Radiomics analysis to predict pulmonary nodule malignancy using machine learning approaches

Matthew T. Warkentin^{1,2} Hamad Al-Sawaihey ¹ Stephen Lam ^{3,4} Geoffrey Liu ^{2,5} Brenda Diergaarde ⁶ Jian-Min Yuan ⁶ David O. Wilson ⁷ Martin C. Tammemägi ⁸ Sukhinder Atkar-Khattra ^{3,4} Benjamin Grant ⁵ Yonathan Brhane ¹ Elham Khodayari-Moez ¹ Kieran R. Campbell ^{1,9,10,11,12,13} Rayjean J. Hung ^{1,2}

Affiliations:

- 1. Prosserman Center for Population Health Research, Lunenfeld-Tanenbaum Research Institute, Sinai Health, Toronto, ON, Canada
- 2. Dalla Lana School of Public Health, University of Toronto, Toronto, ON, Canada
- Department of Respiratory Medicine, Department of Medicine, University of British Columbia, Vancouver, BC, Canada
- 4. British Columbia Cancer Agency, Vancouver, BC, Canada
- 5. Department of Medical Oncology and Hematology, Princess Margaret Cancer Centre, Toronto, ON, Canada

- 6. Department of Human Genetics and UPMC Hillman Cancer Center, University of Pittsburgh Graduate School of Public Health, Pittsburgh, PA, USA
- Division of Pulmonary, Allergy and Critical Care Medicine, Department of Medicine, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA
- 8. Department of Health Sciences, Brock University, St. Catharines, Ontario, Canada
- 9. Department of Molecular Genetics, University of Toronto, Toronto, ON, Canada
- 10. Department of Statistical Sciences, University of Toronto, Toronto, ON, Canada
- 11. Department of Computer Science, University of Toronto, Toronto, ON, Canada
- 12. Ontario Institute of Cancer Research, Toronto, ON, Canada
- 13. Vector Institute, Toronto, ON, Canada

Corresponding Author: Rayjean J. Hung (rayjean.hung@lunenfeld.ca)

Abstract

Purpose

Screening with low-dose computed tomography can reduce lung cancer-related mortality. ³ However, most screen-detected pulmonary abnormalities do not develop into cancer ⁴ and it remains challenging to identify high-risk nodules among those with indeterminate ⁵ appearance. We aim to develop and validate prediction models to discriminate between ⁶ benign and malignant pulmonary lesions based on radiological features. ⁷

1

2

8

17

Methods

Using four international lung cancer screening studies, we extracted 2,060 radiomic 9 features for each of 16,797 nodules among 6,865 participants. After filtering out 10 redundant and low-quality radiomic features, 642 radiomic and 9 epidemiologic features 11 remained for model development. We used cross-validation and grid search to assess 12 three machine learning models (XGBoost, Random Forest, LASSO) for their ability to 13 accurately predict risk of malignancy for pulmonary nodules. We fit the top-performing 14 ML model in the full training set. We report model performance based on the area under 15 the curve (AUC) and calibration metrics in the held-out test set. 16

Results

The ML models that yielded the best predictive performance in cross-validation were ¹⁸ XGBoost and LASSO, and among these models, LASSO had superior model calibration, ¹⁹ which we considered to be the optimal model. We fit the final LASSO model based ²⁰ on the optimized hyperparameter from cross-validation. Our radiomics model was both ²¹ well-calibrated and had a test-set AUC of 0.930 (95% CI: 0.901-0.957) and out-performed ²² the established Brock model (AUC=0.868, 95% CI: 0.847-0.888) for nodule assessment. ²³

Conclusion

We developed highly-accurate machine learning models based on radiomic and ²⁵ epidemiologic features from four international lung cancer screening studies that may be ²⁶ suitable for assessing suspicious, but indeterminate, screen-detected pulmonary nodules ²⁷ for risk of malignancy. ²⁸

Introduction

Lung cancer is the leading cause of cancer mortality globally¹. Only 10-20% lung cancer patients live up to five years after diagnosis². However, several large randomized screening trials have demonstrated that low-dose computed tomography (CT) screening can significantly reduce lung cancer mortality through early detection^{3–6}. The National Lung Screening Trial (NLST) observed a 20% reduction in lung cancer-related mortality following CT screening⁴, while the Dutch-Belgian trial (NELSON) observed a reduction in mortality of 24% in men and 33% in women³.

29

Despite the promise of screening, the clinical management of screen-detected pulmonary 37 nodules and the false-positive rate are important determinants for screening program 38 efficacy. Across several studies, the average nodule detection rate was 20%, meanwhile, 39 more than 90% of screen-detected nodules were benign⁷. Inaccurate assessment 40 of indeterminate nodules may lead to unnecessary diagnostic workup, including 41 diagnostic screens (which confer higher radiation dosing), invasive procedures such as 42 bronchoscopy, biopsy, or surgery, and may lead to overdiagnosis of indolent cancers'. Excess follow-up carries significant healthcare costs, utilizes critical hospital and human 44 resources, and may lead to adverse events and complications, including death, and can 45 cause anxiety and decreased quality of life for the screened participant. 46

Several guidelines have been developed to help inform indeterminate nodule ⁴⁷ management, however, there remains significant heterogeneity in these recommendations^{8–22}/₄₈. To address these issues, probability models have been developed to help identify high-risk ⁴⁹ lesions and guide clinical decision-making^{23–25}. These models have traditionally been ⁵⁰ based on patient characteristics (e.g., age, smoking history, etc.) and clinically-collected ⁵¹ nodule morphology and textural features (e.g., size, attenuation, etc.). These features ⁵² characterize important aspects of the nodule and are routinely collected as part of the ⁵³

54

clinical management of pulmonary findings.

