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Abstract 1

Purpose 2

Screening with low-dose computed tomography can reduce lung cancer-related mortality. 3

However, most screen-detected pulmonary abnormalities do not develop into cancer 4

and it remains challenging to identify high-risk nodules among those with indeterminate 5

appearance. We aim to develop and validate prediction models to discriminate between 6

benign and malignant pulmonary lesions based on radiological features. 7

Methods 8

Using four international lung cancer screening studies, we extracted 2,060 radiomic 9

features for each of 16,797 nodules among 6,865 participants. After filtering out 10

redundant and low-quality radiomic features, 642 radiomic and 9 epidemiologic features 11

remained for model development. We used cross-validation and grid search to assess 12

three machine learning models (XGBoost, Random Forest, LASSO) for their ability to 13

accurately predict risk of malignancy for pulmonary nodules. We fit the top-performing 14

ML model in the full training set. We report model performance based on the area under 15

the curve (AUC) and calibration metrics in the held-out test set. 16

Results 17

The ML models that yielded the best predictive performance in cross-validation were 18

XGBoost and LASSO, and among these models, LASSO had superior model calibration, 19

which we considered to be the optimal model. We fit the final LASSO model based 20

on the optimized hyperparameter from cross-validation. Our radiomics model was both 21

well-calibrated and had a test-set AUC of 0.930 (95% CI: 0.901-0.957) and out-performed 22

the established Brock model (AUC=0.868, 95% CI: 0.847-0.888) for nodule assessment. 23
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Conclusion 24

We developed highly-accurate machine learning models based on radiomic and 25

epidemiologic features from four international lung cancer screening studies that may be 26

suitable for assessing suspicious, but indeterminate, screen-detected pulmonary nodules 27

for risk of malignancy. 28
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Introduction 29

Lung cancer is the leading cause of cancer mortality globally1. Only 10-20% lung cancer 30

patients live up to five years after diagnosis2. However, several large randomized 31

screening trials have demonstrated that low-dose computed tomography (CT) screening 32

can significantly reduce lung cancer mortality through early detection3–6. The National 33

Lung Screening Trial (NLST) observed a 20% reduction in lung cancer-related mortality 34

following CT screening4, while the Dutch-Belgian trial (NELSON) observed a reduction in 35

mortality of 24% in men and 33% in women3. 36

Despite the promise of screening, the clinical management of screen-detected pulmonary 37

nodules and the false-positive rate are important determinants for screening program 38

efficacy. Across several studies, the average nodule detection rate was 20%, meanwhile, 39

more than 90% of screen-detected nodules were benign7. Inaccurate assessment 40

of indeterminate nodules may lead to unnecessary diagnostic workup, including 41

diagnostic screens (which confer higher radiation dosing), invasive procedures such as 42

bronchoscopy, biopsy, or surgery, and may lead to overdiagnosis of indolent cancers7. 43

Excess follow-up carries significant healthcare costs, utilizes critical hospital and human 44

resources, and may lead to adverse events and complications, including death, and can 45

cause anxiety and decreased quality of life for the screened participant. 46

Several guidelines have been developed to help inform indeterminate nodule 47

management, however, there remains significant heterogeneity in these recommendations8–22.48

To address these issues, probability models have been developed to help identify high-risk 49

lesions and guide clinical decision-making23–25. These models have traditionally been 50

based on patient characteristics (e.g., age, smoking history, etc.) and clinically-collected 51

nodule morphology and textural features (e.g., size, attenuation, etc.). These features 52

characterize important aspects of the nodule and are routinely collected as part of the 53
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clinical management of pulmonary findings. 54

Nodule probability models based on routinely-collected patient and nodule information 55

have shown good performance, however, there is growing interest in leveraging 56

medical images directly to perform automated quantitative image analysis, enabling 57

the quantification of hundreds or thousands of radiomic features that may capture 58

important information otherwise imperceptible to the human eye. Radiomic features 59

quantify aspects of the 3-dimensional (3D) morphology and grayscale distribution for a 60

region-of-interest26. It is expected that radiomic features, in combination with patient-level 61

information, will be able to accurately discriminate between benign and malignant 62

pulmonary nodules beyond what has been achieved with traditional clinical features. 63

