SUPPLEMENTARY MATERIALS

Longitudinal prediction of motor dysfunction after stroke: a disconnectome study

Lilit Dulyan^{1,2*}, Lia Talozzi^{1,2}, Valentina Pacella^{1,2}, Maurizio Corbetta^{3,4,5}, Stephanie J Forkel^{1,2,6‡}, Michel Thiebaut de Schotten^{1,2*‡}

Glossary

The Disconnectome includes 46 components that have been parcellated into 372 anatomical regions (it is a matrix of 46 x 372) and derived from a dataset of 1333 patients.

A disconnection pattern/map is a map/pattern of white matter pathway disconnection probabilities and its impact on other brain areas of a patient (i.e. it is a matrix of 1 x 372 regions).

"Disconnectome Maps" is the name of the function in the BCBToolkit (toolkit.bcblab.com) that computes a disconnection pattern/map for a patient

62 linear regressions

Figure 1. 62 linear regressions were performed to describe the disconnection patterns of 62 patients with the Disconnectome.

RIDGE/LASSO regression procedure

Figure 2. The flow of analysis for the ridge and lasso regressions. RMSE: root mean square error, LOOCV: leave-one-out cross-validation, Lambda – L1/L2 regularization value.

Figure 3. The flow of analysis for hierarchical linear regressions.

Figure 4. Prediction accuracy (R²) of different algorithms in the testing set, based on the mode of R distribution. Left and right indicate motor scores.

Figure 5. Predictor importance plots for ridge and lasso regressions per each condition

Importance: Absolute value of beta coefficients

Figure 6. Predictor importance plots for ridge regressions per each condition. Age of the patients and total lesion volume were included in regressions and demonstrated low importance in explaining the variance in data. We compared our method to a previously established method to estimate the corticospinal tract lesion load (e.g. tractotron, www.bcbtoolkit.com). Using this method we predict the motor outcomes using a probability of cortico spinal tract (CST) disconnection (Figure 7). The probability was calculated with a tractotron as implemented in the BCBtoolkit (toolkit.bcblab.com). The results showed *that the* lesion load to the left CST was a reliable predictor for right motor impairments and the right CST for the left motor impairments. In comparison, however, the algorithm employed in our study explains more *variance* in the observed motor behaviour across all three time points (2 weeks, 3 Months, 1 year). This applies to the right and the left motor impairments.

Figure 7. Prediction accuracy (R²) of the linear regression models in the testing set (20% of the data, 12 patients), based on the mode of R distribution (1000). Left and right indicate motor scores. Independent variable: probability of cortico-spinal tract (CST) disconnection

Multiple linear regression analysis result: R^2 adj = .97, F(46, 325) = 270.5, p < .001

Table 1. Power calculations of the multiple linear regression analysis of the patient FSC_040.

F tests Linear multiple regression: Fixed model, R² deviation from zero

Analysis Post hoc: Compute achieved power

Input

Effect size f²	33,36426
α err prob	0,05
Total sample size	372
Number of predictors	46

Output	Noncentrality parameter λ	12411,5
	Critical F	1,4049935
	Numerator df	46
	Denominator df	325
	Power (1-β err prob)	1

Table 2. The 3 top the most important Disconnectome components <u>https://identifiers.org/neurovault.collection:7735</u> displayed with Surfice <u>https://www.nitrc.org/projects/surfice/</u> and used thresholds for each condition.

Condition	Component	Threshold
	componentA 45	neg8
Acute left	componentA 39	8
	componentA 36	15
	componentA 44	10
acute right	componentA 40	10
	componentA 30	11
	componentA 36	15
3months_left	componentB 13	10
	componentA 32	neg5
	componentA 46	neg15
3months_right	componentA 40	10
	componentA 32	neg5
	componentA 26	12
1year_left	componentA 39	8
	componentA 36	15
1year_right	componentA 46	neg15

componentA 40	10
componentA 32	neg5

Table 3. Retained components for the forward/backwards hierarchical linearregressions, forward/backward stepwise regressions

Cond.	Regression type	Type of validation	#	Retained components
2weeks left	Backward HLR	5000 permutations with testing on 22% data	9	Component40, Component38, Component37, Component31, Component29, Component21, Component18, