ENSG00000135541	AHI1	DICE	T cell, CD4, naive	0.62	0.62
rs6908428	6:135793706	ENSG00000135541	AHI1	DICE	T cell, CD4, naive TREG	0.57	0.57
rs6908428	6:135793706	ENSG00000135541	AHI1	DICE	T cell, CD4, TFH	0.56	0.56
rs6908428	6:135793706	ENSG00000135541	AHI1	DICE	B cell, naive	0.56	0.56
rs6908428	6:135793706	ENSG00000135541	AHI1	DICE	Monocytes, non-classical	0.53	0.52
rs6908428	6:135793706	ENSG00000135541	AHI1	DICE	T cell, CD4, TH17	0.51	0.51
rs6908428	6:135793706	ENSG00000135541	AHI1	DICE	T cell, CD8, naive	0.40	0.40
rs6908428	6:135793706	ENSG00000135541	AHI1	DICE	T cell, CD4, TH1/17	0.39	0.39
rs7759971	6:135746884	ENSG00000135541	AHI1	BluePrint	Monocyte	0.26	0.10
rs2637678	6:116787378	ENSG00000188820	CALHM6	DICE	Monocytes, classical	0.86	0.86
rs2637681	6:116769845	ENSG00000188820	CALHM6	GTEx	Adipose visceral omentum	0.39	0.39
rs2637681	6:116769845	ENSG00000188820	CALHM6	GTEx	Skin (not sun exposed)	0.25	0.25
rs8076131	17:38080912	ENSG0000073605	GSDMB	DICE	T cell, CD4, memory TREG	0.29	0.16
rs5024432	6:32684468	ENSG00000237541	HLA-DQA1	GTEx	Skin (not sun exposed)	0.22	0.13
rs6908428	6:135793706	ENSG00000231028	LINC00271	DICE	T cell, CD4, memory TREG	0.36	0.07
rs6908428	6:135793706	ENSG00000234084	Lnc-MYB-2	DICE	T cell, CD4, naive	0.66	0.26
rs6908428	6:135793706	ENSG00000234084	Lnc-MYB-3	DICE	B cell, naive	0.52	0.51
rs7759971	6:135746884	ENSG00000234084	Lnc-MYB-4	DICE	Monocytes, non-classical	0.42	0.17
rs6908428	6:135793706	ENSG00000234084	Lnc-MYB-5	DICE	T cell, CD4, TH1/17	0.33	0.32
rs6908428	6:135793706	ENSG00000234084	Lnc-MYB-6	DICE	T cell, CD4, TFH	0.33	0.20
rs6908428	6:135793706	ENSG00000234084	Lnc-MYB-7	DICE	T cell, CD4, naive TREG	0.31	0.19
rs6908428	6:135793706	ENSG00000234084	Lnc-MYB-8	DICE	T cell, CD4, memory TREG	0.22	0.09
rs6908428	6:135793706	ENSG00000234084	Lnc-MYB-9	DICE	T cell, CD4, TH17	0.21	0.10
rs12941333	17:38040534	ENSG00000172057	ORMDL3	DICE	T cell, CD4, memory TREG	0.23	0.02
rs7848647	9:117569046	ENSG00000181634	TNFSF15	DICE	Monocytes, classical	0.95	0.28
rs10817678	9:117579457	ENSG00000181634	TNFSF15	BluePrint	Monocyte	0.90	0.69
rs6478108	9:117558703	ENSG00000181634	TNFSF15	GTEx	Whole blood	0.62	0.43
rs6478109	9:117568766	ENSG00000181634	TNFSF15	GTEx	Artery_Aorta	0.57	0.30
rs7848647	9:117569046	ENSG00000181634	TNFSF15	DICE	Monocytes, non-classical	0.22	0.05
rs111922894	7:129178359	ENSG00000158457	TSPAN33	DICE	T cell, CD4, naive	0.25	0.25

Figure S7. Colocalization of SSNS GWAS and all eQTL datasets. Each eQTL data set is labeled with colocalized loci to the right and enrichment estimates to the left. Genes with regional colocalization probability (RCP) > 0.2 in at least one tissue/cell are included. SSNS GWAS loci that colocalized with tissue/cell-type eQTLs are indicated by black dots, with larger dots indicating higher regional colocalization probability (RCP). Enrichment estimates, from fastENLOC, are based of genome-wide summary statistics from GWAS and include a shrinkage parameter, resulting in 0 enrichment for multiple tissue/cell-types.