However, it is currently unknown which features will be most important and whether they 64

will generalize well to other screening populations. 65

The goal of the current study is to perform quantitative image analysis and evaluate 66

the predictive performance of high-dimensional radiomic features for pulmonary nodule 67

malignancy assessment, and to develop and validate models using data from several 68

large independent international lung cancer screening studies. 69
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Methods 70

Lung Cancer Screening Studies 71

As part of the Integrative Analysis of Lung Cancer Etiology and Risk (INTEGRAL) 72

program, we used data collected by four independent lung cancer screening studies for 73

this analysis: 1. National Lung Screening Trial (NLST), 2. PanCanadian Early Detection 74

of Lung Cancer (PanCan) Study, 3. International Early Lung Cancer Action Program 75

(IELCAP-Toronto), and 4. Pittsburgh Lung Screening Study (PLuSS). Details of each 76

study have been described previously4, 5, 27–30. We provide brief descriptions of each 77

study in the following sections. Details about the study protocol used by each study are 78

included in the Supplemental Materials. 79

National Lung Screening Trial (NLST) 80

NLST was a large randomized multi-center lung cancer screening study comparing 81

low-dose helical CT to standard chest radiography (CXR) for screening adult heavy 82

smokers4, 5. Eligible participants were age 55 to 74 years, with 30 or more pack-years 83

history of smoking, and former smokers quitting no more than 15 years prior. NLST 84

enrolled 53,456 participants across 33 centers in the United States in 2002. We only use 85

image data from the CT screening arm in the current study. Positive screen-detected 86

findings were considered as any non-calcified nodules (NCN) with a diameter of 4mm or 87

greater. 88

Pan-Canadian Early Detection of Lung Cancer Study (PanCan) 89

PanCan was a multi-center, single-arm prospective lung cancer screening study that 90

included 2,537 participants27. Participants were recruited from eight sites across Canada. 91

Eligible participants included those 50 to 75 years of age, without a self-reported history of 92
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lung cancer, current or former smokers, an estimated 6-year risk of lung cancer of at least 93

2% based on an earlier edition of the PLCOm2012 model31, and an ECOG performance 94

status of 0 or 1. Screening was performed with multi-detector row CT scanners. Each 95

scan was reviewed by a train radiologist and up to 10 lung nodules were identified and 96

recorded. 97

International Early Lung Cancer Action Program (IELCAP-Toronto) 98

IELCAP was an international single-arm multi-centre study evaluating low-dose CT 99

for lung cancer screening of high-risk individuals28, 29. A common study protocol was 100

adopted for screening regimen, however, each site were able to make decisions regarding 101

enrollment criteria. The Toronto location (hereafter referred to as IELCAP-Toronto), was 102

based out of Princess Margaret Cancer Centre and began in 2003. IELCAP-Toronto 103

enrolled 4,782 adults age 50 or older who were ever-smokers with more than 104

10 pack-years history of smoking. Participants were screened at baseline with 105

milt-detector-row CT scanners. Positive findings were considered as any NCN found on 106

a baseline scan. 107

Pittsburgh Lung Screening Study (PLuSS) 108

PLuSS was a lung cancer screening trial that recruited 3,642 eligible participants 109

between January 2002 and April 200530. Eligible participants included those age 50 to 110

79 years, with no personal history of lung cancer, no concurrent participation in other 111

lung screening studies, no chest CT within the preceding year, current or former smoker 112

with 0.5 pack-years history of smoking for at least 25 years, no smoking cessation within 113

10 years of enrollment, and body weight less than 400 pounds. Participants underwent 114

lose-dose chest CT at baseline. Positive findings were considered as any NCN. 115
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Pulmonary Nodule Segmentation 116