Nodule probability models based on routinely-collected patient and nodule information 55 have shown good performance, however, there is growing interest in leveraging 56 medical images directly to perform automated quantitative image analysis, enabling 57 the quantification of hundreds or thousands of radiomic features that may capture 58 important information otherwise imperceptible to the human eye. Radiomic features 59 quantify aspects of the 3-dimensional (3D) morphology and grayscale distribution for a 60 region-of-interest²⁶. It is expected that radiomic features, in combination with patient-level 61 information, will be able to accurately discriminate between benign and malignant 62 pulmonary nodules beyond what has been achieved with traditional clinical features. 63 However, it is currently unknown which features will be most important and whether they 64 will generalize well to other screening populations. 65

The goal of the current study is to perform quantitative image analysis and evaluate ⁶⁶ the predictive performance of high-dimensional radiomic features for pulmonary nodule ⁶⁷ malignancy assessment, and to develop and validate models using data from several ⁶⁸ large independent international lung cancer screening studies. ⁶⁹

70

71

80

89

Methods

Lung Cancer Screening Studies

As part of the Integrative Analysis of Lung Cancer Etiology and Risk (INTEGRAL) 72 program, we used data collected by four independent lung cancer screening studies for 73 this analysis: 1. National Lung Screening Trial (NLST), 2. PanCanadian Early Detection 74 of Lung Cancer (PanCan) Study, 3. International Early Lung Cancer Action Program 75 (IELCAP-Toronto), and 4. Pittsburgh Lung Screening Study (PLuSS). Details of each 76 study have been described previously^{4, 5, 27–30}. We provide brief descriptions of each 77 study in the following sections. Details about the study protocol used by each study are 78 included in the Supplemental Materials. 79

National Lung Screening Trial (NLST)

NLST was a large randomized multi-center lung cancer screening study comparing 81 low-dose helical CT to standard chest radiography (CXR) for screening adult heavy 82 smokers^{4, 5}. Eligible participants were age 55 to 74 years, with 30 or more pack-years 83 history of smoking, and former smokers quitting no more than 15 years prior. NLST 84 enrolled 53,456 participants across 33 centers in the United States in 2002. We only use 85 image data from the CT screening arm in the current study. Positive screen-detected 86 findings were considered as any non-calcified nodules (NCN) with a diameter of 4mm or 87 greater. 88

Pan-Canadian Early Detection of Lung Cancer Study (PanCan)

PanCan was a multi-center, single-arm prospective lung cancer screening study that ⁹⁰ included 2,537 participants²⁷. Participants were recruited from eight sites across Canada. ⁹¹ Eligible participants included those 50 to 75 years of age, without a self-reported history of ⁹²

lung cancer, current or former smokers, an estimated 6-year risk of lung cancer of at least ⁹³ 2% based on an earlier edition of the PLCOm2012 model³¹, and an ECOG performance ⁹⁴ status of 0 or 1. Screening was performed with multi-detector row CT scanners. Each ⁹⁵ scan was reviewed by a train radiologist and up to 10 lung nodules were identified and ⁹⁶ recorded. ⁹⁷

98

108

International Early Lung Cancer Action Program (IELCAP-Toronto)

IELCAP was an international single-arm multi-centre study evaluating low-dose CT 99 for lung cancer screening of high-risk individuals^{28, 29}. A common study protocol was 100 adopted for screening regimen, however, each site were able to make decisions regarding 101 enrollment criteria. The Toronto location (hereafter referred to as IELCAP-Toronto), was 102 based out of Princess Margaret Cancer Centre and began in 2003. IELCAP-Toronto 103 enrolled 4,782 adults age 50 or older who were ever-smokers with more than 104 10 pack-years history of smoking. Participants were screened at baseline with 105 milt-detector-row CT scanners. Positive findings were considered as any NCN found on 106 a baseline scan. 107

Pittsburgh Lung Screening Study (PLuSS)

PLuSS was a lung cancer screening trial that recruited 3,642 eligible participants ¹⁰⁹ between January 2002 and April 2005³⁰. Eligible participants included those age 50 to ¹¹⁰ 79 years, with no personal history of lung cancer, no concurrent participation in other ¹¹¹ lung screening studies, no chest CT within the preceding year, current or former smoker ¹¹² with 0.5 pack-years history of smoking for at least 25 years, no smoking cessation within ¹¹³ 10 years of enrollment, and body weight less than 400 pounds. Participants underwent ¹¹⁴ lose-dose chest CT at baseline. Positive findings were considered as any NCN.

Pulmonary Nodule Segmentation

We performed supervised, semi-automated segmentation of screen-detected pulmonary nodules using the open-source 3D Slicer software³² and the Chest Imaging Platform 118 extension^{33, 34}. Our radiologist (HAS) located and reviewed each pulmonary lesion. 119 Upon locating the lesion, the radiologist placed a seed-point at the approximate centroid 120 of the lesion; semi-automated segmentation was performed based on the single 121 seed-point, and manual touch-ups were performed at the discretion of the radiologist 122 to fix over- or under-segmentation. All nodules were reviewed using standard lung 123 Segmentations for PanCan were performed by the PanCan investigators windows. 124 using an automated segmentation algorithm based on a commercial software and 125 images and masks were provided without further processing, except those relevant 126 to the feature extraction, detailed in the following section. We also collected detailed 127 nodule information, including: lung and lobe location, suspicion of nodule malignancy, a 128 nodule-specific LungRADS score (based on LungRADS 1.1,⁸), and ratings for semantic 129 nodule features including: margin, sphericity, subtlety, spiculation, solidity, calcification, 130 structure, and lobulation. Details on the ratings systems for semantic nodule features are 131 described in Supplementary Table 1. 132