RS ID	Position (hg19)	EA	NEA	P-value (MR-MEGA)	PIP	Location	Closest Gene	Kidney open chromatin	Immune open chromatin
rs8062322	16:11092319	А	С	8.98 x 10 ⁻¹²	0.93	intronic	CLEC16A		
rs9652601	16:11174365	А	G	1.18 x 10 ⁻⁹	0.01	intronic	CLEC16A	POD,ENDO,PT1,PT2, PT3,PT, LH,PC,LEUK	СМР
rs7204643	16:11167603	С	Т	1.46 x 10 ⁻⁹	0.01	intronic	CLEC16A	ENDO,PT1,PT2,PT,LH,DCT,CNT ,PC,ICB	GMP,LMPP,MEP
rs887864	16:11158885	G	А	1.45 x 10 ⁻⁹	0.01	intronic	CLEC16A		
rs7200940	16:11164567	G	С	1.56 x 10 ⁻⁹	0.01	intronic	CLEC16A		
rs412175	19:36342103	С	Т	2.29 x 10 ⁻²⁴	0.94	Intronic	NPHS1	ENDO, PT2	
rs56117924	19:36334182	Α	G	4.98 x 10 ⁻²³	0.05	intronic	NPHS1		
rs55730955	2:204585956	А	Т	1.00 x 10 ⁻¹¹	0.72	intronic	CD28		CD4,CD8
rs4673259	2:204582623	С	Т	3.95 x 10 ⁻¹¹	0.19	intronic	CD28		CD4,CD34,CMP,GMP, HSC,LMPP,MEP
rs3769684	2:204584759	С	Т	1.22 x 10 ⁻¹⁰	0.07	intronic	CD28	LEUK	CD4,CD8,NK
rs28862935	4:75693465	А	G	4.29 x 10 ⁻¹¹	0.21	intronic	BTC		
rs10005089	4:75694606	Т	С	9.38 x 10 ⁻¹¹	0.10	intronic	BTC	PEC,ENDO,PT1,PT2,PT3,PT,LH, DCT,CNT,PC,ICA,ICB,	HSC,LMPP,MEP,MPP
rs6532431	4:75696612	G	Т	1.50 x 10 ⁻¹⁰	0.06	intronic	BTC		
rs28420261	4:75693713	А	С	1.77 x 10 ⁻¹⁰	0.05	intronic	BTC		
rs4859427	4:75691379	А	G	1.92 x 10 ⁻¹⁰	0.05	intronic	BTC		
rs60799154	4:75692264	Т	С	2.05 x 10 ⁻¹⁰	0.05	intronic	BTC		
rs28773846	4:75692704	G	Т	2.20 x 10 ⁻¹⁰	0.05	intronic	BTC		
rs72867560	4:75691141	А	G	2.49 x 10 ⁻¹⁰	0.04	intronic	BTC		ERY
rs59882675	4:75689112	G	А	2.64 x 10 ⁻¹⁰	0.04	intronic	BTC		
rs28478898	4:75689280	G	С	2.66 x 10 ⁻¹⁰	0.04	intronic	BTC		
rs28472417	4:75689353	С	Т	2.66 x 10 ⁻¹⁰	0.04	intronic	BTC		
rs10009801	4:75694208	С	Т	2.82 x 10 ⁻¹⁰	0.03	intronic	BTC		
rs28577058	4:75716947	А	G	3.02 x 10 ⁻¹⁰	0.03	intronic	BTC	POD,MESFIB,CNT,PC,ICA,ICB	
rs28681122	4:75717024	Α	G	3.38 x 10 ⁻¹⁰	0.03	intronic	BTC		
rs10023748	4:75703330	G	Т	3.89 x 10 ⁻¹⁰	0.02	intronic	BTC		
rs28576102	4:75704143	G	А	4.18 x 10 ⁻¹⁰	0.02	intronic	BTC		
rs72867585	4:75702876	G	А	4.30 x 10 ⁻¹⁰	0.02	intronic	BTC		
rs28522727	4:75707658	С	Т	4.33 x 10 ⁻¹⁰	0.02	intronic	BTC		
rs6848247	4:75690027	G	Т	9.82 x 10 ⁻¹⁰	0.01	intronic	BTC		
rs28458910	4:75688543	G	А	9.97 x 10 ⁻¹⁰	0.01	intronic	BTC		
rs28822209	4:75690673	А	G	1.09 x 10 ⁻⁹	0.01	intronic	BTC		
rs28565087	4:75688563	G	Α	1.10 x 10 ⁻⁹	0.01	intronic	BTC		
rs2637681	6:116769845	G	Т	3.27 x 10 ⁻¹¹	0.52	intergenic	CALHM6		
rs2637678	6:116787378	С	Т	5.54 x 10 ⁻¹¹	0.31	intergenic	CALHM6		
rs2858829	6:116768917	G	А	6.27 x 10 ⁻¹⁰	0.03	intergenic	CALHM6	LEUK	CD34,CMP,GMP,HSC,LMPP, MEP, MONO,MPP
rs61449271	6:116795040	А	G	8.26 x 10 ⁻¹⁰	0.02	intergenic	CALHM6		

Table S7. Credible sets for genome-wide significant loci in multi-population meta-analysis with open chromatin annotation.

