Supplementary Materials

Appendix I: Figures

Supplementary Figure 1. Study characteristics missingness

Supplementary Figure 2. CIR alongside the highest number of subjects (N). The white numbers in the middle of the CIR plot represent the CIR rounded to the nearest whole number. The numbers at the end of the number of participants plot represent the highest number of participants for that sensing modality.

Appendix II: Search Strategy

Web of Science

Topic = ((re-id* OR reid* OR identi*) AND

(biometric* OR biosensor*) AND

(acceleromet* OR gyroscope OR magnetomet* OR IMU OR "inertial measurement unit" OR gait OR altimet* OR "pulse transit time" OR PTT OR "blood pressure" OR SpO2 OR oximet* OR photoplethysmogra* OR PPG OR O2 OR oxygen OR respiromet* OR VO2* OR "heart rate" OR "heartrate" OR cardiogra* OR electrocardiogra* OR ECG OR EKG OR seismocardiogra* OR ballistocardiogra* OR phonocardiogra* OR electromyogra* OR EMG OR pulse OR "bio-radar*" OR bioradar* OR Doppler OR respiration OR "lung sound" OR "breath sound" OR acoustic* OR electroencephalogra* OR EEG OR "galvanic skin response" OR GSR OR "electrodermal activity" OR EDA OR "eye movement" OR "pupil diameter" OR "pupil size" OR gesture* OR touch OR microphone OR voice OR temperature OR glucose OR "carbon dioxide" OR CO2 OR bioimpedance OR impedance OR bluetooth OR proximity OR "ambient light" OR UV OR "ultra-violet" OR "battery usage" OR battery))

Query Link

Link

Scopus

(TITLE-ABS-KEY (re-id* OR reid* OR identi*) AND TITLE-ABS-KEY (biometric* OR biosensor*) AND TITLE-ABS-KEY (acceleromet* OR gyroscope OR magnetomet* OR imu OR "inertial measurement unit" OR gait OR altimet* OR "pulse transit time" OR ptt OR "blood pressure" OR spo2 OR oximet* OR photoplethysmogra* OR ppg OR o2 OR oxygen OR respiromet* OR vo2* OR "heart rate" OR "heart rate" OR cardiogra* OR electrocardiogra* OR ecg OR ekg OR seismocardiogra* OR ballistocardiogra* OR phonocardiogra* OR electromyogra* OR emg OR pulse OR "bio-radar*" OR bioradar* OR doppler OR respiration OR "lung sound" OR "breath sound" OR acoustic* OR electroencephalogra* OR eeg OR "galvanic skin response" OR gsr OR "electrodermal activity" OR eda OR "eye movement" OR "pupil diameter" OR "pupil size" OR gesture* OR touch OR microphone OR voice OR temperature OR glucose OR "carbon dioxide" OR co2 OR bioimpedance OR bluetooth OR proximity OR "ambient light" OR uv OR "ultra-violet" OR "battery usage" OR battery))

Query Link

Link

PubMed

(biometric identification[MeSH Terms] OR ((biometric* OR biosensor*) AND (re-id* OR reid* OR identi*))) AND (acceleromet* OR gyroscope OR magnetomet* OR IMU OR "inertial measurement unit" OR gait OR altimet* OR "pulse transit time" OR PTT OR "blood pressure" OR SpO2 OR oximet* OR photoplethysmogra* OR PPG OR O2 OR oxygen OR respiromet* OR VO2 OR VO2max OR "heart rate" OR "heartrate" OR cardiogra* OR electrocardiogra* OR ECG OR EKG OR seismocardiogra* OR ballistocardiogra* OR phonocardiogra* OR electromyogra* OR EMG OR pulse OR "bio-radar*" OR bioradar* OR Doppler OR respiration OR "lung sound" OR "breath sound" OR acoustic* OR electroencephalogra* OR EEG OR "galvanic skin response" OR GSR OR "electrodermal activity" OR EDA OR "eye movement" OR "pupil diameter" OR "pupil size" OR gesture* OR touch OR microphone OR voice OR temperature OR glucose OR "carbon dioxide" OR CO2 OR bioimpedance OR impedance OR bluetooth OR proximity OR "ambient light" OR UV OR "ultra-violet" OR "battery usage" OR battery)

Query Link

<u>Link</u>

IEEE Xplore (search abstract)

(re-id OR reid* OR re-identi* OR reidenti* OR identi*) AND (biometric* OR biosensor*) AND (acceleromet* OR gyroscope OR magnetomet* OR IMU OR "inertial measurement unit" OR gait OR altimet* OR "pulse transit time" OR PTT OR "blood pressure" OR SpO2)

Query Link (369 hits)

Link

(re-id OR reid* OR re-identi* OR reidenti* OR identi*) AND (biometric* OR biosensor*) AND (oximet* OR photoplethysmogra* OR PPG OR O2 OR oxygen OR respiromet* OR VO2 OR VO2max OR "heart rate" OR "heartrate")

Query Link (80 hits)

Link

(re-id OR reid* OR re-identi* OR reidenti* OR identi*) AND (biometric* OR biosensor*) AND (cardiogra* OR electrocardiogra* OR ECG OR EKG OR seismocardiogra*)

Query Link (247 hits)

<u>Link</u>

(re-id OR reid* OR re-identi* OR reidenti* OR identi*) AND (biometric* OR biosensor*) AND (ballistocardiogra* OR phonocardiogra* OR electromyogra* OR EMG OR pulse)

Query Link (58 hits) Link

(re-id OR reid* OR re-identi* OR reidenti* OR identi*) AND
(biometric* OR biosensor*) AND
("bio-radar*" OR bioradar* OR Doppler OR respiration OR "lung sound" OR "breath sound" OR acoustic* OR electroencephalogra* OR EEG OR "galvanic skin response" OR
GSR OR "electrodermal activity" OR EDA OR "eye movement" OR "pupil diameter" OR "pupil size")

Query Link (268 hits) Link

(re-id OR reid* OR re-identi* OR reidenti* OR identi*) AND (biometric* OR biosensor*) AND (gesture* OR touch OR microphone OR voice OR temperature OR glucose OR "carbon dioxide" OR CO2 OR bioimpedance OR impedance OR bluetooth OR proximity OR "ambient light" OR UV OR "ultra-violet" OR "battery usage" OR battery)

Query Link (568 hits)

<u>Link</u>

ACM (search The ACM Full-Text collection)

[[Abstract: re-id*] OR [Abstract: reid*] OR [Abstract: identi*]] AND [[Abstract: biometric*] OR [Abstract: biosensor*]] AND [[All: acceleromet*] OR [All: gyroscope] OR [All: magnetomet*] OR [All: imu] OR [All: "inertial measurement unit"] OR [All: gait] OR [All: altimet*] OR [All: "pulse transit time"] OR [All: put] OR [All: "blood pressure"] OR [All: spo2] OR [All: oximet*] OR [All: photoplethysmogra*] OR [All: ppg] OR [All: o2] OR [All: oxygen] OR [All: respiromet*] OR [All: vo2*] OR [All: "heart rate"] OR [All: "heartrate"] OR [All: cardiogra*] OR [All: electrocardiogra*] OR [All: ecg] OR [All: ekg] OR [All: seismocardiogra*] OR [All: ballistocardiogra*] OR [All: phonocardiogra*] OR [All: electromyogra*] OR [All: emg] OR [All: pulse] OR [All: "bio-radar*"] OR [All: bioradar*] OR [All: doppler] OR [All: respiration] OR [All: "lung sound"] OR [All: "breath sound"] OR [All: acoustic*] OR [All: electrocarephalogra*] OR [All: eeg] OR [All: "galvanic skin response"] OR [All: gsr] OR [All: voice] OR [All: eda] OR [All: "eye movement"] OR [All: "pupil diameter"] OR [All: "pupil size"] OR [All: gesture*] OR [All: touch] OR [All: microphone] OR [All: voice] OR [All: temperature] OR [All: glucose] OR [All: "carbon dioxide"] OR [All: co2] OR [All: bioimpedance] OR [All: impedance] OR [All: bluetooth] OR [All: proximity] OR [All: "ambient light"] OR [All: uv] OR [All: "ultra-violet"] OR [All: "battery usage"] OR [All: battery]]

Query Link (411 hits)

Link

Appendix III: Data Extraction Characteristics

	Extracted Study Characteristic
1	study title
2	year the study was published
3	country in which the study was conducted
4	number of participants
5	participants' health status
6	participants' age
7	participants' sex
8	sensing modality (sensor/trait)
9	wearable sensor used
10	sensor resolution
11	the number of sessions (we define a session as a unique data collection period with no resting intervals or resting intervals of less than 15-minute each. Session intervals should only exist for studies with multiple sessions.)
12	session interval (This is the time between sessions.)

13	sensor positioning
14	experimental settings
15	minimum amount of data needed (This is the minimum amount of data sufficient to re-identify an individual)
16	the time needed for re-identification (this is the time the algorithm takes to process the individual's data to re-identify them)
17	classifier (this is the classifier used for identifying individuals)
18	performance metrics (In biometrics systems performance is a measure of how good the system is at identifying a person. The primary metrics often include Correct Identification Rate (CIR) and Equal Error Rate (EER). EER is a point on a biometric system's Receiver Operating Characteristic (ROC) curve where the False Acceptance Rate (FAR) and the False Rejection Rate (FRR) cross. The lower the EER of a system, the better the performance.)
*	the stimulus used (for EEG, we extracted information on the kind of stimulus used for the study)
*	number of channels (for EEG, EMG and PPG we extracted information on the number of channels the device(s) used had)
*	number of leads (for ECG we extracted information on the number of leads for the captured ECG)

 Table 1. Extracted study characteristics for each included study

Appendix IV: Tables of Characteristics

ECG

	Leads	Ν	Sessions	Session Interval	Device	Sensor Position	Resolution	Settings	Amount of data needed	Classifier	Performance
Ye et al. ¹	1	5	multiple over 6 months	-	VitalJacket®	chest	200 Hz	free-living	1 heartbeat	SVM	1 heartbeat CIR: $\approx 62.5 - 98\%$ 6 heartbeats CIR: $\approx 69 - 100\%$
Chandrashekhar et al. ²	1	5	1	-	Apple Watch Series 5	wrist + finger	514 Hz	lab	-	kNN	CIR: 99·2% EER: 0·8%
Randazzo et al. ³	1	6	multiple	-	custom ECG Watch	between wrists	1 kHz	lab	-	MLP	CIR: 99%
Zhang and Zhou ⁴	1	10 (arm) 14(ear)	2	-	custom single-arm ECG + ear-ECG	upper left arm + behind ear	500 Hz	lab	-	CNN	arm CIR: 98.8% ear CIR: 91.1%
Zhang et al. ⁵	1	10	1	-	custom single-arm ECG	upper left arm	500 Hz	lab	-	CNN	CIR: 98·4%
Lehmann and Buschek ⁶	1	20	2 (lab) 6 (free-living)	-	EcgMove3 & EcgMove4	chest	1024 Hz	lab + free- living	3 heartbeats	RF	ROC AUC: 84·3% EER: 21·91%

Derawi ⁷	-	30	1+	-	custom ECG	chest	1bpm	lab	1 minute	RBFNetwork	CIR: 97.5% EER: 0.98%
Pourbabae et al. ⁸	-	33	multiple over 6 weeks	-	OMsignal apparel	torso	-	free-living	10 heartbeats	CNN	CIR: 96%

1⁺ though the paper records the sessions as 5, data was taken continuously for 5 minutes and we consider this to be 1 session **Table 1.** Main study characteristics for included studies focusing on ECG

EEG

	Stimulus	Channels	Ν	Sessions	Session Interval	Device	Sensor Position	Resolution	Settings	Amount of data needed	Classifier	Performance
Ericsen et al.9	visual	14	4	1	-	Emotiv EPOC	head	128 Hz	lab	-	-	CIR: 87·5% FAR: 12·5% FRR: 12·5%
Thomas et al. ¹⁰	REO + REC	14	6	multiple	-	Emotiv EPOC	head	128 Hz	lab	20 s	-	CIR: 88·33%
Yap et al. ¹¹	REC, visual	14	8	2 (morning + afternoon sessions)	-	Emotiv EPOC+	head	256 Hz	lab	-	SVM	REC CIR: 96.42% visual CIR: 99.06%
Bashar et al. ¹²	REC	5	9	multiple over 6 weeks	-	Emotiv Insight	head	128 Hz	lab	-	SVM	CIR: 94·44%
Jayarathne et al. ¹³	REC, visual, mental task	14	12	1	-	Emotiv EPOC	head	128 Hz	lab	-	kNN, QDA, SVM	CIR: 100%
Dan et al. ¹⁴	REC	1	13	3	at least 1 day	Neurosky MindSet	head	512 Hz	lab	-	SVM	CIR: 87·2%
Rosli et al. ¹⁵	visual	14	13	1	-	Emotiv EPOC	head	128 Hz	lab	-	kNN	CIR: 92·8%
Nakamura et al. ¹⁶	REC	2	15	2	5-15 days	custom in- ear EEG	in-ear	1200 Hz	lab	60 s	cosine distance	CIR: 95·7%
Dai et al. ¹⁷	mental task	1	16	1	-	Neurosky Mindwave	head	512 Hz	lab	10 s	SVM	CIR: 93·73%
Moctezuma and Molinas ¹⁸	imagined speech	14	20	1	-	Emotiv EPOC	head	128 Hz	lab	-	SVM	CIR: 92%
Sooriyaarachchi et al. ¹⁹	music with eyes closed	4	20	multiple over 2 months	>1 week	Muse Headset	head	220 Hz	lab	-	RF	listening to favorite song CIR: 99.46% listening to same song CIR: 98.39%
Koike-Akino et al. ²⁰	mental task	14	25	1-2	15-60 min	Emotiv Epoc	head	128 Hz	naturalistic	12.8 s	LDA	CIR: 96.7%

Abo-Zahhad et al. ²¹	eye blinks	1	25	1-2	> 2 weeks	Neurosky Mindwave	head	512 Hz	lab	-	LDA	CIR: 97·3 % EER: 3·7%
Gopal and Shukla ²²	visual + free- text typing	14	26	2	4 - 5 days	Emotiv EPOC	head	128 Hz	lab	-	deep learning	EER: 0·14%
Moctezuma et al. ²³	imagined speech	14	27	1	-	Emotiv EPOC	head	128 Hz	lab	-	RF	CIR: 98%
Zhang et al. ²⁴	REO	1	46	1	-	Neurosky Mindwave	head	512 Hz	lab	2 s	Ensemble Classifier	CIR: 95·48%
Kaur et al. ²⁵	music with eyes closed	14	60	1	-	Emotiv EPOC	head	128 Hz	lab	-	НММ	CIR: 97·5%

Table 2. Main study characteristics for included studies focusing on EEG

EMG

	Channels	Ν	Sessions	Session Interval	Device	Sensor Position	Resolution	Settings	Amount of data needed	Classifier	Performance
Lu et al. ²⁶	8	21	1	-	MYO armband	upper forearm	200 Hz	lab	-	CNN	CIR: 99-20%
Lu et al. ²⁷	8	21	1	-	MYO armband	upper forearm	200 Hz	lab	-	ExtraTrees Classifier	CIR: 99·21%
Raurale et al. ²⁸	8	65	multiple	-	MYO armband	upper forearm	200 Hz	lab	-	deep learning	CIR: 92·08% EER: 16·42%

Table 3. Main study characteristics for included studies focusing on EMG

PPG

	N	Sessions	Session Interval	Device	Sensor Position	Resolution	Settings	Amount of data needed	Classifier	Performance
Cao et al. ²⁹	7	6	10 days	custom PPG wristband	wrist	400 Hz	lab	4 heartbeats	RF	F1 score: 97·2%
Jindal et al. ³⁰	11	1	-	wrist-worn device	wrist	125 Hz	lab	-	RBM + DBN	CIR: 96·1%
Everson et al. ³¹	12	1	-	wrist-worn device	wrist	125 Hz	lab	-	CNN+LSTM	CIR: 96% Precision: 89% Recall: 84%
Zhao et al. ³²	20	1	-	custom wearable	wrist	300 Hz	lab	-	Gradient Boosting Tree	CIR: >90%

Table 4. Main study characteristics for included studies focusing on PPG

D	1	٦	1	٦
Р	C	2	C	J

	Ν	Sessions	Session Interval	Device	Sensor Position	Resolution	Settings	Amount of data needed	Classifier	Performance
Khan et al. ³³	30	multiple in 4 months	-	BSL stethoscope SS30L*	chest near pulmonary valve	-	lab	<=10 s	SVM	CIR: 95·4%
Zhao and Shen ³⁴	30	3	-	HL200 electronic stethoscope*	chest near pulmonary valve	2000 Hz	lab	8 s	GMM	CIR: 100%
Cheng et al. ³⁵	40	2	≈l hr	Ω shoulder-belt wireless heart sound sensor	chest supported by shoulder belt	11025 Hz	lab	1 heartbeat	Euclidean Distance and the close principle	CIR: 97·5%
Fahad et al. ³⁶	50	2	<24 hrs	ThinkLabs Rhythm digital electronic stethoscope*	chest near pulmonary valve	11025 Hz	lab	-	Ensemble of Bagged Decision Trees	CIR: 86·7%
F. Beritelli ³⁷	70	2	2-35 days	ThinkLabs Rhythm DS32A electronic stethoscope*	chest near pulmonary valve	11025 Hz	lab	6 s	linear separability curves	EER: 9%
Abo-Zahhad et al. ³⁸	206	2	<24 hrs	ThinkLabs Rhythm digital electronic stethoscope*	chest near pulmonary valve	11025 Hz	lab	1 s	LDA and Bayes Decision Rule	CIR: 91.05% EER: 3.2%

