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Abstract 

Objectives: To propose a tool to detect and locate malignant nodules and 
microcalcifications in mammography and judge its potential as a screening tool. 

Methods: In this institutional review board approved retrospective study we presented 
a new tool based on deep learning techniques to predict and locate lesions in 
mammograms, called quantusMM. 3,114 mammograms from 976 patients were 
collected from Onkologikoa (Instituto Oncológico de Kutxa) databases for this purpose: 
1,248 images with malignant nodules, 736 with malignant microcalcifications and 1,131 
without any suspicious findings. The proposed methods split the images in patches to 
be able to locate the lesions in the image. Then, these methods select the patches 
most likely to have a lesion based on the brightness values of the pixels. 80% of the 
selected patches (with the corresponding outcome) were used to train deep learning 
algorithms and the remaining 20% were used to test the performance to classify into 
malignant parts or control parts. 

Results: The proposed methods obtain an area under the ROC curve (AUC) of 95.5% 
to predict malignant nodules using the patches, and 90.4% to predict malignant 
nodules into the whole images. To predict malignant microcalcifications the method 
obtains an AUC of 99.0% into patches and 90.0% into the whole images. 

Conclusions: The proposed tool shows potential to predict and locate malignant 
nodules and microcalcification lesions in mammography. This new approach could help 
in the first screening of patients and also could greatly benefit radiologists to support 
decision making.   
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Introduction 

Breast cancer is the most common type of cancer among women and represents 15% 
of the total tumors worldwide [1]. Although research in this field has increased greatly in 
recent years, female breast cancer is still the fifth leading cause of death with more 
than 650,000 deaths per year [2]. To reduce the mortality rate, early diagnosis and 
proper assessment is crucial. Mammography is the most useful tool for general 
population screening but its performance to detect and diagnose breast cancer lesions 
highly depends on the radiologist expertise [3]. 

In recent years, the introduction of artificial intelligence methods in medical analysis 
has brought forth a potential revolution in computer-based interpretation of digital 
mammography [4]. Since the emergence of deep learning techniques and especially 
convolutional neural networks (CNN), many works have been published exploiting 
deep architectures in the field of breast cancer imaging [5]. In this way, CNN methods 
were extensively used in several studies for breast cancer classification [6], [7], 
nodules diagnosis [8], [9], microcalcification diagnosis [10], [11], tumor, nodules or 
microcalcifications segmentation [12], [13] and many others tasks. 

In this study we proposed a new tool based on CNN methods to predict and locate 
malignant nodules and microcalcifications with a different approach. Firstly, we 
proposed to divide the entire images into patches as is done in other imaging 
modalities. This will allow us to analyze large resolution images with more accuracy 
and to more easily detect the location of the lesion in the breast. Secondly, we 
proposed to display the results in a similar way to the BIRADS system [14], a method 
used by radiologists to classify mammographic findings. Displaying the results based 
on a grade system as BIRADS will allow it to be more intuitive to clinicians and they will 
have more information of the possible severity of the lesion. 

Therefore, the main objective of this study is to propose an innovative tool to detect 
and locate malignant nodules and microcalcifications in mammography and judge its 
potential as a screening tool.  
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Materials and Methods 

Study design 

This was an institutional review board approved retrospective study. The data was 
recoded in Onkologikoa, Instituto Oncológico de Kutxa (San Sebastain, Spain) 
between May 2008 and January 2021. All the acquired images were mammograms of 
craniocaudal (CC) or mediolateral oblique (MLO) views stored in DICOM (Digital 
Imaging and Communication in Medicine) format. The images were acquired by 
specialized breast-imaging radiologists during each patient examination with no prior 
guidelines. The protocol for collect the images was approved by the ethics committee 
of Osakidetza (Área Sanitaria de Gipuzkoa) under protocol identifier CUR-DIG-2020-
01, with a waiver of the need to obtain informed consent. 