We performed supervised, semi-automated segmentation of screen-detected pulmonary 117

nodules using the open-source 3D Slicer software32 and the Chest Imaging Platform 118

extension33, 34. Our radiologist (HAS) located and reviewed each pulmonary lesion. 119

Upon locating the lesion, the radiologist placed a seed-point at the approximate centroid 120

of the lesion; semi-automated segmentation was performed based on the single 121

seed-point, and manual touch-ups were performed at the discretion of the radiologist 122

to fix over- or under-segmentation. All nodules were reviewed using standard lung 123

windows. Segmentations for PanCan were performed by the PanCan investigators 124

using an automated segmentation algorithm based on a commercial software and 125

images and masks were provided without further processing, except those relevant 126

to the feature extraction, detailed in the following section. We also collected detailed 127

nodule information, including: lung and lobe location, suspicion of nodule malignancy, a 128

nodule-specific LungRADS score (based on LungRADS 1.1,8), and ratings for semantic 129

nodule features including: margin, sphericity, subtlety, spiculation, solidity, calcification, 130

structure, and lobulation. Details on the ratings systems for semantic nodule features are 131

described in Supplementary Table 1. 132

Radiomics Feature Extraction 133

We performed radiomic feature extraction for baseline screen-detected pulmonary 134

nodules using PyRadiomics (version 3.0.1)26. Due to heterogeneity in image acquisition 135

settings between and within screening studies, all images and masks were resampled 136

and interpolated to have unit voxel spacing (i.e., isotropy). We used a linear interpolator 137

for images and nearest-neighbours interpolator for masks (to preserve labels). Grayscale 138

intensities were discretized into bins using a bin width of 25 for histogram-based features. 139

Voxel intensities were right-shifted by 1000 units prior to feature extraction to avoid 140
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negative values during feature computations. 141

Feature classes and the number of features per class were: (1) first-order statistics 142

[18 features], (2) shape-based [14 features], (3) gray level coocurrence matrix [24 143

features], (4) gray level run length matrix [16 features], (5) gray level size zone matrix 144

[16 features], (6) neighbouring gray tone difference matrix [5 features], and (7) gray level 145

dependence matrix [14 features]. The list of radiomic features for each class is provided 146

in Supplemental Table 2. We extracted shape and intensity-based features using the 147

original image. We also extracted intensity-based features from images after applying 148

several transformations, including: wavelet, Laplacian of Gaussian (LoG), Square, 149

SquareRoot, Logarithm, Exponential, Gradient, and LocalBinaryPattern3D. In total, we 150

extracted 2,060 radiomic features per nodule. 151

Statistical Analysis 152

Epidemiologic covariates and outcomes 153

Epidemiologic data were harmonized across the four screening studies to establish a 154

common set of patient-level covariates. After harmonization, age, sex, family history 155

of lung cancer among a first-degree relative, history of COPD or emphysema, smoking 156

status, smoking duration, smoking intensity, years since quitting, and body mass index 157

were included. We combined epidemiologic and radiomic features from the four screening 158

studies to form our candidate predictor set. Nodule malignancy status was the outcome 159

of interest and was determined based on the nodule-specific radiological assessment 160

described in the Supplemental Methods. 161

Model Development 162

We used subject-level random sampling to split the data into training (80%) and testing 163

(20%) sets, ensuring all nodules for a specific participant were in the same split. The 164
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training set was further split into five folds using subject-level random sampling to 165

perform cross-validation. We had 2,060 radiomic features to assess for their ability 166

to classify benign and malignant pulmonary nodules. Many radiomic features have 167

correspondences to established clinically-collected (i.e., semantic) nodules features, 168

however, many features have an unknown predictive value. We performed an initial set of 169

filtering steps to remove zero variance (n=78), low quality (n=11), and weakly predictive 170

(FDR-adjusted P-value > 0.05 in univariate models, n=248), and highly-redundant 171

features (pairwise correlation > 0.9, n=1,081), described in detail in the Supplemental 172

Methods. 173

Using the 9 epidemiologic covariates and 647 radiomic features retained after filtering, 174

we performed cross-validation to identify the top-performing ML model. All predictors 175

were normalized prior to model fitting. We assessed the following ML models: penalized 176

logistic regression (LASSO), Random Forest (RF), and Gradient Boosted Trees 177

(XGBoost). We first performed grid-search over a set of hyperparameters chosen using 178

a Latin hypercube space-filling design35. We then performed random grid search over a 179

finer set of hyperparameters for the top-performing model. The optimal hyperparameter(s) 180

were then fit to the full training set and model performance was evaluated in the hold-out 181

test set. A schematic of the analytic approach used in this study is presented in Figure 1. 182

All statistical analysis was performed using Python 3.7.10 and R 4.0.536, 37. 183

Model Performance 184

We evaluated model performance in two complementary ways: (1) area under the 185

receiver operating characteristic curve (AUC) to assess a models ability to assign higher 186

risks to malignant lesions than to benign lesions (i.e., discrimination), and (2) compare 187

model-estimated risks to observed risks (i.e., calibration). For calibration, we compared 188

predicted and observed risks within quantiles of predicted risks, and also assessed the 189

ratio of expected to observed number of cancers and the difference between expected 190
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and observed number of cancers. We report the AUC and calibration metrics with 191

percentile-based bootstrap confidence intervals. We compared our model against an 192

established nodule malignancy model (see Supplementary Materials for details). 193
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Results 194

Basic demographics about the participants and nodules in the four lung cancer screening 195

cohorts are presented in Table 1. Participants were similar in age between the cohorts. 196

There were more men than women in NLST (57% vs. 43%), PanCan (53% vs. 47%), and 197

PLuSS (51% vs. 49%), while IELCAP-Toronto (61% vs. 39%) had more women. The four 198

cohorts had differing proportions of current and former smokers, and smoking histories 199

(i.e., duration, intensity, and years since quitting) varied between studies. All four cohorts 200

generally consisted of heavy current and former smokers. On average, PanCan had more 201

nodules per participant, and smaller nodules, compared to the other studies. 202

We excluded 1,284 nodules from our study due technical issues with feature extraction, 203

2,574 nodules not first-appearing on baseline scans, and another 2,103 nodules due to 204

missing patient-level data for the harmonized set of epidemiologic covariates. In total, we 205

had 16,797 baseline screen-detected nodules among 6,865 participants for our analytic 206

sample. A complete flow chart for nodule inclusion in the analytic sample is presented in 207

Supplemental Figure 1. Distributional measures for the radiomic features based on the 208

original CT image are presented in Supplemental Table 4. 209

We started with 2,060 radiomics features for model development. We removed 78 210

features due to zero-variance and 11 features due to observed numerical instability (i.e., 211

implausible values) for a large number of participants. Next, we fit univariate models for 212

each feature in the training data, and retained features with a FDR-adjusted p-value less 213

than 0.05 (n=248). Lastly, we evaluated all pairwise sets of predictors with correlation 214

in the training set greater than 0.9 (in descending order) and removed the predictor with 215

the larger p-value. We retained 642 radiomic features for model development. More 216

details can be found in the Supplementary Materials and Supplemental Figure 2. The 217

642 radiomics features retained for model development are presented in Supplemental 218
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Table 4. We performed unsupervised clustering in the training data set using the 642 219

radiological features which revealed three distinct clusters of participants with similar 220

radiomics profiles (see Supplemental Figure 3). We compared the three clusters based 221

on their proportions of malignant pulmonary nodules and found statistically significant 222

differences (PExact < 0.05). 223

We fit three different machine learning models (LASSO, XGBoost, Random Forest) 224

using 5-fold cross-validation based on the 642 radiomics features and 9 epidemiologic 225

covariates. We first fit a coarse grid of 50 sets of hyperparameters for each ML model. 226

The results for this first-pass cross-validation are presented in Table 2 and Supplemental 227