rs9400917	6:116794335	Α	G	1.03 x 10 ⁻⁹	0.02	intergenic	CALHM6		
rs34900657	6:116808418	G	Т	1.07 x 10 ⁻⁹	0.02	intergenic	CALHM6	POD	
rs6925168	6:116799297	А	G	1.39 x 10 ⁻⁹	0.01	intergenic	CALHM6		
rs4945556	6:116785195	G	А	1.64 x 10 ⁻⁹	0.01	downstream	CALHM6		
rs7759971	6:135746884	Т	С	3.11 x 10 ⁻¹⁴	0.52	intronic	AHI1		CD34, CLP, CMP, HSC, MPP
rs6928977	6:135626348	Т	G	1.99 x 10 ⁻¹³	0.09	intronic	AHI1		
rs11154801	6:135739355	А	С	1.97 x 10 ⁻¹³	0.08	intronic	AHI1		CD34, CMP, HSC, LMPP, MEP, MPP
rs2614257	6:135676404	С	Т	3.95 x 10 ⁻¹³	0.04	intronic	AHI1		CD34, CMP, MEP, MPP
rs4896143	6:135635100	G	С	5.95 x 10 ⁻¹³	0.03	intronic	AHI1		CD8, LMPP, MEP
rs2614266	6:135716532	А	Т	7.74 x 10 ⁻¹³	0.02	intronic	AHI1		MPP
rs6935146	6:135627369	Т	С	8.40 x 10 ⁻¹³	0.02	intronic	AHI1		СМР
rs6914831	6:135639644	С	Т	9.90 x 10 ⁻¹³	0.02	intronic	AHI1		
rs6931735	6:135624811	G	А	1.13 x 10 ⁻¹²	0.02	intronic	AHI1		
rs6570001	6:135651721	G	С	1.28 x 10 ⁻¹²	0.01	intronic	AHI1		В
rs7759677	6:135909796	С	Т	1.39 x 10 ⁻¹²	0.01	intergenic	AHI1	PT1,PT2,PT3,PT	
rs761357	6:135902599	Т	А	1.55 x 10 ⁻¹²	0.01	intergenic	AHI1		
rs6908428	6:135793706	G	А	2.10 x 10 ⁻¹²	0.01	intronic	AHI1		СМР
rs2179780	6:135650266	А	G	2.49 x 10 ⁻¹²	0.01	intronic	AHI1		MEP
rs11154806	6:135873721	G	Т	2.64 x 10 ⁻¹²	0.01	intergenic	AHI1		
rs2246943	6:135691516	А	Т	3.02 x 10 ⁻¹²	0.01	intronic	AHI1		
rs7772681	6:135649013	Т	С	2.91 x 10 ⁻¹²	0.01	intronic	AHI1		
rs3827780	6:135709760	G	А	3.49 x 10 ⁻¹²	0.01	intronic	AHI1		
rs2746432	6:135696597	С	Т	3.49 x 10 ⁻¹²	0.01	intronic	AHI1		
rs2327613	6:135662372	Т	С	3.57 x 10 ⁻¹²	.005	intronic	AHI1		
rs2614255	6:135663581	Т	С	3.94 x 10 ⁻¹²	.004	intronic	AHI1		
rs2746431	6:135687201	С	Т	4.14 x 10 ⁻¹²	.004	intronic	AHI1		
rs2246852	6:135691792	G	А	4.28 x 10 ⁻¹²	.004	intronic	AHI1		
rs13197384	6:135818897	А	С	5.15 x 10 ⁻¹²	.004	UTR5	AHI1	POD,PEC,MESFIB,ENDO,PT1, PT2,PT3,PT,LH,DCT,CNT,PC, ICA,ICB,LEUK	B, CD4, CD8, CD34, CLP, CMP, ERY, GMP, HSC, LMPP, MEP, MONO, MPP, NK
rs2614276	6:135681704	Т	С	5.22 x 10 ⁻¹²	.004	intronic	AHI1		СМР
rs12206850	6:135797808	С	Т	5.76 x 10 ⁻¹²	.003	intronic	AHI1		
rs9385726	6:135836962	Т	С	6.49 x 10 ⁻¹²	.003	intronic	LINC00271		
rs9647635	6:135841056	С	А	6.49 x 10 ⁻¹²	.003	intergenic	LINC00271		
rs2256318*	6:31381519	А	G	9.71 x 10 ⁻¹⁸	.270	intronic	MICA		
rs2256026*	6:31379141	G	С	1.28 x 10 ⁻¹⁷	.206	intronic	MICA		
rs2256328*	6:31381637	G	С	1.71 x 10 ⁻¹⁷	.155	intronic	MICA		
rs75918478 *	6:31453053	А	G	1.72 x 10 ⁻¹⁷	.154	intergenic	MICB		
rs2857282*	6:31380807	А	Т	2.87 x 10 ⁻¹⁷	.093	intronic	MICA		
rs2853982*	6:31378751	G	А	5.64 x 10 ⁻¹⁷	.048	intronic	MICA		
rs2256028*	6:31379198	А	С	6.33 x 10 ⁻¹⁷	.043	intronic	MICA		
rs6478108	9:117558703	Т	С	7.48 x 10-11	0.25	intronic	TNFSF15		
rs7848647	9:117569046	С	Т	8.34 x 10-11	0.23	upstream	TNFSF15	PT1,PT2,PT3,PT,CNT,PC, ICB,LEUK	B, CD4, CMP, GMP, MPP

1										
	rs10817678	9:117579457	Α	G	9.86 x 10-11	0.19	intergenic	TNFSF15		
	rs4263839	9:117566440	G	Α	1.41 x 10-10	0.14	intronic	TNFSF15		
	rs6478109	9:117568766	G	А	1.87 x 10-10	0.10	upstream	TNFSF15	PEC,ENDO,PT1,PT2,PT3,PT,LH ,DCT,CNT,PC,ICA,ICB,LEUK	B, CD4, CD34, CMP, GMP, HSC, LMPP, MPP
	rs4366152	9:117564875	С	Т	2.21 x 10-10	0.09	intronic	TNFSF15		