Radiomics Feature Extraction

133

116

We performed radiomic feature extraction for baseline screen-detected pulmonary ¹³⁴ nodules using PyRadiomics (version 3.0.1)²⁶. Due to heterogeneity in image acquisition ¹³⁵ settings between and within screening studies, all images and masks were resampled ¹³⁶ and interpolated to have unit voxel spacing (i.e., isotropy). We used a linear interpolator ¹³⁷ for images and nearest-neighbours interpolator for masks (to preserve labels). Grayscale ¹³⁸ intensities were discretized into bins using a bin width of 25 for histogram-based features. ¹³⁹ Voxel intensities were right-shifted by 1000 units prior to feature extraction to avoid ¹⁴⁰

negative values during feature computations.

Feature classes and the number of features per class were: (1) first-order statistics 142 [18 features], (2) shape-based [14 features], (3) gray level coocurrence matrix [24 143 features], (4) gray level run length matrix [16 features], (5) gray level size zone matrix 144 [16 features], (6) neighbouring gray tone difference matrix [5 features], and (7) gray level 145 dependence matrix [14 features]. The list of radiomic features for each class is provided 146 in **Supplemental Table 2**. We extracted shape and intensity-based features using the 147 original image. We also extracted intensity-based features from images after applying 148 several transformations, including: wavelet, Laplacian of Gaussian (LoG), Square, 149 SquareRoot, Logarithm, Exponential, Gradient, and LocalBinaryPattern3D. In total, we 150 extracted 2,060 radiomic features per nodule. 151

Statistical Analysis

Epidemiologic covariates and outcomes

Epidemiologic data were harmonized across the four screening studies to establish a ¹⁵⁴ common set of patient-level covariates. After harmonization, age, sex, family history ¹⁵⁵ of lung cancer among a first-degree relative, history of COPD or emphysema, smoking ¹⁵⁶ status, smoking duration, smoking intensity, years since quitting, and body mass index ¹⁵⁷ were included. We combined epidemiologic and radiomic features from the four screening ¹⁵⁸ studies to form our candidate predictor set. Nodule malignancy status was the outcome ¹⁵⁹ of interest and was determined based on the nodule-specific radiological assessment ¹⁶⁰ described in the Supplemental Methods. ¹⁶¹

Model Development

We used subject-level random sampling to split the data into training (80%) and testing ¹⁶³ (20%) sets, ensuring all nodules for a specific participant were in the same split. The ¹⁶⁴

10

141

153

152

training set was further split into five folds using subject-level random sampling to 165 perform cross-validation. We had 2,060 radiomic features to assess for their ability 166 to classify benign and malignant pulmonary nodules. Many radiomic features have 167 correspondences to established clinically-collected (i.e., semantic) nodules features, 168 however, many features have an unknown predictive value. We performed an initial set of filtering steps to remove zero variance (n=78), low guality (n=11), and weakly predictive 170 (FDR-adjusted P-value > 0.05 in univariate models, n=248), and highly-redundant 171 features (pairwise correlation > 0.9, n=1,081), described in detail in the Supplemental 172 Methods. 173

Using the 9 epidemiologic covariates and 647 radiomic features retained after filtering, 174 we performed cross-validation to identify the top-performing ML model. All predictors 175 were normalized prior to model fitting. We assessed the following ML models: penalized 176 logistic regression (LASSO), Random Forest (RF), and Gradient Boosted Trees 177 (XGBoost). We first performed grid-search over a set of hyperparameters chosen using 178 a Latin hypercube space-filling design³⁵. We then performed random grid search over a 179 finer set of hyperparameters for the top-performing model. The optimal hyperparameter(s) 180 were then fit to the full training set and model performance was evaluated in the hold-out test set. A schematic of the analytic approach used in this study is presented in **Figure 1**. 182 All statistical analysis was performed using Python 3.7.10 and R 4.0.5^{36, 37}. 183

Model Performance

184

We evaluated model performance in two complementary ways: (1) area under the receiver operating characteristic curve (AUC) to assess a models ability to assign higher risks to malignant lesions than to benign lesions (i.e., discrimination), and (2) compare model-estimated risks to observed risks (i.e., calibration). For calibration, we compared predicted and observed risks within quantiles of predicted risks, and also assessed the ratio of expected to observed number of cancers and the difference between expected

and observed number of cancers. We report the AUC and calibration metrics with ¹⁹¹ percentile-based bootstrap confidence intervals. We compared our model against an ¹⁹² established nodule malignancy model (see Supplementary Materials for details). ¹⁹³

Results

194

Basic demographics about the participants and nodules in the four lung cancer screening ¹⁹⁵ cohorts are presented in **Table 1**. Participants were similar in age between the cohorts. ¹⁹⁶ There were more men than women in NLST (57% vs. 43%), PanCan (53% vs. 47%), and ¹⁹⁷ PLuSS (51% vs. 49%), while IELCAP-Toronto (61% vs. 39%) had more women. The four ¹⁹⁸ cohorts had differing proportions of current and former smokers, and smoking histories ¹⁹⁹ (i.e., duration, intensity, and years since quitting) varied between studies. All four cohorts ²⁰⁰ generally consisted of heavy current and former smokers. On average, PanCan had more ²⁰¹ nodules per participant, and smaller nodules, compared to the other studies. ²⁰²

We excluded 1,284 nodules from our study due technical issues with feature extraction, ²⁰³ 2,574 nodules not first-appearing on baseline scans, and another 2,103 nodules due to ²⁰⁴ missing patient-level data for the harmonized set of epidemiologic covariates. In total, we ²⁰⁵ had 16,797 baseline screen-detected nodules among 6,865 participants for our analytic ²⁰⁶ sample. A complete flow chart for nodule inclusion in the analytic sample is presented in ²⁰⁷ **Supplemental Figure 1**. Distributional measures for the radiomic features based on the ²⁰⁸ original CT image are presented in **Supplemental Table 4**.