Figure 4 and 5. We selected the top performing model (LASSO) based on the 228

combination of discrimination (AUC) and calibration (calibration ratio) and performed a 229

final cross-validation and grid search over a finer grid of hyperparameters. The optimal 230

penalty value for the LASSO, based on CV, was used to fit the final model based on 231

the full training data set, and predictions were made on the held-out test set to evaluate 232

model performance. 233

The top ML submodels that yielded the highest cross-validated AUC were XGBoost 234

(AUC=0.933, 95% CI: 0.923-0.944), LASSO (AUC=0.930, 95% CI: 0.914-0.946), and 235

Random Forest (AUC=0.916, 95% CI: 0.904-0.929). However, calibration was superior 236

for the LASSO model and was chosen as the top model (see Supplemental Figure 6). 237

In total, 142 predictors were retained in the final LASSO model with non-zero coefficients 238

(See Supplemental Figure 7). 239

We compared our model with the established Brock Model. Our radiomics model had 240

better discrimination, with a test-set AUC of 0.93 (95% CI: 0.90-0.96) compared to 241

0.87 (95% CI: 0.85-0.89) for the Brock Model (see Figure 2). Our model demonstrated 242

excellent calibration when comparing observed risks with model-predicted (i.e., expected) 243

risks, within quintiles of predicted risk. Our model had superior calibration compared 244
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to the Brock Model (see Supplemental Table 5 and Supplemental Figure 8). We 245

estimated the observed and expected number of malignant nodules (per 100,000) for the 246

Brock model and our radiomics model. Our model had excellent calibration ratios (Exp / 247

Obs) of 1.02 (95% CI: 0.89-1.18) and calibration differences of 69.39 (95% CI: -399.67, 248

507.94), versus 1.25 (95% CI: 1.15,1.36) and 1172.89 (95% CI: 774.17, 1583.65) for 249

the Brock Model, respectively. We compare clinically-relevant metrics (e.g., sensitivity, 250

specificity, etc.) between our model and the Brock model in Table 3. At nearly every 251

probability threshold, our model has higher sensitivity, specificity, positive predictive value 252

(PPV), negative predictive value (NPV), and accuracy, while identifying fewer lesions as 253

positive (i.e., suspicious), when compared to the Brock model. 254
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Discussion 255

We developed and validated a pulmonary nodule malignancy assessment model based 256

on radiomics and epidemiologic data from four large, international lung cancer screening 257

cohorts using a machine learning approach. We found that the top-performing models 258

were based on gradient boosted trees (XGBoost) and penalized logistic regression 259

(LASSO), while the LASSO model provided the most optimal calibration. The use of 260

quantitative imaging features (i.e., radiomics) showed improved performance compared 261

to an established model based primarily on semantic nodule features. Radiomic features 262

have demonstrated value for their ability to predict nodule malignancy risk and may 263

improve the management of screen-detected pulmonary nodules by providing clinicians 264

with supporting information for clinical decision-making. 265

Historically, the large quantity of medical images acquired during lung cancer 266

screening have been under-utilized for extracting important information to inform 267

nodule management. Traditionally, a modest set of semantic nodule traits are 268

qualitatively assessed by expert radiologists to provide a high-level characterization 269

of nodule morphology. High-throughput quantitative image analysis removes this 270

layer of inter-reader subjectivity, while also collecting many more features that may 271

further enhance our ability to characterize nodule morphology and intranodular textural 272

heterogeneity38. Radiomic features can describe various aspects of the nodule 273

morphology in ways that are imperceptible to the human eye (i.e., subtle intratumoral 274

textural changes)26. The combination of radiomic features with known important 275

patient-level features are expected to improve clinical management of nodules. 276

Previous studies demonstrated that quantitative image analysis can identify important 277

prognostic signatures in head and neck cancer38. The feature extraction presented in38 278

was formalized as a free and open-source software26 and has enabled transparency 279
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and reproducibility for feature extraction, and contributed to the growing interest in 280

quantitative image analysis in many areas of medical imaging, including lung cancer 281

screening. To date, many of the radiomic studies for pulmonary nodule assessment have 282

been performed based on relatively small data sets and with no ground-truth for nodule 283

cancer status. Previous studies have shown that radiomic features can help identify lung 284

cancer subtypes39, 40 and even the presence of therapy-targetable somatic mutations 285