Excluding HLA until after conditional analysis; PIP = posterior inclusion probability, EA = effect allele, NEA = non-effect allele **Kidney cell type codes:** POD = podocyte, PEC = parietal epithelial cells, MES-FIB = mesangial and fibroblasts, ENDO = endothelial, PT(1-3) = proximal tubule, PT-KIM1P = proximal tubule with KIM1+ expression, LH = loop of Henle, DCT = distal convoluted tubule, CNT = connecting tubule, PC = principal cells, ICA = Type A intercalated cells, ICB = Type B intercalated cells, LEUK = leukocytes **Immune cell type codes**: B = CD19+CD20+ B. CD4T, CD8T = CD4+ and CD8+ T, CD34 = CD34+ bone marrow and cord blood, CLP = common lymphoid progenitor, CMP = common myeloid progenitor, Ery = CD71+GPA+ erythroblast, GMP = granulocyte macrophage progenitor, HSC = hematopoietic stem, LMPP = lymphoid-primed multipotent progenitor, MEP = megakaryocyte erythroid progenitor, Mono = CD14+ monocyte, MPP = multipotent progenitor, NK = CD56+ natural killer T

Table 50. Samples u	scu ioi iiil/i iiiic-iiia	pping and	ury 515.	
GWAS Cohort	Ancestry	n cases	n controls	n total
Nephrovir/EU	European	313	2,508	2,821
US Cohort	European	361	4,309	4,670
	European Total	674	6817	7491
US Cohort	African	65	7,335	7,400
Nephrovir/EU	African	44	179	223
	African Total	109	7514	7623
US Cohort	South Asian	31	338	369
Indian	South Asian	162	98	260
	South Asian Total	193	436	629
US Cohort	East Asian	16	439	455
Maghrebian	Maghrebian	55	228	283
Admixed American	Admixed American	98	13,248	13,346
Total		1,145	28,682	29,827

Table S8. Samples used for HLA fine-mapping analysis.

Table S9. Genome-wide and suggestive loci from ancestry-specific HLA logistic regression and omnibus test.

	Lo	gistic regression ^b		Omnibus test	Omnibus test		
Ancestry	SNP	P-value	OR [95% CI]	Amino Acid ID ^c	P-value		
European	rs28755181	3.49 x 10 ⁻⁵¹	3.35 [2.86 – 3.92]	AA_DQA1_47_32609219	6.81 x 10 ⁻⁶¹		
African	rs1264705	3.03 x 10 ⁻⁷	4.64 [2.58 – 8.34]	AA_DQB1_89_32632585	1.41 x 10 ⁻⁸		
South Asian	HLA_B*44:03	9.42 x 10 ⁻¹²	2.83 [2.12 - 3.77]	AA_B_199_31323321	5.64 x 10 ⁻¹⁰		
Admixed-American	-	-	-	AA_DQA1_52_32609234	3.79 x 10 ⁻¹¹		
Maghrebian	rs9273344	2.543 x10 ⁻⁶	0.18 [0.09, 0.37]	AA_DQB16_32634305	4.03 x 10 ⁻⁵		

OR [95% CI] = Odds ratio and 95% confidence interval. ^a No significant associations in the East Asian analysis.

^b Test included SNPs and classical HLA alleles.

^c Amino acid (AA) _ gene _ AA position _ genomic position

Supplemental note 1:

The strongest association was rs2856696, between *HLA-DRB1* and *HLA-DQA1* ($P = 2.31 \times 10^{-68}$). The strongest classical HLA allele association was at *DQA1*02* ($P = 2.79 \times 10^{-59}$). Stepwise conditional analysis identified an independent association near *HLA-DQB1* (rs9273479; $P = 9.97 \times 10^{-34}$).

Table S10. Multi-population HLA. Results from HLA logistic association test. Top overall association and top classical HLA allele both reported. Results after conditioning on rs2856696 also shown.

	SNP	EA	P-value	OR	Closest Gene
Logistic					
	rs2856696	Т	2.31 x 10 ⁻⁶⁸	2.80	HLA-DRB1, HLA-DQA1
	HLA_DQA1*02	Т	2.79 x 10 ⁻⁵⁹	2.49	HLA-DQA1
Conditional Logistic					
	rs9273479	Т	9.97 x 10 ⁻³⁴	0.49	HLA-DQB1
	HLA_DQA1*01	Т	3.92 x 10 ⁻²⁹	0.53	HLA-DQA1

Figure S8. Logistic regression results for HLA-DQA1 (A) and HLA-DQB1 (B) 4-digit alleles in multi-population analysis. Associations reaching genome-wide significance are indicated with a *

Table S11. HLA amino acid omnibus test results. Omnibus p-value is from an ANOVA comparing logistic models with and without amino acid position. Amino acid associations from logistic regression including all amino acid residues at the given position.