We started with 2,060 radiomics features for model development. We removed 78 210 features due to zero-variance and 11 features due to observed numerical instability (i.e., 211 implausible values) for a large number of participants. Next, we fit univariate models for 212 each feature in the training data, and retained features with a FDR-adjusted p-value less 213 than 0.05 (n=248). Lastly, we evaluated all pairwise sets of predictors with correlation 214 in the training set greater than 0.9 (in descending order) and removed the predictor with 215 the larger p-value. We retained 642 radiomic features for model development. More 216 details can be found in the Supplementary Materials and **Supplemental Figure 2**. The 217 642 radiomics features retained for model development are presented in **Supplemental** 218

Table 4. We performed unsupervised clustering in the training data set using the 642 $_{219}$ radiological features which revealed three distinct clusters of participants with similar $_{220}$ radiomics profiles (see **Supplemental Figure 3**). We compared the three clusters based $_{221}$ on their proportions of malignant pulmonary nodules and found statistically significant $_{222}$ differences ($P_{Exact} < 0.05$). $_{223}$

We fit three different machine learning models (LASSO, XGBoost, Random Forest) 224 using 5-fold cross-validation based on the 642 radiomics features and 9 epidemiologic 225 covariates. We first fit a coarse grid of 50 sets of hyperparameters for each ML model. 226 The results for this first-pass cross-validation are presented in **Table 2** and **Supplemental** 227 Figure 4 and 5. We selected the top performing model (LASSO) based on the 228 combination of discrimination (AUC) and calibration (calibration ratio) and performed a 220 final cross-validation and grid search over a finer grid of hyperparameters. The optimal 230 penalty value for the LASSO, based on CV, was used to fit the final model based on 231 the full training data set, and predictions were made on the held-out test set to evaluate 232 model performance. 233

The top ML submodels that yielded the highest cross-validated AUC were XGBoost ²³⁴ (AUC=0.933, 95% CI: 0.923-0.944), LASSO (AUC=0.930, 95% CI: 0.914-0.946), and ²³⁵ Random Forest (AUC=0.916, 95% CI: 0.904-0.929). However, calibration was superior ²³⁶ for the LASSO model and was chosen as the top model (see **Supplemental Figure 6**). ²³⁷ In total, 142 predictors were retained in the final LASSO model with non-zero coefficients ²³⁸ (See **Supplemental Figure 7**). ²³⁹

We compared our model with the established Brock Model. Our radiomics model had ²⁴⁰ better discrimination, with a test-set AUC of 0.93 (95% CI: 0.90-0.96) compared to ²⁴¹ 0.87 (95% CI: 0.85-0.89) for the Brock Model (see **Figure 2**). Our model demonstrated ²⁴² excellent calibration when comparing observed risks with model-predicted (i.e., expected) ²⁴³ risks, within quintiles of predicted risk. Our model had superior calibration compared ²⁴⁴

to the Brock Model (see **Supplemental Table 5** and **Supplemental Figure 8**). We ²⁴⁵ estimated the observed and expected number of malignant nodules (per 100,000) for the ²⁴⁶ Brock model and our radiomics model. Our model had excellent calibration ratios (Exp / ²⁴⁷ Obs) of 1.02 (95% CI: 0.89-1.18) and calibration differences of 69.39 (95% CI: -399.67, ²⁴⁸ 507.94), versus 1.25 (95% CI: 1.15,1.36) and 1172.89 (95% CI: 774.17, 1583.65) for ²⁴⁹ the Brock Model, respectively. We compare clinically-relevant metrics (e.g., sensitivity, ²⁵⁰ specificity, etc.) between our model and the Brock model in **Table 3**. At nearly every ²⁵¹ probability threshold, our model has higher sensitivity, specificity, positive predictive value ²⁵² (PPV), negative predictive value (NPV), and accuracy, while identifying fewer lesions as ²⁵³ positive (i.e., suspicious), when compared to the Brock model. ²⁵⁴

Discussion

255

We developed and validated a pulmonary nodule malignancy assessment model based 256 on radiomics and epidemiologic data from four large, international lung cancer screening 257 cohorts using a machine learning approach. We found that the top-performing models 258 were based on gradient boosted trees (XGBoost) and penalized logistic regression 250 (LASSO), while the LASSO model provided the most optimal calibration. The use of 260 quantitative imaging features (i.e., radiomics) showed improved performance compared 261 to an established model based primarily on semantic nodule features. Radiomic features 262 have demonstrated value for their ability to predict nodule malignancy risk and may 263 improve the management of screen-detected pulmonary nodules by providing clinicians 264 with supporting information for clinical decision-making. 265

Historically, the large quantity of medical images acquired during lung cancer 266 screening have been under-utilized for extracting important information to inform 267 Traditionally, a modest set of semantic nodule traits are nodule management. 268 qualitatively assessed by expert radiologists to provide a high-level characterization 269 of nodule morphology. High-throughput quantitative image analysis removes this 270 layer of inter-reader subjectivity, while also collecting many more features that may 271 further enhance our ability to characterize nodule morphology and intranodular textural 272 heterogeneity³⁸. Radiomic features can describe various aspects of the nodule 273 morphology in ways that are imperceptible to the human eye (i.e., subtle intratumoral 274 textural changes)²⁶. The combination of radiomic features with known important 275 patient-level features are expected to improve clinical management of nodules. 276