 Table 5. Main study characteristics for included studies focusing on PCG

Jait												
	Sensor(s)	Ν	Sessions	Session Interval	Device	Sensor Position	Resolution	Settings	Amount of data needed	Classifier	Performance	
Kim et al. ³⁹	acc + gyro	8	1	-	inertial sensor (EBIMU24gv3)	shoe	100 Hz	lab	-	RF	CIR: 97-9% EER: 2·4%	
Jeon et al. ⁴⁰	acc + gyro	8	1	-	prototype IMU earring	behind ear	20 Hz	lab	5 step cycles	CNN (Alexnet)	CIR: 100%	
Cola et al. ⁴¹	acceleration	15	1	-	Shimmer 3	wrist	50 Hz	lab	-	-	AUC: 99.6% EER: 2.9%	
Retsinas et al. ⁴²	acc + gyro	20	20+ days	2 hr charging	Samsung Gear S3 Frontier smartwatch	wrist	20 Hz	free-living	-	DNN	We Thank	
Thank I /Tao et al. ⁴³	acc + gyro	22	1	-	custom inertial sensor	in-shoe	20 Hz	controlled free-living	-	PNN	CIR 87·5%	
Moon et al. ⁴⁴	acc + gyro + pressure	30	1	-	Footlogger insole	shoe insole	100 Hz	lab	-	CNN + RNN	acc CIR: 97·98% gyro CIR: 98·24% pressure CIR: 98·85%	
Sudhakar et al.45	acc + gyro	30	2	-	MetaWear C Board	wrist	100 Hz	lab	10 s	SWV-SVM	CIR: 100%	
Ferlini et al. ⁴⁶	in-ear microphones	31	8	-	MINISO Marvel earphones	in-ear	48 kHz	lab	-	SVM	BAC: 97·26% FAR: 3·23% FRR: 2·25%	

Musale et al. ⁴⁷	acc + gyro	51	1	-	Motorola 360 Sport 2nd Gen smartwatch	wrist	100 Hz	lab	-	RF	CIR: 91·8% EER: 8·2%
Baek et al. ⁴⁸	acc + gyro	51	1	-	Motorola 360 Sport 2nd Gen smartwatch	wrist	100 Hz	lab	1 walk cycle	DNN	EER: 1·8%
Johnston and Weiss ⁴⁹	accelerometer	59	1	-	LG G Watch	wrist	20 Hz	lab	10 s	MLP	CIR: 98% EER: 2%
Johnston and Weiss ⁴⁹	gyroscope	59	1	-	LG G Watch	wrist	20 Hz	lab	10 s	MLP	CIR: 94·6% EER: 6·3%
Al-Naffakh et al. ⁵⁰	acc + gyro	60	multiple	3 weeks	Microsoft Band	wrist	32 Hz	lab	-	MLP	EER: 0.05%

Table 6. Main study characteristics for included studies focusing on gait

IMU Sensors

	Trait	Ν	Sessions	Session Interval	Device	Sensor Position	Resolution	Settings	Amount of data needed	Classifier	Performance
Acar et al. ⁵¹	keystroke dynamics (acc + gyro)	34	2	-	Android Wear smartwatch	wrist	100 Hz	lab	30 s	MLP	CIR: 99·2% EER: 1%
Rahman et al. ⁵²	keystroke dynamics (acc + gyro)	49	1	-	LG G Watch	wrist	20 Hz	lab	10 s	MLP	CIR: 87·2% FAR: 0·2%
Griswold- Steiner et al. ⁵³	handwriting (acc)	53	2	>24 hrs	LG Urbane 2 smartwatch	wrist	100 Hz	lab	-	CNN + RNN	EER: 5·51%
Buriro et al. ⁵⁴	gestures (acc + gyro)	11	3	1 day	Motorola Moto 360 smartwatch	wrist	50 Hz	lab	-	MLP	CIR: 80·52% FAR: 21·65%
Weiss et al. ⁵⁵	brushing teeth (acc + gyro)	51	1	-	LG G Watch	wrist	20 Hz	lab	50 s	RF	CIR: 96·1% EER: 14·4%
Weiss et al.55	eating pasta (acc + gyro)	51	1	-	LG G Watch	wrist	20 Hz	lab	50 s	RF	CIR: 84·0% EER: 18·5%
Retsinas et al. ⁴²	sleeping (acc + gyro + hrm)	20	20+ days	2 hr charging	Samsung Gear S3 Frontier smartwatch	wrist	20 Hz	free-living	-	DNN	acc CIR: 57.67% gyro CIR: 67.97% hrm CIR: 71.09%
Saleheen et al. ⁵⁶	accelerometer	353	70 days at least 8 hrs/day	-	unspecified wrist-worn wearables	wrist	25 Hz	free-living	-	CNN	Re-ID-Risk: 96%
Lee et al. ⁵⁷	vibration (acc + gyro)	20	2	7 days	Apple Watch Series 3	wrist	100 Hz	lab	-	SVM	EER: 1·37%

Table 7. Main study characteristics for included studies focusing on IMUs

	Trait	Ν	Sessions	Session Interval	Device	Sensor Position	Resolution	Settings	Amount of data needed	Classifier	Performance
Jo et al. ⁵⁸	skin spectroscopy	73	1	-	Multispectral Skin Photomatrix Device	wrist	-	lab	-	LDA	FAR: 0·29% FRR: 3·54%
Maiorana & Massaroni ⁵⁹	seismocardiogram	10	1	-	5 MEMS measurement units	chest	-	lab	5 s	CNN	CIR: 99·9%
Hsu et al. ⁶⁰	seismocardiogram	20	1	-	Biopac MP36*	chest	5 kHz	lab	1 s	CNN (ResNet-50)	CIR: 100% EER: 0%
Takeda et al. ⁶¹	pressure	10	1	-	Octsens 8-channel wearable sensor	below feet	100 Hz	lab	8 steps	Euclidean distance	FAR: 0.02% FRR: 0.83%
Chauhan et al. ⁶²	breathing sounds (microphone)	10	3 in 7 days	>=3 days	iPhone 6 [*] and Nexus 6P [*]	in hand	8 kHz	lab	1 breath	GMM	CIR: >94%
Chauhan et al. ⁶³	breathing sounds (microphone)	10	3 in 7 days	>=3 days	iPhone 6 [*] and Nexus 6P [*]	in hand	8 kHz	lab	1 breath	LSTM	F-score: 80-94%
Raji et al. ⁶⁴	breathing patterns	10	1	-	custom smart chestband	chest	-	lab	1 minute	MLP	CIR: 98%
Gao et al. ⁶⁵	ear canal echo (in-ear microphone)	20	1	-	custom in-ear headphones with microphone	in-ear	44,100 Hz	lab	3 s	SVM	BAC: 97·52%
Lei et al. ⁶⁶	ear canal echo (in-ear microphone)	50	1	-	custom in-ear headphones with microphone	in-ear	-	lab	-	CNN (ResNet-18)	FAR: 5% FRR: 3·2%
Noh et al. ⁶⁷	bioimpedance	33	5	1 week	custom device	left wrist	-	lab	-	CNN	upper limb CIR: 95·70% upper limb EER: 0·98%
Noh et al. ⁶⁷	bioimpedance	33	5	1 week	custom device	left wrist	-	lab	-	CNN	finger CIR: 77.62% finger EER: 5.05%
Schneegass et al. ⁶⁸	bone conduction audio	10	1	-	Google Glass	head via eyeglass	-	lab	23 s	1NN	CIR: 97% EER: 6·9%
Piciucco et al. ⁶⁹	EDA	17	2	7 days	Empatica E4	wrist	4 Hz	free-living	10 s	CNN (MobileNet v2)	10 s CIR: 94·31% 20 s CIR: 94·91%
Piciucco et al. ⁶⁹	BVP	17	2	7 days	Empatica E4	wrist	64 Hz	free-living	10 s	CNN (MobileNet v2)	10 s CIR: 91.46% 20 s CIR: 95.12% 30 s CIR: 96.23%
Ekiz et al. ⁷⁰	HRV	8	1	-	Empatica E4	wrist	64 Hz	controlled free-living	2 minutes	RF	EER: 6·77%