(e.g., EGFR, KRAS)41–45. The use of non-invasive image features is growing in popularity 286

and will help improve lung cancer screening program efficiency. 287

To our knowledge, our radiomics study is the largest study to date to systematically 288

investigate the importance of radiomics for pulmonary nodule assessment. We 289

performed supervised, semi-automated segmentation of pulmonary nodules for three 290

lung cancer screening studies using an open-source tool that is available for anyone to 291

use. Our study was based on 16,797 nodules among 6,865 participants from four lung 292

cancer screening cohorts. We used a systematic approach to develop machine learning 293

prediction model using radiomics features that were consistently predictive across each 294

of these four independent screening cohorts. With increasing usage of computer-aided 295

diagnositc (CAD) software, the segmentation process can be fully automated. The model 296

presented here can be easily implemented without additional processing need for a 297

large-amount of images with the added advantage of minimum inter-reader variability. 298

Our study has several limitations worth highlighting. First, ground-truth nodule-level 299

malignancy status was unavailable for two of the screening studies (NLST, PLuSS). As 300

such, we used a set of rules to assign nodule-level malignancy status for participants with 301

a lung cancer diagnosis. Imperfect assignment will lead to missclassification errors that 302

can bias the results of our study. However, we used a relatively conservative approach 303

based on suspicion of malignancy determined by expert review of nodules by our 304

radiologist, who has extensive experience in lung CT assessment. For this reason, we 305
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believe the potential for missclassification bias is limited. There were feature extraction 306

issues that excluded 5.7% of the candidate nodules. Nearly 80% of these issues were 307

due to very small nodules with segmentation masks containing only a single voxel or 308

were 1-dimensional after resampling and interpolation. These micronodules have a very 309

low prior probability of being malignant and their exclusion are unlikely to bias our results. 310

Lastly, there was numerical instability for a small set of radiomic features when computing 311

on derived images (i.e., after transformations). We minimized potential bias from these 312

unstable features by excluding them for the filters where identifiable problems arose. All 313

radiomic features appeared stable based on the original image. 314

In summary, we developed a nodule assessment model based on quantitative imaging 315

and patient-level features collected from four international lung cancer screening cohorts. 316

We believe this study contributes important insights into the role that high-dimensional 317

radiomic features can play in accurately assessing nodule malignancy risk and that 318

these features generalize well to geo-temporally distinct screening cohorts. At present, 319

there is emerging interest in analyzing medical images using deep learning computer 320

vision approaches, although limited transparency in model development and lack of 321

model interpretability can pose challenges for clinical implementation and widespread 322

adoption46, 47. In the future, our model may help to improve nodule malignancy 323

assessment and provide supplemental information that can help guide decision-making 324

for screen-detected nodule management. 325
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Table 1. Patient-level and nodule-level descriptive statistics for each of the four 
screening cohorts included in this study. Means and standard deviations are reported 
for numeric variables and counts and proportions are reported for categorical variables. 
 Total Participants (N = 6,865) 
 IELCAP-Toronto 

(n = 502) 
NLST 

(n = 3,743) 
PanCan 

(n = 1,785) 
PLuSS 

(n = 835) 

No. lung cancers (%) 12 (2.4%) 336 (9.0%) 40 (2.2%) 51 (6.1%) 

Age (years) 62.8 [7.5] 62.4 [5.3] 63.2 [6.0] 60.5 [7.0] 

Sex     

     Male 194 (38.6%) 2,149 (57.4%) 953 (53.4%) 426 (51.0%) 

     Female 308 (61.4%) 1,594 (42.6%) 832 (46.6%) 309 (49.0%) 

Body mass index (kg/m2) 26.4 [4.4] 27.5 [4.9] 26.6 [4.5] 28.1 [5.3] 