Previous studies demonstrated that quantitative image analysis can identify important ²⁷⁷ prognostic signatures in head and neck cancer³⁸. The feature extraction presented in³⁸ ²⁷⁸ was formalized as a free and open-source software²⁶ and has enabled transparency ²⁷⁹

and reproducibility for feature extraction, and contributed to the growing interest in ²⁸⁰ quantitative image analysis in many areas of medical imaging, including lung cancer ²⁸¹ screening. To date, many of the radiomic studies for pulmonary nodule assessment have ²⁸² been performed based on relatively small data sets and with no ground-truth for nodule ²⁸³ cancer status. Previous studies have shown that radiomic features can help identify lung ²⁸⁴ cancer subtypes^{39, 40} and even the presence of therapy-targetable somatic mutations ²⁸⁵ (e.g., EGFR, KRAS)^{41–45}. The use of non-invasive image features is growing in popularity ²⁸⁶ and will help improve lung cancer screening program efficiency. ²⁸⁷

To our knowledge, our radiomics study is the largest study to date to systematically investigate the importance of radiomics for pulmonary nodule assessment. We 289 performed supervised, semi-automated segmentation of pulmonary nodules for three 290 lung cancer screening studies using an open-source tool that is available for anyone to 291 use. Our study was based on 16,797 nodules among 6,865 participants from four lung 292 cancer screening cohorts. We used a systematic approach to develop machine learning 293 prediction model using radiomics features that were consistently predictive across each 294 of these four independent screening cohorts. With increasing usage of computer-aided 205 diagnositc (CAD) software, the segmentation process can be fully automated. The model 206 presented here can be easily implemented without additional processing need for a 207 large-amount of images with the added advantage of minimum inter-reader variability. 298

Our study has several limitations worth highlighting. First, ground-truth nodule-level ²⁹⁹ malignancy status was unavailable for two of the screening studies (NLST, PLuSS). As ³⁰⁰ such, we used a set of rules to assign nodule-level malignancy status for participants with ³⁰¹ a lung cancer diagnosis. Imperfect assignment will lead to missclassification errors that ³⁰² can bias the results of our study. However, we used a relatively conservative approach ³⁰³ based on suspicion of malignancy determined by expert review of nodules by our ³⁰⁴ radiologist, who has extensive experience in lung CT assessment. For this reason, we ³⁰⁵

believe the potential for missclassification bias is limited. There were feature extraction issues that excluded 5.7% of the candidate nodules. Nearly 80% of these issues were 307 due to very small nodules with segmentation masks containing only a single voxel or 308 were 1-dimensional after resampling and interpolation. These micronodules have a very 300 low prior probability of being malignant and their exclusion are unlikely to bias our results. 310 Lastly, there was numerical instability for a small set of radiomic features when computing 311 on derived images (i.e., after transformations). We minimized potential bias from these 312 unstable features by excluding them for the filters where identifiable problems arose. All 313 radiomic features appeared stable based on the original image. 314

In summary, we developed a nodule assessment model based on quantitative imaging and patient-level features collected from four international lung cancer screening cohorts. 316 We believe this study contributes important insights into the role that high-dimensional radiomic features can play in accurately assessing nodule malignancy risk and that these features generalize well to geo-temporally distinct screening cohorts. At present, 319 there is emerging interest in analyzing medical images using deep learning computer 320 vision approaches, although limited transparency in model development and lack of model interpretability can pose challenges for clinical implementation and widespread 322 adoption^{46, 47}. In the future, our model may help to improve nodule malignancy 323 assessment and provide supplemental information that can help guide decision-making 324 for screen-detected nodule management. 325

References

	326
1. Sung H, Ferlay J, Siegel RL, et al: Global cancer statistics 2020: GLOBOCAN	327
estimates of incidence and mortality worldwide for 36 cancers in 185 countries. CA: a	328
cancer journal for clinicians, 2021	329
2 . Howlader N, Noone A, Krapcho M, et al: SEER cancer statistics review, 1975-2014,	330
national cancer institute. Bethesda, MD 1–12, 2017	331
3. Koning HJ de, Aalst CM van der, Jong PA de, et al: Reduced lung-cancer mortality	332
with volume CT screening in a randomized trial. New England Journal of Medicine	333
382:503–513, 2020	334
4. Team NLSTR: Reduced lung-cancer mortality with low-dose computed tomographic	335
screening. New England Journal of Medicine 365:395–409, 2011	336
5. National Lung Screening Trial Research Team: Lung cancer incidence and mortality	337
with extended follow-up in the national lung screening trial. Journal of Thoracic Oncology	338
14:1732–1742, 2019	339
6. Pastorino U, Silva M, Sestini S, et al: Prolonged lung cancer screening reduced 10-year	340
mortality in the MILD trial: New confirmation of lung cancer screening efficacy. Annals of	341
Oncology 30:1162–1169, 2019	342
7. Bach PB, Mirkin JN, Oliver TK, et al: Benefits and harms of CT screening for lung	343
cancer: A systematic review. Jama 307:2418–2429, 2012	344
8. American College of Radiology Committee on Lung-RADS: Lung-RADS assessment	345
categories version1.1. Available at https://www.acr.org/-/media/ACR/Files/RADS/Lung-	346
RADS/LungRADSAssessmentCategoriesv1-1.pdf%20	347
9. I-ELCAP protocol. Available at https://www.ielcap.org/sites/default/files/I-ELCAP-	348
protocol-summary.pdf	349
10. Xu DM, Gietema H, Koning H de, et al: Nodule management protocol of the NELSON	350
randomised lung cancer screening trial. Lung cancer 54:177–184, 2006	351