Ekiz et al. ⁷⁰	HRV	3	1	-	Samsung Gear S	wrist	100 Hz	controlled free-living	2 minutes	RF	EER: 13·28%
Ekiz et al. ⁷⁰	HRV	17	1	-	Samsung Gear S2	wrist	100 Hz	controlled free-living	2 minutes	RF	CIR 98·48% EER 3·96%

Table 8. Main study characteristics for included studies focusing on miscellaneous sensors

Step count

	Trait (s)	Ν	Sessions	Session Interval	Device	Sensor Position	Resolution	Settings	Amount of data needed	Classifier	Performance
Vhanduri and Poellabauer ⁷¹	step counts, heart rate, calorie burn and MET	400	multiple over 17 months	-	Fitbit Charge HR	wrist	-	free-living	5 minutes	SVM	sedentary CIR: 93% non-sedentary CIR: 90%
Vhanduri and Poellabauer ⁷²	step counts, heart rate, calorie burn and MET	421	multiple over 2 years	-	Fitbit Charge HR	wrist	-	free-living	5 minutes	SVM	CIR: 92·97%

Table 9. Main study characteristics for included studies focusing on step count

Abbreviations

N	number of subjects	К	number of sessions
*	study not done on a wearable	1NN	1-Nearest-Neighbor
BAC	Balanced Accuracy	BVP	Blood Volume Pulse
CIR	Correct Identification Rate	CNN	Convolutional Neural Network
DBN	Deep Belief Network	DNN	Deep Neural Network
EDA	electrodermal activity	EER	Equal Error Rate
FAR	False Acceptance Rate	FRR	False Rejection Rate
GMM	Gaussian Mixture Model	HMM	Hidden Markov Model
HRV	heart rate variability	IMU	inertial measurement unit
kNN	k-nearest neighbors	LDA	Linear Discriminant Analysis
LSTM	Long Short-Term Memory	MET	metabolic equivalent of task
MLP	multilayer perceptron	PNN	Probabilistic Neural Network
REC	resting state with eyes closed	REO	resting state with eyes open
Re-ID Risk	Re-identification Risk	RF	Random Forest
RNN	Recurrent Neural Network	SVM	Support Vector Machine
SWV	Sliding Window Voting	QDA	Quadratic Discriminant Analysis
RBM	Restricted Boltzmann Machines		

Appendix V: Study Quality and Publication Bias Assessment

For study quality assessment, standard clinical study assessment tools were not applicable because none of the included studies were clinical. Instead, we designed a custom assessment tool with four overall quality categories: high, medium, low, and very low.

The following questions were multiple choice with Yes, No, or Somewhat as answers:

- 1. Was the study objective or research question clearly stated?
- 2. Was the study population clearly defined, specified, and representative of the general population?
- 3. Was the data collected in a way that supports the research question or study objective?
- 4. Did the study describe the wearable device used?
- 5. Did the study describe the sensor resolution?
- 6. Did the study describe the classifier used?
- 7. Did the study report the amount of data needed for re-identification?
- 8. Were the results valid?
- 9. Were the results well described?

To examine the potential of **publication bias**, we looked at each study's funding source, authors' conflicts of interest, and any other factors that could result in publication bias. We then rated each study into any of the three categories:

- Undetected
- Strongly Suspected
- Very Strongly Suspected

For the **overall study quality**, we classified each study into either of the four quality categories depending on the number of YES votes it received from two of the reviewers resulting in the following:

- High Quality (7-9 YESs)
- Moderate Quality (5-6 YESs)
- Low Quality (3-4 YESs)
- Very Low Quality (0-2 YESs)

If publication bias is undetected, the overall study quality is not affected; however, when it is strongly suspected, the overall study quality degrades by one level, and when it is very strongly suspected, the overall study quality degrades by two levels.