Family history of lung cancer     

     No 388 (77.3%) 2,894 (77.3%) 1,288 (72.2%) 190 (82.6%) 

     Yes 114 (22.7%) 849 (22.7%) 497 (27.8%) 145 (17.4%) 

History of COPD or 
Emphysema     

     No 430 (85.7%) 3,232 (86.3%) 1,496 (83.8%) 740 (88.6%) 

     Yes 72 (14.3%) 511 (13.7%) 289 (16.2%) 95(11.4%) 

Smoking status     

     Current 66 (13.1%) 1,845 (49.3%) 1,133 (63.5%) 580 (69.5%) 

     Former 436 (86.9%) 1,898 (50.7%) 652 (36.5%) 255 (30.5%) 

Years smoked 30.6 [10.7] 40.9 [7.5] 42.6 [8.8] 40.9 [7.9] 

Cigarettes per day 21.3 [9.9] 28.4 [11.4] 24.7 [10.5] 25.9 [9.8] 

Years since cessation 14.5 [10.6] 19.9 [20.3] 2.6 [5.7] 2.0 [3.5] 

 Total Nodules (N = 16,797) 
 IELCAP-Toronto 

(n = 1,062) 
NLST 

(n = 6,108) 
PanCan 

(n = 8,422) 
PLuSS 

(n = 1,205) 

Nodules per participant 3.2 [2.0] 2.4 [1.7] 8.0 [5.2] 2.0 [1.4] 

Major axis length (mm) 9.1 [5.2] 11.0 [8.7] 5.5 [4.5] 12.5 [8.0] 

Least axis length (mm) 5.2 [2.7] 5.8 [3.8] 2.6 [2.4] 6.6 [3.9] 

Mesh Volume (mm3) 446.5 [2,172.8] 872.1 [5,202.0] 168.4 [1,914.6] 1,171.8 [6,489.3] 

Sphericity 0.76 [0.08] 0.73 [0.10] 0.79 [0.08] 0.72 [0.09] 
Abbreviations: COPD, chronic obstructive pulmonary disease; IELCAP, International Early Lung Cancer 
Action Plan; mm, millimeter; NLST, National Lung Screening Trial; No., number; PanCan, PanCanadian 
Early Detection of Lung Cancer Study; PLuSS, Pittsburgh Lung Screening Study. 
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Table 2.  Area under the receiver operating characteristic curve (AUC) based on the K-
fold cross-validation of three different machine learning classification models for nodule 
malignancy prediction based on epidemiologic and radiomic features. We present the 
cross-validated AUC and confidence intervals. 
ML Model Optimal hyperparameters CV-AUC (95% CI) 

XGBoost Num. of trees = 149 
Tree depth = 11 

Minimum node size = 15 
Num. of predictors = 452 
Learning rate = 0.0673 
Loss reduction = 4.315 

0.933 (0.923-0.944) 

LASSO 1 Penalty = 0.00044 0.930 (0.914-0.946) 

Random Forest Num. of trees = 147 
Num. of predictors = 53 
Minimum node size = 26 

0.916 (0.904-0.929) 

Abbreviations: AUC, area under the curve; CI, confidence interval; LASSO, least absolute shrinkage and 
selection operator; ML, machine learning; Num, number; XGBoost, eXtreme Gradient Boosting. 
1 The penalty parameter for the LASSO model was a L1 (i.e., LASSO) penalty. 
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Table 3. Comparison of sensitivity, specificity, positive predictive value, negative predictive value, accuracy, and positive prevalence 
between our radiomics model and the established Brock Model. We provide point estimates and 95% percentile-based bootstrap 
confidence intervals for each statistic. 