11. Horeweg N, Rosmalen J van, Heuvelmans MA, et al: Lung cancer probability in ³⁵² patients with CT-detected pulmonary nodules: A prespecified analysis of data from the 353 NELSON trial of low-dose CT screening. The Lancet Oncology 15:1332–1341, 2014 354 **12.** Oudkerk M, Devaraj A, Vliegenthart R, et al: European position statement on lung 355 cancer screening. The Lancet Oncology 18:e754-e766, 2017 356 **13**. Callister M, Baldwin D, Akram A, et al: British thoracic society guidelines for the 357 investigation and management of pulmonary nodules: Accredited by NICE. Thorax 358 70:ii1-ii54, 2015 359 **14**. Baldwin DR, Callister ME: The british thoracic society guidelines on the investigation 360 and management of pulmonary nodules. Thorax 70:794-798, 2015 361 15. Yip R, Henschke CI, Yankelevitz DF, et al: CT screening for lung cancer: Alternative 362 definitions of positive test result based on the national lung screening trial and international 363 early lung cancer action program databases. Radiology 273:591–596, 2014 364 **16**. NCCN practice guidelines in oncology lung cancer screening guideline version 4.2019. 365 https://www.nccn.org/professionals/physician gls/default.aspx 366 **17**. Zhou Q, Fan Y, Wang Y, et al: Guidelines for low-dose spiral CT screening of lung 367 cancer in china (2018 edition). Zhongguo Fei Ai Za Zhi 21:67-75, 2018 368 18. Bueno J, Landeras L, Chung JH: Updated fleischner society guidelines for 369 managing incidental pulmonary nodules: Common questions and challenging scenarios. 370 Radiographics 38:1337-1350, 2018 371 **19.** MacMahon H, Naidich DP, Goo JM, et al: Guidelines for management of incidental 372 pulmonary nodules detected on CT images: From the fleischner society 2017. Radiology 373 284:228-243, 2017 374 20. Tammemagi MC, Lam S: Screening for lung cancer using low dose computed 375 tomography. Bmj 348, 2014 376 **21**. Lim KP, Marshall H, Tammemägi M, et al: Protocol and rationale for the international 377 lung screening trial. Annals of the American Thoracic Society 17:503–512, 2020 378

22. Kakinuma R, Ashizawa K, Kusunoki Y, et al: The pulmonary nodules management 379 committee of the japanese society of CT screening. Guidelines for the management of 380 pulmonary nodules detected by low-dose CT lung cancer screening version 3 381 23. Toumazis I, Bastani M, Han SS, et al: Risk-based lung cancer screening: A systematic 382 review. Lung Cancer 147:154-186, 2020 383 **24.** Fox AH, Tanner NT: Approaches to lung nodule risk assessment: Clinician intuition ³⁸⁴ versus prediction models. Journal of Thoracic Disease 12:3296, 2020 385 25. Loverdos K, Fotiadis A, Kontogianni C, et al: Lung nodules: A comprehensive review 386 on current approach and management. Annals of Thoracic Medicine 14:226, 2019 387 26. Van Griethuysen JJ, Fedorov A, Parmar C, et al: Computational radiomics system to 388 decode the radiographic phenotype. Cancer research 77:e104-e107, 2017 389 27. Tammemagi MC, Schmidt H, Martel S, et al: Participant selection for lung cancer screening by risk modelling (the pan-canadian early detection of lung cancer [PanCan] 391 study): A single-arm, prospective study. The lancet oncology 18:1523-1531, 2017 392 **28**. Roberts HC, Patsios D, Paul NS, et al: Lung cancer screening with low-dose computed 393 tomography: Canadian experience. Canadian Association of Radiologists Journal 58:225, 394 2007 395 29. Menezes RJ, Roberts HC, Paul NS, et al: Lung cancer screening using low-dose 396 computed tomography in at-risk individuals: The toronto experience. Lung Cancer 397 67:177-183, 2010 398 **30**. Wilson DO, Weissfeld JL, Fuhrman CR, et al: The pittsburgh lung screening study 399 (PLuSS) outcomes within 3 years of a first computed tomography scan. American journal 400 of respiratory and critical care medicine 178:956-961, 2008 401 **31**. Tammemägi MC, Katki HA, Hocking WG, et al: Selection criteria for lung-cancer 402 screening. New England Journal of Medicine 368:728-736, 2013 403 32. Fedorov A, Beichel R, Kalpathy-Cramer J, et al: 3D slicer as an image 404

computing platform for the quantitative imaging network. Magnetic resonance imaging 405

30:1323–1341, 2012

33. San Jose Estepar R, Ross JC, Harmouche R, et al: Chest imaging platform: An 407 open-source library and workstation for quantitative chest imaging, in C66. Lung imaging 408
II: New probes and emerging technologies. American Thoracic Society, 2015, pp 409 A4975–A4975

406

34. Krishnan K, Ibanez L, Turner WD, et al: An open-source toolkit for the volumetric ⁴¹¹ measurement of CT lung lesions. Optics Express 18:15256–15266, 2010 ⁴¹²

35. McKay MD, Beckman RJ, Conover WJ: A comparison of three methods for ⁴¹³ selecting values of input variables in the analysis of output from a computer code ⁴¹⁴ [Internet]. Technometrics 21:239–245, 1979[cited 2022 Apr 6] Available from: ⁴¹⁵ http://www.jstor.org/stable/1268522