HLA gene	Omnibus	Amino acid	OR [95% CI]	P-value		
& Position	P-value					
DQA1_47	7.73 x 10 ⁻⁸³					
		cysteine	1.97 [1.75, 2.23]	5.47 x 10 ⁻²⁸		
		lysine	3.62 [3.17, 4.14]	5.70 x 10 ⁻⁸⁰		
		glutamine	1.72 [1.47, 2.00]	7.63 x 10 ⁻¹²		
		arginine	ref			
DQA1_52	1.14 x 10 ⁻⁸²	-				
		serine	0.53 [0.47, 0.59]	1.00 x 10 ⁻²⁸		
		histidine	1.92 [1.70, 2.16]	2.55 x 10 ⁻²⁷		
		arginine	REF			
DQB1_26*	3.22 x 10 ⁻¹³					
		tyrosine	0.90 [0.81, 1.00]	0.06		
		glycine	0.64 [0.60, 0.73]	4.75 x 10 ⁻¹²		
		leucine	ref			
* T						

* Top association after conditioning on DQA1_47 and DQA1_52

Figure S9. Case/control frequency of amino acid residues at positions 47 and 52 of HLA-DQA1 and 26 of HLA-DQB1.

	Count (%) or		Univariate	Multiple linear
	Median (IQR)	PRS (IQR)	P-value ^c	regression P-value ^d
European ^a	n=233 ^e	1.79 [0.97-2.35]	-	-
Sex			0.07	-
Male	146 (63%)	1.89 [0.98-2.43]		
Female	87 (37%)	1.51 [0.90-2.14]		
Steroid sensitivity			0.17	-
SDNS	106 (45%)	1.84 [1.13-2.44]		
SSNS	127 (55%)	1.70 [0.91-2.19]		
Age onset	4.40 (3.09-7.20)		4.13 x 10 ⁻⁴	1.49 x 10 ⁻⁴
NEPTUNE	N=165	0.82 [0.50-1.09]	-	-
Sex			0.35	-
Male	97 (59%)	0.82 [0.43-1.08]		
Female	68 (41%)	0.82 [0.61-1.10]		
Histology			0.37	-
FSGS	50 (30%)	0.80 [0.48-1.03]		
MCD	81 (49%)	0.83 [0.50-1.12]		
Non-biopsy	34 (21%)	0.81 [0.61-0.95]		
Age of onset	5.00 (3.00-11.00)		0.02	0.003
Ancestry ^b			0.02	_
African	58 (35%)	0.86 [0.64-1.09]		
Admixed American	32 (19%)	0.75 [0.47-0.90]		
East Asian	6 (4%)	0.44 [0.08-0.60]		
EUR	59 (36%)	0.86 [0.66-1.15]		
SAS	10 (6%)	0.55 [0.44-0.88]		

Table S12. Results of Polygenic Risk Score (PRS) analysis in European and NEPTUNE cohorts.

^a European cohort from Paris

^b Predicted ancestry based on genotype data and 1000 genomes reference panel

^c Wilcoxon test for binary traits, Kruskal-Wallis for categorical traits, univariate linear regression for continuous traits

^d European (Paris cohort) adjusted for sex, steroid sensitivity and 4 genetic principal components. NEPTUNE adjusted for sex, histology and 4 genetic principal components

^e 233 out of a total 311samples had available demographic information

Figure S10. Association between PRS quartiles and age of onset in the NEPTUNE cohort. A) Stratified by genotype-predicted ancestry. B) By histology.

Figure S11. PCA (PC1 vs. PC2) of dataset GWAS cases and controls.

A) Data for which genotype-level data were available. Cases are indicated in red; controls are indicated in blue.B) Data with only summary statistics were available.

Figure S12. Manhattan plot of GWAS by cohort.

Red line indicated genome-wide significance threshold (5 x 10^{-8}); blue line is suggestive significance (1 x 10^{-5}). Number of cases and controls and genomic controls lambda are reported for each dataset.

Table S13: Genome-wide significant loci from individual GWASAll SNP are > 1Mb from each other with $r^2 < 0.1$. We found no genome-wide significant associations in the Thai, $\underline{EU} - African$, Maghrebian, Indian, Admixed American, US – East Asian and US – South Asian datasets.

Dataset	Top SNP	Position (hg19)	Nearest Gene	EA	NEA	OR [95% CI]	Р
EU - European	rs9275205	6:32657560	HLA-DQB1	С	Т	3.13 [2.52, 3.88]	5.69 x 10 ⁻²⁵
EU - European	rs2637681	6:116769845	DSE	G	Т	0.54 [0.44, 0.66]	3.01 x 10 ⁻⁹
EU - European	rs17185137	16:26809795	C16orf82	G	А	3.03 [2.06, 4.46]	1.78 x 10 ⁻⁸
US - European	rs1694129	6:32637743	HLA-DQB1	Т	G	3.20 [2.61, 3.93]	1.38 x 10 ⁻²⁸
Japanese	rs6901541	32442261	HLA-DRA	С	Т	2.49 [2.15, 2.89]	2.81 x 10 ⁻³³
Japanese	rs56117924	36334182	NPHS1	А	G	1.90 [1.66, 2.18]	4.95 x 10 ⁻²⁰
Japanese	rs117576077	31906997	<i>C2</i>	Т	С	0.13 [0.07, 0.23]	1.85 x 10 ⁻¹¹
Japanese	rs3117032	33088592	HLA-DPB2	Т	С	0.40 [0.30, 0.53]	1.88x 10 ⁻¹⁰
Japanese	rs3095273	29566369	GABBR1	А	G	0.44 [0.34, 0.58]	6.45 x 10 ⁻⁹
Japanese	rs6478109	117568766	TNFSF15	А	G	0.72 [0.64, 0.81]	2.55 x 10 ⁻⁸
Korean	rs9272518	32606446	HLA-DQA1	С	G	2.63 [2.06, 3.35]	1.05 x 10 ⁻¹⁴
Korean	rs412175	36342103	NPHS1	С	Т	1.83 [1.47, 2.27]	4.66 x 10 ⁻⁸