REFERENCES

- Ye C, Kumar BVKV, Coimbra MT. Human identification based on ECG signals from wearable health monitoring devices. In: Proceedings of the 4th International Symposium on Applied Sciences in Biomedical and Communication Technologies - ISABEL '11 [Internet]. Barcelona, Spain: ACM Press; 2011 [cited 2022 May 19]. p. 1– 5. Available from: http://dl.acm.org/citation.cfm?doid=2093698.2093723
- 2. Chandrashekhar V, Singh P, Paralkar M, Tonguz OK. Pulse ID: The Case for Robustness of ECG as a Biometric Identifier. In: 2020 IEEE 30th International Workshop on Machine Learning for Signal Processing (MLSP). 2020. p. 1–6.
- Randazzo V, Cirrincione G, Pasero E. Shallow Neural Network for Biometrics from the ECG-WATCH. In: Intelligent Computing Theories and Application: 16th International Conference, ICIC 2020, Bari, Italy, October 2–5, 2020, Proceedings, Part I [Internet]. Berlin, Heidelberg: Springer-Verlag; 2020 [cited 2022 May 19]. p. 259– 69. Available from: https://doi.org/10.1007/978-3-030-60799-9_22
- 4. Zhang Q, Zhou D. Deep Arm/Ear-ECG Image Learning for Highly Wearable Biometric Human Identification. Ann Biomed Eng. 2018 Jan;46(1):122–34.
- 5. Zhang Q, Zhou D, Zeng X. PulsePrint: Single-arm-ECG biometric human identification using deep learning. In: 2017 IEEE 8th Annual Ubiquitous Computing, Electronics and Mobile Communication Conference (UEMCON). 2017. p. 452–6.
- Lehmann F, Buschek D. Heartbeats in the Wild: A Field Study Exploring ECG Biometrics in Everyday Life. In: Proceedings of the 2020 CHI Conference on Human Factors in Computing Systems [Internet]. New York, NY, USA: Association for Computing Machinery; 2020 [cited 2022 May 19]. p. 1–14. Available from: https://doi.org/10.1145/3313831.3376536
- 7. Derawi M. Wireless Chest-Based ECG Biometrics. In: Park JJ (Jong H, Stojmenovic I, Jeong HY, Yi G, editors. Computer Science and its Applications. Berlin, Heidelberg: Springer; 2015. p. 567–79. (Lecture Notes in Electrical Engineering).
- 8. Bahareh Pourbabaee, Howe-Patterson M, Reiher E, Benard F. Deep Convolutional Neural Network for ECG-based Human Identification. CMBES Proc [Internet]. 2018 May 8 [cited 2022 May 20];41. Available from: https://proceedings.cmbes.ca/index.php/proceedings/article/view/684
- 9. Ericsen, Thomas KP, Vinod AP. Eeg-based biometrie authentication using self-referential visual stimuli. In: 2017 IEEE International Conference on Systems, Man, and Cybernetics (SMC). 2017. p. 3048–53.
- Thomas KP, Vinod AP, Robinson N. Online Biometric Authentication Using Subject-Specific Band Power features of EEG. In: Proceedings of the 2017 International Conference on Cryptography, Security and Privacy - ICCSP '17 [Internet]. Wuhan, China: ACM Press; 2017 [cited 2022 May 19]. p. 136–41. Available from: http://dl.acm.org/citation.cfm?doid=3058060.3058068
- 11. Yap HY, Choo YH, Mohd Yusoh ZI, Khoh WH. Person authentication based on eye-closed and visual stimulation using EEG signals. Brain Inform. 2021 Oct 11;8(1):21.
- 12. Bashar MdK, Chiaki I, Yoshida H. Human identification from brain EEG signals using advanced machine learning method EEG-based biometrics. In: 2016 IEEE EMBS Conference on Biomedical Engineering and Sciences (IECBES). 2016. p. 475–9.
- 13. Jayarathne I, Cohen M, Amarakeerthi S. Person identification from EEG using various machine learning techniques with inter-hemispheric amplitude ratio. Pappalardo F, editor. PLOS ONE. 2020 Sep 11;15(9):e0238872.
- 14. Dan Z, Xifeng Z, Qiangang G. An Identification System Based on Portable EEG Acquisition Equipment. In: 2013 Third International Conference on Intelligent System Design and Engineering Applications. 2013. p. 281–4.
- 15. The Wavelet packet decomposition features applied in EEG based authentication system ProQuest [Internet]. [cited 2022 May 19]. Available from: https://www.proquest.com/openview/935fd57876b78284c811643a195e4403/1?pq-origsite=gscholar&cbl=4998668
- 16. Nakamura T, Goverdovsky V, Mandic DP. In-Ear EEG Biometrics for Feasible and Readily Collectable Real-World Person Authentication. IEEE Trans Inf Forensics Secur. 2018 Mar;13(3):648–61.
- 17. Dai Y, Wang X, Li X, Tan Y. Sparse EEG compressive sensing for web-enabled person identification. Measurement. 2015 Oct 1;74:11–20.
- 18. Moctezuma LA, Molinas M. EEG-based Subjects Identification based on Biometrics of Imagined Speech using EMD [Internet]. arXiv; 2018 [cited 2022 May 19]. Available from: http://arxiv.org/abs/1809.06697
- 19. Sooriyaarachchi J, Seneviratne S, Thilakarathna K, Zomaya AY. MusicID: A Brainwave-based User Authentication System for Internet of Things [Internet]. arXiv; 2020 [cited 2022 May 19]. Available from: http://arxiv.org/abs/2006.01751
- 20. Koike-Akino T, Mahajan R, Marks TK, Wang Y, Watanabe S, Tuzel O, et al. High-accuracy user identification using EEG biometrics. In: 2016 38th Annual International Conference of the IEEE Engineering in Medicine and Biology Society (EMBC). 2016. p. 854–8.
- 21. Abo-Zahhad M, Ahmed SM, Abbas SN. A Novel Biometric Approach for Human Identification and Verification Using Eye Blinking Signal. IEEE Signal Process Lett. 2015 Jul;22(7):876–80.