A total of 3,114 mammograms from 976 patients were collected for this study. Three 
different breast cancer specialists manually diagnosed and delineated nodules and 
microcalcifications in all breasts images. To do this task, the clinicians used an online 
graphical user interface created by Transmural Biotech (Barcelona, Spain) [15]. Finally, 
from these 3,114 images, 1,248 images (666 patients) were breasts with diagnosed 
malignant nodules, 736 (378 patients) were breasts with diagnosed malignant 
microcalcifications and 1,131 (310 patients) were breasts without any suspicious 
findings.  

Methods 

The goal of this study was to create a new tool based on deep learning techniques to 
predict and locate lesions in mammograms. This new approach was called quantusMM 
and it is formed by two independent modules: a detector of malignant nodules and a 
detector of malignant microcalcifications. Both modules first split the image in patches 
to be able to easily work with high resolution images and also to be able to give a 
prediction of the location of the lesion. Before that, the system homogenizes all the 
images by applying a normalization algorithm. 

All the methods described in this section were developed using Matlab R2018a 
(MathWorks, Inc., Natick, MA, USA) programming language, except the “image 
normalization” subsection which was developed using Python 3.9 (Python Software 
Foundation, Wilmington, DE, USA). 

Image normalization 

To normalize the images that will be used in the prediction modules, the system first 
transforms all the DICOM images to “MONOCHROME2” format (Photometric 
Interpretation Attribute). Subsequently, the system applies a contrast enhancement 
with CLAHE algorithm [16] using OpenCV library [17]. The last step is to resize the 
images to 4096 pixels height, keeping the scaling for the width pixels. 

Malignant nodules prediction 

The nodules prediction module first splits all the processed images (breasts both with 
and without lesions) in patches and applies a candidate detection algorithm to discard 
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the parts with less information. The detection algorithm is based on the intensity of the 
pixel values as we know that in mammograms all the nodules have high brightness 
values. Then, all the selected patches (with the corresponding outcome) are used to 
train and test a deep learning algorithm to try to predict malignant nodule lesions 
(Figure 1). 

 
Figure 1.  Outline of the steps that the initial mammography follows until the 

selected patches are used by the network to predict malignant nodules. 

To obtain the patches, each image is swept with a window of 800 per 800 pixels in 
strides of 40 pixels (best values experienced). Then, each patch is assigned with an 
average brightness value considering the brightness values of all its pixels, giving more 
weight to the pixels in the center of the patch. Finally, each image is divided in 9 equal 
parts, and the 3 patches with higher brightness values of each part are selected, as 
long as they have a separation of 250 pixels (best value experienced) between them 
(Figure 1). 

To obtain the outcome of all selected patches we assigned a patch as a “case” if the 
patch contained at least 80% of a malignant nodules lesion (previously assigned by the 
clinicians). On the other hand, we assigned a patch as a “control” if the patch contains 
0% of a malignant nodule lesion. Both “controls” and “cases” patches can come from 
breasts without lesions as well as from breasts with diagnosed lesions. 

Finally, the selected patches are divided into training and testing subset. The training 
patches trained the network of the CNN model, and the testing patches tested the 
generated model to observe the performance to classify into malignant parts or control 
parts. The CNN used was a ResNet50 [18], trained during 7 complete passes through 
the dataset (epochs) with batches of 32 samples (batch size). A Softmax loss function 
[19] and Adam optimization algorithm [20] was also applied. The method also used 
data augmentation algorithms to increase the amount of data to train the model, 
generating new patches by translating and rotating the original patches.  

Malignant microcalcification prediction 

In the microcalcifications module all the processed images are split in patches. Then, 
all the patches (with the corresponding outcome) with a minimum value of brightness 
are used to train and test a deep learning algorithm to try to predict malignant 
microcalcification lesions (Figure 2). 
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Figure 2. Outline of the steps that the initial mammography follows until the 

selected patches are used by the network to predict malignant microcalcifications. 

To obtain the patches, each image is swept with a window of 400 per 400 pixels in 
strides of 200 pixels (best values experienced). Then, all the patches with at least one 
pixel with 90% of maximum brightness value (best values experienced) are selected. 