The Research Consortium on Genetics of Childhood Idiopathic Nephrotic Syndrome in Japan

Yoshinori Araki¹, Yoshinobu Nagaoka¹, Takayuki Okamoto², Yasuyuki Sato², Asako Hayashi², Toshiyuki Takahashi², Hayato Aoyagi³, Michihiko Ueno⁴, Masanori Nakanishi⁵, Nariaki Toita⁶, Kimiaki Uetake⁷, Norio Kobayashi⁸, Shoji Fujita⁹, Kazushi Tsuruga¹⁰, Naonori Kumagai^{11, 12}, Hiroki Kudo¹¹, Eriko Tanaka^{13, 14}, Tae Omori¹⁵, Mari Okada¹⁶, Yoshiho Hatai¹⁷, Tomohiro Udagawa^{18, 19}, Yaeko Motoyoshi²⁰, Koichi Kamei²¹, Masao Ogura²¹, Mai Sato²¹, Yuji Kano^{21, 22}, Motoshi Hattori²³, Kenichiro Miura²³, Yutaka Harita²⁴, Shoichiro Kanda²⁴, Emi Sawanobori²⁵, Anna Kobayashi²⁵, Manabu Kojika²⁶, Yoko Ohwada^{27, 28}, Kunimasa Yan²⁹, Hiroshi Hataya³⁰, Riku Hamada, Chikako Terano³⁰, Ryoko Harada³⁰, Yuko Hamasaki³¹, Junya Hashimoto³¹, Kenji Ishikura³², Shuichi Ito³³, Hiroyuki Machida³³, Aya Inaba³³, Takeshi Matsuyama³⁴, Miwa Goto³⁵, Masaki Shimizu³⁶, Kazuhide Ohta³⁷, Yohei Ikezumi^{38, 39}, Takeshi Yamada³⁸, Toshiaki Suzuki⁴⁰, Soichi Tamamura⁴¹, Yukiko Mori⁴¹, Yoshihiko Hidaka⁴², Daisuke Matsuoka⁴², Tatsuya Kinoshita⁴³, Shunsuke Noda⁴⁴, Masashi Kitahara⁴⁵, Naoya Fujita⁴⁶, Satoshi Hibino⁴⁶, Kandai Nozu⁴⁷, Tomoko Horinouchi⁴⁷, Tomohiko Yamamura⁴⁷, China Nagano⁴⁷, Shogo Minamikawa^{47, 48}, Keita Nakanishi^{47, 49}, Junya Fujimura^{47, 50}, Nana Sakakibara⁴⁷, Yuya Aoto⁴⁷, Shinya Ishiko⁴⁷, Kazumoto Iijima^{51, 52}, Ryojiro Tanaka⁵¹, Hiroshi Kaito⁵¹, Kyoko Kanda^{51, 53}, Yosuke Inaguma⁵¹, Yuya Hashimura⁵⁴, Shingo Ishimori^{55, 56}, Naohiro Kamiyoshi⁵⁷, Takayuki Shibano⁵⁸, Yasuhiro Takeshima⁵⁸, Rika Fujimaru⁵⁹, Hiroaki Ueda⁵⁹, Akira Ashida⁶⁰, Hideki Matsumura⁶⁰, Takuo Kubota⁶¹, Taichi Kitaoka^{61, 62}, Yusuke Okuda^{63, 64}, Toshihiro Sawai⁶³, Tomoyuki Sakai⁶³, Yuko Shima⁶⁵, Taketsugu Hama⁶⁵, Mikiya Fujieda⁶⁶, Masayuki Ishihara⁶⁶, Shigeru Itoh⁶⁷, Takuma Iwaki⁶⁸, Maki Shimizu⁶⁹, Koji Nagatani⁷⁰, Shoji Kagami⁷¹, Maki Urushihara⁷¹, Yoshitsugu Kaku⁷², Manao Nishimura⁷², Miwa Yoshino⁷², Ken Hatae⁷³, Maiko Hinokiyama⁷³, Rie Kuroki⁷³, Yasufumi Ohtsuka⁷⁴, Masafumi Oka⁷⁴, Shinji Nishimura⁷⁵, Tadashi Sato⁷⁶, Seiji Tanaka⁷⁷, Ayuko Zaitsu⁷⁷, Hitoshi Nakazato⁷⁸, Hiroshi Tamura⁷⁸, Koichi Nakanishi⁷⁹