- 22. Gopal SRK, Shukla D. Concealable Biometric-based Continuous User Authentication System An EEG Induced Deep Learning Model. In: 2021 IEEE International Joint Conference on Biometrics (IJCB). 2021. p. 1–8.
- 23. Moctezuma LA, Torres-García AA, Villaseñor-Pineda L, Carrillo M. Subjects identification using EEG-recorded imagined speech. Expert Syst Appl. 2019 Mar 15;118:201– 8.
- 24. Zhang R, Yan B, Tong L, Shu J, Song X, Zeng Y. Identity Authentication Using Portable Electroencephalography Signals in Resting States. IEEE Access. 2019;7:160671– 82.
- 25. Kaur B, Singh D, Roy PP. A Novel framework of EEG-based user identification by analyzing music-listening behavior. Multimed Tools Appl. 2017 Dec;76(24):25581–602.
- 26. Lu L, Mao J, Wang W, Ding G, Zhang Z. An EMG-Based Personal Identification Method Using Continuous Wavelet Transform and Convolutional Neural Networks. In: 2019 IEEE Biomedical Circuits and Systems Conference (BioCAS). 2019. p. 1–4.
- 27. Lu L, Mao J, Wang W, Ding G, Zhang Z. A Study of Personal Recognition Method Based on EMG Signal. IEEE Trans Biomed Circuits Syst. 2020 Aug;14(4):681–91.
- 28. Raurale SA, McAllister J, Rincón JMD. EMG Biometric Systems Based on Different Wrist-Hand Movements. IEEE Access. 2021;9:12256-66.
- 29. Cao Y, Zhang Q, Li F, Yang S, Wang Y. PPGPass: Nonintrusive and Secure Mobile Two-Factor Authentication via Wearables. In: IEEE INFOCOM 2020 IEEE Conference on Computer Communications. 2020. p. 1917–26.
- 30. Jindal V, Birjandtalab J, Pouyan MB, Nourani M. An adaptive deep learning approach for PPG-based identification. In: 2016 38th Annual International Conference of the IEEE Engineering in Medicine and Biology Society (EMBC). 2016. p. 6401–4.
- 31. Everson L, Biswas D, Panwar M, Rodopoulos D, Acharyya A, Kim CH, et al. BiometricNet: Deep Learning based Biometric Identification using Wrist-Worn PPG. In: 2018 IEEE International Symposium on Circuits and Systems (ISCAS). 2018. p. 1–5.
- 32. Zhao T, Wang Y, Liu J, Chen Y, Cheng J, Yu J. TrueHeart: Continuous Authentication on Wrist-worn Wearables Using PPG-based Biometrics. In: IEEE INFOCOM 2020 IEEE Conference on Computer Communications. 2020. p. 30–9.
- 33. Khan MU, Aziz S, Zainab A, Tanveer H, Iqtidar K, Waseem A. Biometric System using PCG Signal Analysis: A New Method of Person Identification. In: 2020 International Conference on Electrical, Communication, and Computer Engineering (ICECCE). 2020. p. 1–6.
- 34. Zhao Z, Shen Q. A human identification system based on Heart sounds and Gaussian Mixture Models. In: 2011 4th International Conference on Biomedical Engineering and Informatics (BMEI). 2011. p. 597–601.
- 35. Cheng X, Wang P, She C. Biometric Identification Method for Heart Sound Based on Multimodal Multiscale Dispersion Entropy. Entropy. 2020 Feb;22(2):238.
- 36. Fahad I, Apu MAR, Ghosh A, Fattah SA. Phonocardiogram Heartbeat Segmentation and Autoregressive Modeling for Person Identification. In: TENCON 2019 2019 IEEE Region 10 Conference (TENCON). 2019. p. 1942–6.
- 37. Beritelli F. A multiband approach to human identity verification based on PhonoCardioGram signal analysis. In: 2008 Biometrics Symposium. 2008. p. 71–6.
- 38. Biometrics from heart sounds: Evaluation of a new approach based on wavelet packet cepstral features using HSCT-11 database | Elsevier Enhanced Reader [Internet]. [cited 2022 May 15]. Available from:

https://reader.elsevier.com/reader/sd/pii/S0045790616301057?token=D2A7AA1E4156050E1751CFEB1BC178735B73E96F7E7E30F5C783B69E16AEDA594170AF51FC 0CDD2407F6E67DAFA6091F&originRegion=us-east-1&originCreation=20220515052243

- 39. Kim J, Lee KB, Hong SG. Random forest based-biometric identification using smart shoes. In: 2017 Eleventh International Conference on Sensing Technology (ICST). 2017. p. 1–4.
- 40. Jeon S, Yoon HJ, Lee YS, Son SH, Eun Y. Poster Abstract: Biometric Gait Identification for Exercise Reward System using Smart Earring. :2.
- 41. Cola G, Avvenuti M, Musso F, Vecchio A. Gait-based authentication using a wrist-worn device. In: Proceedings of the 13th International Conference on Mobile and Ubiquitous Systems: Computing, Networking and Services [Internet]. Hiroshima Japan: ACM; 2016 [cited 2022 May 15]. p. 208–17. Available from: https://dl.acm.org/doi/10.1145/2994374.2994393
- 42. Retsinas G, Filntisis PP, Efthymiou N, Theodosis E, Zlatintsi A, Maragos P. Person Identification Using Deep Convolutional Neural Networks on Short-Term Signals from Wearable Sensors. In: ICASSP 2020 2020 IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP). 2020. p. 3657–61.
- 43. Tao S, Zhang X, Cai H, Lv Z, Hu C, Xie H. Gait based biometric personal authentication by using MEMS inertial sensors. J Ambient Intell Humaniz Comput. 2018 Oct;9(5):1705–12.
- 44. Moon J, Minaya NH, Le NA, Park HC, Choi SI. Can Ensemble Deep Learning Identify People by Their Gait Using Data Collected from Multi-Modal Sensors in Their Insole? Sensors. 2020 Jan;20(14):4001.
- 45. Sudhakar SRV, Kayastha N, Sha K. ActID: An efficient framework for activity sensor based user identification. Comput Secur. 2021 Sep 1;108:102319.
- 46. Ferlini A, Ma D, Harle R, Mascolo C. EarGate: gait-based user identification with in-ear microphones. In: Proceedings of the 27th Annual International Conference on

Mobile Computing and Networking [Internet]. New Orleans Louisiana: ACM; 2021 [cited 2022 May 15]. p. 337–49. Available from: https://dl.acm.org/doi/10.1145/3447993.3483240