To obtain the outcome of all selected patches we assigned a patch as a “case” if the 
patch contained the whole microcalcification lesion (previously assigned by the 
clinicians), otherwise the patch was considered a “control”. Both “controls” and “cases” 
patches can come from breasts without lesions as well as from breasts with diagnosed 
lesions. 

Finally, the selected patches are divided into training and testing subset, same as in 
the case of nodules. The CNN used was also a ResNet50 [18], trained during 6 
complete passes through the dataset (epochs) with batches of 32 samples (batch size). 
A Softmax loss function [19] and Adam optimization algorithm [20] was also applied. 
The method also used data augmentation algorithms to increase the amount of data to 
train the model, generating new patches by translating and rotating the original 
patches. 

Statistical analysis 

We evaluated the performance of the two proposed modules with the same 
methodology. The selected patches of each module were randomly split 80% for the 
training subset and 20% for testing subset, preserving the prevalence of each class 
type and putting all the patches of the same image and patient in the same set. 

After training the models, each testing subset was used to compute output scores for 
each patch and compared with the clinical outcome to obtain the receiver operator 
characteristic (ROC) curve and compute the area under the curve (AUC) for each 
module. Then, typical statistical metrics (sensitivity, specificity, etc.) were computed in 
different cut-off points, based on BIRADS classification which we will explain in the next 
section. 

We also computed the ROC curve and statistical metrics by image, to observe the 
performance to predict lesions in whole images. To perform this, we assigned a “case” 
image if the image had one malignant lesion and a “control” image if the image did not 
have any lesions. We will do this both for the real outcome and for the patches 
predicted by the models. 
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Online tool 

The proposed tool quantusMM will be integrated into an online platform 
(www.quantusmm.org), making it available to any professional. The clinician could 
upload a mammogram and the platform will return a detailed report with the results 
obtained by the generated models in a few minutes. This report will show the 
probability of having a malignant lesion (nodule and microcalcification) based on 
BIRADS system [14] and also the location of the possible lesion in the breast (Figure 
3). 

 
Figure 3. Example of a report obtained by the platform quantusMM. 

To obtain the probability of lesion based on the BIRADS classification system, we set 4 
different thresholds for the prediction values obtained with the CNN. BIRADS-6 means 
“malignant” and it is obtained for a specificity higher than 99%; BIRADS-5 means “very 
high suspicion of malignancy” and it is obtained for specificity between 95% to 99%; 
BIRADS-4 means “suspicion of malignancy” and it is obtained for a specificity lower 
than 95% and a sensitivity lower than 95%; BIRADS-3 means “probably benign” and it 
is obtained for a sensitivity between 95% and 99%; BIRADS-1 means “benign” and it is 
obtained for a sensitivity higher than 99%.  
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Results 

Malignant nodules prediction 

After the detection algorithm, 90,034 patches (85,690 controls and 4,344 cases) were 
selected to use in the nodules prediction module. Of these, 69,279 were used to train 
the network and the remaining 20,755 to observe the performance to classify into 
malignant or benignant. Figure 4 shows the ROC curve obtained by the proposed deep 
learning algorithm on the testing images, which obtained an AUC of 95.5%. 

 

Figure 4. ROC curve of the nodules prediction module obtained for the patches test set. 

On the other hand, if we compute the results only for whole images and not for 
patches, we would obtain the ROC curve of Figure 4, which obtained an AUC of 
90.4%. Table 1 shows the detailed metric scores at several cut-off points of this ROC 
curve, chosen to later show the correct BIRADS classification. 

 

Figure 5. ROC curve of the nodules prediction module computed for whole images only. The blue 
circles point the different cut-offs depending on the BIRADS classification assigned (Table1). 
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 Accuracy Sensitivity Specificity PPV NPV 

BIRADS-6 68% 37% 99% 99% 62% 

BIRADS-5 80% 65% 95% 92% 73% 

BIRADS-4 73% 95% 51% 65% 91% 

BIRADS-3 61% 99% 23% 56% 95% 

Table 1. Statistical metrics obtained in the previous ROC curve (Figure 5) 
at 4 different cut-off points based on BIRADS classification [14]. 