- 1. Department of Pediatrics, National Hospital Organization Hokkaido Medical Center, Sapporo, Japan
- 2. Department of Pediatrics, Hokkaido University Hospital, Sapporo, Japan
- 3. Department of Pediatrics, Obihiro Kyokai Hospital, Obihiro, Japan
- 4. Department of Pediatrics, Nikko Memorial Hospital, Muroran, Japan
- 5. Department of Pediatrics, Kushiro Red Cross Hospital, Kushiro, Japan
- 6. Department of Pediatrics, Sapporo Kosei Hospital, Sapporo, Japan
- 7. Department of Pediatrics, Obihiro Kosei Hospital, Obihiro, Japan
- 8. Department of Pediatrics, Oji General Hospital, Tomakomai, Japan
- 9. Department of Pediatrics, Hakodate Goryoukaku Hospital, Hakodate, Japan
- 10. Department of Pediatrics, Hirosaki University Hospital, Hirosaki, Japan
- 11. Department of Pediatrics, Tohoku University Graduate School of Medicine, Sendai, Japan
- 12. Present address: Department of Pediatrics, Fujita Health University, Toyoake, Japan
- 13. Department of Pediatrics and Developmental biology, Tokyo Medical and Dental University, Tokyo, Japan
- 14. Present address: Department of Pediatrics, Kyorin University Hospital, Tokyo, Japan
- 15. Department of Peditrics, Tokyo Metropolitan Bokutoh Hospital, Tokyo, Japan
- 16. Musashino Red Cross Hospital, Musashino, Japan
- 17. Tokyo Bay Urayasu-Ichikawa Medical Center, Urayasu, Japan
- 18. Tsuchiura Kyodo General Hospital, Tsuchiura, Japan
- 19. Present address: Department of Pediatrics and Developmental biology, Tokyo Medical and Dental University, Tokyo, Japan
- 20. Department of Pediatrics, Tokyo Kita Medical Center, Tokyo, Japan
- 21. Division of Nephrology and Rheumatology, National Center for Child Health and Development, Tokyo, Japan
- 22. Present address: Department of Pediatrics, Dokkyo Medical University School of Medicine, Mibu, Japan
- 23. Department of Pediatric Nephrology, Tokyo Women's Medical University, Tokyo, Japan

- 24. Department of Pediatrics, The University of Tokyo Hospital, Tokyo, Japan
- 25. Department of Pediatrics, Faculty of Medicine, University of Yamanashi, Chuo, Japan
- 26. Department of Pediatrics, Fujiyoshida Manucipal Hospital, Fujiyoshida, Japan
- 27. Department of Pediatrics, Dokkyo Medical University School of Medicine, Mibu, Japan
- 28. Department of Pediatrics, Tochigi Medical Center Shimostuga, Tochigi, Japan
- 29. Department of Pediatrics, Kyorin University Hospital, Tokyo, Japan
- 30. Department of Nephrology, Tokyo Metropolitan Children's Medical Center, Tokyo, Japan
- 31. Department of Nephrology, Toho University Faculty of Medicine, Tokyo, Japan
- 32. Department of Pediatrics, Kitasato University School of Medicine, Sagamihara, Japan
- 33. Department of Peditrics, Yokohama City University, Yokohama, Japan
- 34. Department of Pediatrics, Fussa Hospital, Tokyo, Japan
- 35. Department of Pediatrics, National Hospital Organization Kofu National Hospital, Kofu, Japan
- 36. Department of Pediatrics, Kanazawa University Hospital, Kanazawa, Japan
- 37. Department of Pediatrics, Kanazawa Medical Center, Kanazawa, Japan
- 38. Department of Pediatrics, Niigata University Medical & Dental Hospital, Niigata, Japan
- 39. Present address: Department of Pediatrics, Fujita Health University, Toyoake, Japan
- 40. Department of Pediatrics, National Hospital Organization Niigata National Hospital, Niigata
- 41. Department of Pediatrics, Japanese Red Cross Fukui Hospital, Fukui, Japan
- 42. Department of Pediatrics, Shinshu University Hospital, Matsumoto, Japan
- 43. Department of Pediatrics, Ina Central Hospital, Ina, Japan
- 44. Department of Pediatrics, Nagano Red Cross Hospital, Nagano, Japan
- 45. Department of Pediatrics, Matsumoto Medical Center, Matsumoto, Japan
- 46. Department of Pediatric Nephrology, Aichi Children's Health And Medical Center, Obu, Japan
- 47. Department of Pediatrics, Kobe University Graduate School of Medicine, Kobe, Japan
- 48. Present address: Department of General Medicine, Hyogo Prefectural Kobe Children's Hospital, Kobe, Japan
- 49. Present address: Department of Pediatrics, Saiseikai Hyogoken Hospital, Kobe, Japan
- 50. Present address: Department of Pediatrics, Kakogawa Central City Hospital, Kakogawa, Japan
- 51. Department of Nephrology, Hyogo Prefectural Kobe Children's Hospital, Kobe, Japan
- 52. Department of Advanced Pediatric Medicine, Kobe University Graduate School of Medicine, Kobe, Japan
- 53. Department of Pediatrics, National Hospital Organization Kobe Medical Center
- 54. Department of Pediatrics, Takatsuki General Hospital, Takatsuki, Japan
- 55. Department of Pediatrics, Kakogawa Central City Hospital, Kakogawa, Japan
- 56. Present address: Department of Pediatrics, Takatsuki General Hospital, Takatsuki, Japan
- 57. Department of Pediatrics, Himeji Red Cross Hospital, Himeji, Japan
- 58. Department of Pediatrics, Hyogo College of Medicine, Nishinomiya, Japan
- 59. Department of Pediatrics, Osaka City General Hospital, Osaka, Japan
- 60. Department of Pediatrics, Osaka Medical College, Takatsuki, Japan
- 61. Department of Pediatrics, Osaka University Graduate School of Medicine, Suita, Japan
- 62. Present address: Department of Pediatrics, Yodogawa Children Hospital, Osaka, Japan
- 63. Department of Pediatrics, Shiga University of Medical Science, Otsu, Japan
- 64. Present address: Department of Pediatrics, Kitasato University School of Medicine, Sagamihara, Japan
- 65. Department of Pediatrics, Wakayama Medical University, Wakayama, Japan
- 66. Department of Pediatrics, Kochi Medical School, Kochi University, Nankoku, Japan
- 67. Department of Pediatrics, Kagawa Prefecture Central Hospital, Takamatsu, Japan
- 68. Department of Pediatrics, Faculty of Medicine, Kagawa University, Kagawa, Japan
- 69. Department of Pediatrics, Faculty of Medicine, Kagawa University, Kagawa, Japan
- 70. Department of Pediatrics, Uwajima City Hospital, Uwajima, Japan
- 71. Department of Pediatrics, Institute of Biomedical Sciences, Tokushima University Graduate School, Tokushima, Japan
- 72. Department of Nephrology, Fukuoka Children's Hospital, Fukuoka, Japan
- 73. Department of Pediatrics, Japanese Red Cross Fukuoka Hospital, Fukuoka, Japan
- 74. Department of Pediatrics, Faculty of Medicine, Saga University, Saga, Japan