- 47. Musale P, Baek D, Werellagama N, Woo SS, Choi BJ. You Walk, We Authenticate: Lightweight Seamless Authentication Based on Gait in Wearable IoT Systems. IEEE Access. 2019;7:37883–95.
- 48. Baek D, Musale P, Ryoo J. Walk to Show Your Identity: Gait-based Seamless User Authentication Framework Using Deep Neural Network. In: The 5th ACM Workshop on Wearable Systems and Applications - WearSys '19 [Internet]. Seoul, Republic of Korea: ACM Press; 2019 [cited 2022 May 15]. p. 53–8. Available from: http://dl.acm.org/citation.cfm?doid=3325424.3329666
- 49. Johnston AH, Weiss GM. Smartwatch-based biometric gait recognition. In: 2015 IEEE 7th International Conference on Biometrics Theory, Applications and Systems (BTAS). 2015. p. 1–6.
- 50. Al-Naffakh N, Clarke N, Li F. Continuous User Authentication Using Smartwatch Motion Sensor Data. In: Gal-Oz N, Lewis PR, editors. Trust Management XII. Cham: Springer International Publishing; 2018. p. 15–28. (IFIP Advances in Information and Communication Technology).
- 51. Acar A, Aksu H, Uluagac AS, Akkaya K. A Usable and Robust Continuous Authentication Framework Using Wearables. IEEE Trans Mob Comput. 2021 Jun;20(6):2140– 53.
- 52. Rahman KA, Alam N, Musarrat J, Madarapu A, Hossain MS. Smartwatch Dynamics: A Novel Modality and Solution to Attacks on Cyber-behavioral Biometrics for Continuous Verification? In: 2020 International Symposium on Networks, Computers and Communications (ISNCC). 2020. p. 1–5.
- 53. Griswold-Steiner I, Matovu R, Serwadda A. Wearables-Driven Freeform Handwriting Authentication. IEEE Trans Biom Behav Identity Sci. 2019 Jul;1(3):152–64.
- 54. Buriro A, Van Acker R, Crispo B, Mahboob A. AirSign: A Gesture-Based Smartwatch User Authentication. In: 2018 International Carnahan Conference on Security Technology (ICCST). 2018. p. 1–5.
- 55. Weiss GM, Yoneda K, Hayajneh T. Smartphone and Smartwatch-Based Biometrics Using Activities of Daily Living. IEEE Access. 2019;7:133190–202.
- 56. Saleheen N, Ullah MA, Chakraborty S, Ones DS, Srivastava M, Kumar S. WristPrint: Characterizing User Re-identification Risks from Wrist-worn Accelerometry Data. In: Proceedings of the 2021 ACM SIGSAC Conference on Computer and Communications Security [Internet]. Virtual Event Republic of Korea: ACM; 2021 [cited 2022 Apr 20]. p. 2807–23. Available from: https://dl.acm.org/doi/10.1145/3460120.3484799
- 57. Lee S, Choi W, Lee DH. Usable User Authentication on a Smartwatch using Vibration. In: Proceedings of the 2021 ACM SIGSAC Conference on Computer and Communications Security [Internet]. New York, NY, USA: Association for Computing Machinery; 2021 [cited 2022 May 14]. p. 304–19. (CCS '21). Available from: https://doi.org/10.1145/3460120.3484553
- 58. Jo YC, Kim HN, Hong HK, Choi YS, Jung SW, Kang JH, et al. Feasibility of a wearable band type biometrie devices using skin spectroscopy. In: 2017 IEEE International Conference on Systems, Man, and Cybernetics (SMC). 2017. p. 1903–7.
- 59. Maiorana E, Massaroni C. Biometric Recognition based on Heart-Induced Chest Vibrations. In: 2021 IEEE International Workshop on Biometrics and Forensics (IWBF). 2021. p. 1–6.
- 60. Hsu PY, Hsu PH, Liu HL. Exploring Seismocardiogram Biometrics with Wavelet Transform. In: 2020 25th International Conference on Pattern Recognition (ICPR). 2021. p. 4450–7.
- 61. Takeda T, Kuramoto K, Kobashi S, Hata Y. Biometrics Personal Identification by Wearable Pressure Sensor. In: 2012 Fifth International Conference on Emerging Trends in Engineering and Technology. 2012. p. 120–3.
- 62. Chauhan J, Hu Y, Seneviratne S, Misra A, Seneviratne A, Lee Y. BreathPrint: Breathing Acoustics-based User Authentication. In: Proceedings of the 15th Annual International Conference on Mobile Systems, Applications, and Services [Internet]. New York, NY, USA: Association for Computing Machinery; 2017 [cited 2022 May 20]. p. 278–91. (MobiSys '17). Available from: https://doi.org/10.1145/3081333.3081355
- 63. Chauhan J, Rajasegaran J, Seneviratne S, Misra A, Seneviratne A, Lee Y. Performance Characterization of Deep Learning Models for Breathing-based Authentication on Resource-Constrained Devices. Proc ACM Interact Mob Wearable Ubiquitous Technol. 2018 Dec 27;2(4):158:1-158:24.
- 64. Raji RK, Adjeisah M, Miao X, Wan A. A novel respiration pattern biometric prediction system based on artificial neural network. Sens Rev. 2020;40(1):8–16.
- 65. Gao Y, Wang W, Phoha VV, Sun W, Jin Z. EarEcho: Using Ear Canal Echo for Wearable Authentication. Proc ACM Interact Mob Wearable Ubiquitous Technol. 2019 Sep 9;3(3):81:1-81:24.
- 66. Lei H, Liu J, Zou Y, Wu K. Smart earpieces that know who you are quietly: poster abstract. In: Proceedings of the 18th Conference on Embedded Networked Sensor Systems [Internet]. New York, NY, USA: Association for Computing Machinery; 2020 [cited 2022 May 20]. p. 721–2. Available from: https://doi.org/10.1145/3384419.3431254
- 67. Noh HW, Sim JY, Ahn CG, Ku Y. Electrical Impedance of Upper Limb Enables Robust Wearable Identity Recognition against Variation in Finger Placement and

Environmental Factors. Biosensors. 2021 Oct;11(10):398.

- 68. Schneegass S, Oualil Y, Bulling A. SkullConduct: Biometric User Identification on Eyewear Computers Using Bone Conduction Through the Skull. In: Proceedings of the 2016 CHI Conference on Human Factors in Computing Systems [Internet]. New York, NY, USA: Association for Computing Machinery; 2016 [cited 2022 May 20]. p. 1379–84. (CHI '16). Available from: https://doi.org/10.1145/2858036.2858152
- 69. Biometric recognition using wearable devices in real-life settings | Elsevier Enhanced Reader [Internet]. [cited 2022 May 20]. Available from: https://reader.elsevier.com/reader/sd/pii/S0167865521001070?token=31A9A540ED7CE38DCC52112B654DD6F5E99F92E2FD11F60A49C55B6AA8F82B9DFEE57C4C5 21ACDCCC9187B2E5E18A446&originRegion=us-east-1&originCreation=20220520180511
- 70. Ekiz D, Can YS, Dardagan YC, Ersoy C. Can a Smartband be Used for Continuous Implicit Authentication in Real Life. IEEE Access. 2020;8:59402–11.
- 71. Vhaduri S, Poellabauer C. Multi-Modal Biometric-Based Implicit Authentication of Wearable Device Users. IEEE Trans Inf Forensics Secur. 2019 Dec;14(12):3116–25.
- 72. Vhaduri S, Poellabauer C. Wearable device user authentication using physiological and behavioral metrics. In: 2017 IEEE 28th Annual International Symposium on Personal, Indoor, and Mobile Radio Communications (PIMRC). 2017. p. 1–6.