(PPV = Positive Predictive Ratio; NPV = Negative Predictive Ratio). 

Malignant microcalcification prediction 

After the detection algorithm, 67,846 patches (59,781 controls and 8,065 cases) were 
selected to use in the microcalcifications prediction module. Of these, 49,205 were 
used to train the network and the remaining 18,641 to observe the performance to 
classify into malignant or benignant. Figure 6 shows the ROC curve obtained by the 
proposed deep learning algorithm on the testing images, which obtained an AUC of 
99.0%. 

  

Figure 6. ROC curve of the microcalcifications prediction module obtained for the patches test set. 
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On the other hand, if we compute the results only for whole images and not for 
patches, we would obtain the ROC curve of Figure 7, which obtained an AUC of 
90.0%. Table 2 shows the detailed metric scores at several cut-off points of this ROC 
curve, chosen to later show the correct BIRADS classification. 

 

Figure 7. ROC curve of the microcalcifications prediction module computed 
for whole images only. The blue circles point the different cut-offs 

depending on the BIRADS classification assigned (Table2). 

 Accuracy Sensitivity Specificity PPV NPV 

BIRADS-6 77% 42% 99% 99% 73% 

BIRADS-5 84% 66% 95% 89% 81% 

BIRADS-4 68% 95% 52% 56% 94% 

BIRADS-3 40% 99% 3% 39% 89% 

Table 2. Statistical metrics obtained in the previous ROC curve (Figure 7) at 
4 different cut-off points based on BIRADS classification [14]. 

(PPV = Positive Predictive Ratio; NPV = Negative Predictive Ratio).  
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Discussion 

We built a new tool called quantusMM based on state-of-the-art deep learning 
techniques to automatically predict malignant nodules and microcalcifications in 
mammography and place them in the image. The proposed techniques were evaluated 
on a database of 3,114 images selected for the purpose of this study.  

Results showed that the proposed tool can effectively predict malignant nodules and 
microcalcifications on mammograms. The obtained ROC curves reached an AUC of 
90.4% and 90.0% to predict nodules and microcalcifications in whole images, 
respectively. These results open the door to its potential use as a screening tool on 
patients with breast cancer risk factors. 

The statistical metrics also showed a good performance with the different cut-offs 
points selected on the previous ROC curves. These cut-off points represent the 
different BIRADS classifications which give the platform tool, depending on the 
prediction result of each image. Giving the results not as a binary system (malignant / 
non-malignant) but as a degree system similar to BIRADS, allows to give more 
information to radiologists and could greatly benefit them to support decision making. 

On the other hand, the division of the images in patches allows us to easily work with 
mammograms which are high resolution images. The patches division also allows us to 
predict the lesion location in the breast, even if the lesions are small like the 
microcalcifications. The results obtained in lesion prediction in patches are better than 
those obtained with the whole images. The AUC obtained was 95.5% and 99.0% for 
nodules and microcalcifications, respectively. This would indicate that the precision to 
detect malignant patches is high, and therefore, the subsequent precision to lesion 
location in the whole image will be good. 

This study has strengths and limitations. The main strength is that the collected 
database is a real database acquired from clinical practice, without any specific 
acquisition protocol for this study. This gives robustness to the proposed tool and 
indicates that it could work well with new images from clinical practice. One limitation of 
the study is that the small size of the data test set. It is recommended to confirm these 
results in larger multicenter studies to corroborate the trend of the results. Another 
limitation is that we only used images of healthy breasts or images with nodules or 
microcalcification lesions. Any other lesion has been introduced in the training method, 
which could worsen the results if an image with a different lesion was tested. 

To conclude, the proposed tool based on Deep Learning algorithms shows potential to 
predict and locate malignant nodules and microcalcification lesions in mammography. 
This new approach could help in the first screening of patients and also could greatly 
benefit radiologists to support decision making. A large clinical study is recommended 
to confirm these results. 
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