- 75. Department of Pediatrics, Saga-ken Medical Centre Koseikan, Saga, Japan
- 76. Department of Pediatrics, National Hospital Organization Ureshino Medical Center, Ureshino, Japan
- 77. Department of Pediatrics and Child Health, Kurume University School of Medicine, Kurume, Japan
- 78. Department of Pediatrics, Faculty of Life Sciences, Kumamoto University, Kumamoto, Japan
- 79. Department of Child Health and Welfare (Pediatrics), Graduate School of Medicine, University of the Ryukyus, Nishihara, Japan

Korean Consortium of Hereditary Renal Diseases in Children

Min Hyun Cho¹, Tae-Sun Ha², Hee Gyung Kang³, Il-Soo Ha³, Ji Hyun Kim³, Peong Gang Park³, Kyoung Hee Han⁴, Eun Mi Yang⁵, Myung Hyun Cho⁶, Hae Il Cheong⁶

- 1. Department of Pediatrics, Kyungpook National University, School of Medicine, Daegu, Korea
- 2. Department of Pediatrics, Chungbuk National University College of Medicine, Cheongju, Korea
- 3. Department of Pediatrics, Seoul National University Children's Hospital, Seoul, Korea
- 4. Department of Pediatrics, Jeju National University School of Medicine, Jeju, Korea
- 5. Department of Pediatrics, Chonnam National University Children's Hospital, Gwangju, Korea
- 6. Department of Pediatrics, Hallym University Sacred Heart Hospital, Anyang, Korea

Thailand Team

Prayong Vachvanichsanong¹, Kwanchai Pirojsakul²

- 1. Department of Pediatrics, Faculty of Medicine, Prince of Songkla University, Hat-Yai, Songkhla, Thailand
- 2. Department of Pediatrics, Faculty of Medicine, Ramathibodi Hospital Mahidol University, Bangkok, Thailand

ACKNOWLEDGMENTS:

The authors wish to thank Seong Kyu Han, PhD (Boston Children's Hospital and Harvard Medical School) for his assistance in creating Figure 1.

- The Nephrotic Syndrome Study Network (NEPTUNE) is part of the Rare Diseases Clinical Research Network (RDCRN), which is funded by the National Institutes of Health (NIH) and led by the National Center for Advancing Translational Sciences (NCATS) through its Division of Rare Diseases Research Innovation (DRDRI). NEPTUNE is funded under grant number U54DK083912 as a collaboration between NCATS and the National Institute of Diabetes and Digestive and Kidney Diseases (NIDDK). Additional funding and/or programmatic support is provided by the University of Michigan, NephCure Kidney International and the Halpin Foundation. RDCRN consortia are supported by the RDCRN Data Management and Coordinating Center (DMCC), funded by NCATS and the National Institute of Neurological Disorders and Stroke (NINDS) under U2CTR002818.
- This study was funded by European Research Council grant ERC-2012- ADG_20120314 (grant agreement 322947) and Agence Nationale pour la Recherche "Genetransnephrose" grant ANR-16-CE17-004-01.
- MGS is supported by NIH grants R01DK119380, RC2DK122397, 2U54DK083912 and a gift from The Pura Vida Kidney Foundation