36. Van Rossum G, Drake FL: Python 3 reference manual. Scotts Valley, CA, 417 CreateSpace, 2009

37. R Core Team: R: A language and environment for statistical computing [Internet]. ⁴¹⁹ Vienna, Austria, R Foundation for Statistical Computing, 2021Available from: https://ww ⁴²⁰ w.R-project.org/

38. Aerts HJ, Velazquez ER, Leijenaar RT, et al: Decoding tumour phenotype by ⁴²² noninvasive imaging using a quantitative radiomics approach. Nature communications ⁴²³ 5:1–9, 2014

39. Li H, Gao L, Ma H, et al: Radiomics-based features for prediction of histological ⁴²⁵ subtypes in central lung cancer. Frontiers in Oncology 11:1522, 2021 ⁴²⁶

40. Linning E, Lu L, Li L, et al: Radiomics for classifying histological subtypes of lung ⁴²⁷ cancer based on multiphasic contrast-enhanced computed tomography. Journal of ⁴²⁸ computer assisted tomography 43:300, 2019 ⁴²⁹

41. Wu S, Shen G, Mao J, et al: CT radiomics in predicting EGFR mutation in non-small 430
cell lung cancer: A single institutional study. Frontiers in Oncology 2044, 2020 431
42. Hong D, Xu K, Zhang L, et al: Radiomics signature as a predictive factor for EGFR 432

mutations in advanced lung adenocarcinoma. Frontiers in oncology 10:28, 2020	433			
43. Jia T-Y, Xiong J-F, Li X-Y, et al: Identifying EGFR mutations in lung adenocarcinoma	434			
by noninvasive imaging using radiomics features and random forest modeling. European	435			
radiology 29:4742–4750, 2019	436			
44. Velazquez ER, Parmar C, Liu Y, et al: Somatic mutations drive distinct imaging	437			
phenotypes in lung cancer. Cancer research 77:3922–3930, 2017	438			
45. Liu Y, Kim J, Balagurunathan Y, et al: Radiomic features are associated with EGFR	439			
mutation status in lung adenocarcinomas. Clinical lung cancer 17:441–448, 2016	440			
46. Lam S, Bryant H, Donahoe L, et al: Management of screen-detected lung nodules:	441			
A canadian partnership against cancer guidance document. Canadian Journal of	442			
Respiratory, Critical Care, and Sleep Medicine 4:236–265, 2020	443			
47. Massion PP, Antic S, Ather S, et al: Assessing the accuracy of a deep learning	444			
method to risk stratify indeterminate pulmonary nodules. American journal of respiratory				
and critical care medicine 202:241–249, 2020	446			

	Total Participants (N = 6,865)				
	IELCAP-Toronto (n = 502)	NLST (n = 3,743)	PanCan (n = 1,785)	PLuSS (n = 835)	
No. lung cancers (%)	12 (2.4%)	336 (9.0%)	40 (2.2%)	51 (6.1%)	
Age (years)	62.8 [7.5]	62.4 [5.3]	63.2 [6.0]	60.5 [7.0]	
Sex					
Male	194 (38.6%)	2,149 (57.4%)	953 (53.4%)	426 (51.0%)	
Female	308 (61.4%)	1,594 (42.6%)	832 (46.6%)	309 (49.0%)	
Body mass index (kg/m ²)	26.4 [4.4]	27.5 [4.9] 26.6 [4.9]		28.1 [5.3]	
Family history of lung cancer					
No	388 (77.3%)	2,894 (77.3%)	1,288 (72.2%)	190 (82.6%)	
Yes	114 (22.7%)	%) 849 (22.7%) 497 (145 (17.4%)	
History of COPD or Emphysema					
No	430 (85.7%)	3,232 (86.3%)	1,496 (83.8%)	740 (88.6%)	
Yes	72 (14.3%)	511 (13.7%)	289 (16.2%)	95(11.4%)	
Smoking status					
Current	66 (13.1%)	1,845 (49.3%)	1,133 (63.5%)	580 (69.5%)	
Former	436 (86.9%)	1,898 (50.7%)	652 (36.5%)	255 (30.5%)	
Years smoked	30.6 [10.7]	40.9 [7.5]	42.6 [8.8]	40.9 [7.9]	
Cigarettes per day	21.3 [9.9]	28.4 [11.4]	24.7 [10.5]	25.9 [9.8]	
Years since cessation	14.5 [10.6]	19.9 [20.3]	2.6 [5.7]	2.0 [3.5]	
	Total Nodules (N = 16,797)				
	IELCAP-Toronto (n = 1,062)	NLST (n = 6,108)	PanCan (n = 8,422)	PLuSS (n = 1,205)	
Nodules per participant	3.2 [2.0]	2.4 [1.7]	8.0 [5.2]	2.0 [1.4]	
Major axis length (mm)	9.1 [5.2]	11.0 [8.7]	5.5 [4.5]	12.5 [8.0]	
Least axis length (mm)	5.2 [2.7]	5.8 [3.8]	2.6 [2.4]	6.6 [3.9]	
Mesh Volume (mm ³)	446.5 [2,172.8]	872.1 [5,202.0]	168.4 [1,914.6]	1,171.8 [6,489.3]	
Sphericity	0.76 [0.08]	0.73 [0.10]	0.79 [0.08]	0.72 [0.09]	

Table 1. Patient-level and nodule-level descriptive statistics for each of the four screening cohorts included in this study. Means and standard deviations are reported for numeric variables and counts and proportions are reported for categorical variables.

Abbreviations: COPD, chronic obstructive pulmonary disease; IELCAP, International Early Lung Cancer Action Plan; mm, millimeter; NLST, National Lung Screening Trial; No., number; PanCan, PanCanadian Early Detection of Lung Cancer Study; PLuSS, Pittsburgh Lung Screening Study.