Probability 
Threshold Sensitivity (%) Specificity (%) PPV (%) NPV (%) Accuracy (%) 

Positive 
Prevalence (%) 

Radiomics 1       

     ³2% 89.7 (83.8-95.1) 81.6 (80.3-82.9) 13.8 (11.4-16.6) 99.6 (99.4-99.8) 81.9 (80.6-83.2) 20.6 (19.4-22.0) 

     ³5% 82.2 (75.2-89.4) 90.9 (89.9-91.8) 23.0 (19.1-27.4) 99.4 (99.1-99.6) 90.7 (89.6-91.6) 11.4 (10.4-12.5) 

     ³10% 74.8 (66.7-82.6) 94.7 (94.0-95.5) 31.9 (26.4-37.9) 99.1 (98.8-99.5) 94.1 (93.3-94.9) 7.5 (6.6-8.4) 

     ³15% 64.5 (56.1-73.4) 96.7 (96.1-97.3) 39.2 (32.4-47.0) 98.8 (98.4-99.2) 95.7 (95.0-96.3) 5.2 (4.5-6.0) 

     ³20% 61.7 (53.3-70.8) 97.8 (97.2-98.3) 47.5 (39.3-56.2) 98.7 (98.4-99.1) 96.6 (96.0-97.2) 4.1 (3.4-4.8) 

     ³25% 55.1 (45.8-64.6) 98.5 (98.0-98.9) 54.6 (45.2-64.1) 98.5 (98.1-98.9) 97.1 (96.6-97.7) 3.2 (2.6-3.8) 

Brock Model 2       

     ³2% 87.7 (84.7-90.6) 64.5 (63.5-65.5) 10.9 (9.9-12.1) 99.1 (98.8-99.3) 65.6 (64.7-66.6) 38.0 (37.0-39.0) 

     ³5% 80.6 (76.9-84.0) 79.8 (78.9-80.7) 16.6 (15.0-18.3) 98.8 (98.5-99.0) 79.9 (79.0-80.7) 23.0 (22.2-23.9) 

     ³10% 72.3 (68.1-76.5) 88.0 (87.3-88.7) 23.0 (20.6-25.6) 98.5 (98.2-98.7) 87.3 (86.5-88.0) 14.9 (14.1-15.6) 

     ³15% 65.0 (60.6-69.4) 91.6 (91.0-92.2) 27.7 (24.9-30.7) 98.1 (97.8-98.4) 90.3 (89.7-91.0) 11.1 (10.4-11.7) 

     ³20% 58.3 (53.6-63.0) 93.7 (93.2-94.2) 31.5 (28.2-34.9) 97.8 (97.5-98.2) 92.0 (91.5-92.6) 8.8 (8.1-9.3) 

     ³25% 51.7 (47.0-56.3) 94.9 (94.5-95.4) 33.7 (30.0-37.4) 97.5 (97.2-97.9) 92.9 (92.4-93.4) 7.3 (6.7-7.8) 
Abbreviations: NPV, negative predictive value; PPV, positive predictive value. 
Note: Sensitivity is the proportion of malignant nodules correctly identified as malignant. Specificity is the proportion of benign nodules correctly identified as 
benign. PPV is the proportion of positive predictions that are malignant nodules. NPV is the proportion of negative predictions that are benign nodules. Accuracy is 
the total number of correct predictions out of the total number of nodules. Positive prevalence is the proportion of positive predictions divided by the total number of 
predictions. 
1 The radiomics model was evaluated in the 20% hold-out test data not used for model development (N = 3,363). 
2 The Brock Model was evaluated in the entire eligible set of participants from IELCAP-Toronto, NLST, and PLuSS (N = 8,622). 
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Figure 1. Schematic for the analytic framework used in this study. Data were partitioned into training/validation and testing
splits using group-based random sampling to ensure all nodules for a participant were in a single set to avoid data leakage.
Radiomic features were extracted and subject to filtering to exclude low-quality and highly-redundant features. K-fold
cross-validation was performed to identify the optimal machine learning (ML) model and the optimal set of hyperparameters.
The final ML model was fitted to the entire training data set and tested for out-of-sample performance in the hold-out test
data; discrimination and calibration performance metrics are reported.
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Figure 2. Receiver operating characteristic (ROC) curves for our radiomics models and
the established Brock Model. Area under the curve (AUC) and 95% confidence intervals
are reported.
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