Table 2. Area under the receiver operating characteristic curve (AUC) based on the K-fold cross-validation of three different machine learning classification models for nodule malignancy prediction based on epidemiologic and radiomic features. We present the cross-validated AUC and confidence intervals.

ML Model	Optimal hyperparameters	CV-AUC (95% CI)		
XGBoost	Num. of trees = 149 Tree depth = 11 Minimum node size = 15 Num. of predictors = 452 Learning rate = 0.0673 Loss reduction = 4.315	0.933 (0.923-0.944)		
LASSO ¹	Penalty = 0.00044	0.930 (0.914-0.946)		
Random Forest	Num. of trees = 147 Num. of predictors = 53 Minimum node size = 26	0.916 (0.904-0.929)		

Abbreviations: AUC, area under the curve; CI, confidence interval; LASSO, least absolute shrinkage and selection operator; ML, machine learning; Num, number; XGBoost, eXtreme Gradient Boosting. ¹ The penalty parameter for the LASSO model was a L1 (i.e., LASSO) penalty.

Table 3. Comparison of sensitivity, specificity, positive predictive value, negative predictive value, accuracy, and positive prevalence between our radiomics model and the established Brock Model. We provide point estimates and 95% percentile-based bootstrap confidence intervals for each statistic.

Probability Threshold	Sensitivity (%)	Specificity (%)	PPV (%)	NPV (%)	Accuracy (%)	Positive Prevalence (%)
Radiomics ¹						
≥2%	89.7 (83.8-95.1)	81.6 (80.3-82.9)	13.8 (11.4-16.6)	99.6 (99.4-99.8)	81.9 (80.6-83.2)	20.6 (19.4-22.0)
≥5%	82.2 (75.2-89.4)	90.9 (89.9-91.8)	23.0 (19.1-27.4)	99.4 (99.1-99.6)	90.7 (89.6-91.6)	11.4 (10.4-12.5)
≥10%	74.8 (66.7-82.6)	94.7 (94.0-95.5)	31.9 (26.4-37.9)	99.1 (98.8-99.5)	94.1 (93.3-94.9)	7.5 (6.6-8.4)
≥15%	64.5 (56.1-73.4)	96.7 (96.1-97.3)	39.2 (32.4-47.0)	98.8 (98.4-99.2)	95.7 (95.0-96.3)	5.2 (4.5-6.0)
≥20%	61.7 (53.3-70.8)	97.8 (97.2-98.3)	47.5 (39.3-56.2)	98.7 (98.4-99.1)	96.6 (96.0-97.2)	4.1 (3.4-4.8)
≥25%	55.1 (45.8-64.6)	98.5 (98.0-98.9)	54.6 (45.2-64.1)	98.5 (98.1-98.9)	97.1 (96.6-97.7)	3.2 (2.6-3.8)
Brock Model ²						
≥2%	87.7 (84.7-90.6)	64.5 (63.5-65.5)	10.9 (9.9-12.1)	99.1 (98.8-99.3)	65.6 (64.7-66.6)	38.0 (37.0-39.0)
≥5%	80.6 (76.9-84.0)	79.8 (78.9-80.7)	16.6 (15.0-18.3)	98.8 (98.5-99.0)	79.9 (79.0-80.7)	23.0 (22.2-23.9)
≥10%	72.3 (68.1-76.5)	88.0 (87.3-88.7)	23.0 (20.6-25.6)	98.5 (98.2-98.7)	87.3 (86.5-88.0)	14.9 (14.1-15.6)
≥15%	65.0 (60.6-69.4)	91.6 (91.0-92.2)	27.7 (24.9-30.7)	98.1 (97.8-98.4)	90.3 (89.7-91.0)	11.1 (10.4-11.7)
≥20%	58.3 (53.6-63.0)	93.7 (93.2-94.2)	31.5 (28.2-34.9)	97.8 (97.5-98.2)	92.0 (91.5-92.6)	8.8 (8.1-9.3)
≥25%	51.7 (47.0-56.3)	94.9 (94.5-95.4)	33.7 (30.0-37.4)	97.5 (97.2-97.9)	92.9 (92.4-93.4)	7.3 (6.7-7.8)

Abbreviations: NPV, negative predictive value; PPV, positive predictive value.

Note: Sensitivity is the proportion of malignant nodules correctly identified as malignant. Specificity is the proportion of benign nodules correctly identified as benign. PPV is the proportion of positive predictions that are malignant nodules. NPV is the proportion of negative predictions that are benign nodules. Accuracy is the total number of correct predictions out of the total number of nodules. Positive prevalence is the proportion of positive predictions divided by the total number of predictions.

¹ The radiomics model was evaluated in the 20% hold-out test data not used for model development (N = 3,363).

² The Brock Model was evaluated in the entire eligible set of participants from IELCAP-Toronto, NLST, and PLuSS (N = 8,622).

Figure 1. Schematic for the analytic framework used in this study. Data were partitioned into training/validation and testing splits using group-based random sampling to ensure all nodules for a participant were in a single set to avoid data leakage. Radiomic features were extracted and subject to filtering to exclude low-quality and highly-redundant features. K-fold cross-validation was performed to identify the optimal machine learning (ML) model and the optimal set of hyperparameters. The final ML model was fitted to the entire training data set and tested for out-of-sample performance in the hold-out test data; discrimination and calibration performance metrics are reported.

Figure 2. Receiver operating characteristic (ROC) curves for our radiomics models and the established Brock Model. Area under the curve (AUC) and 95% confidence intervals are reported.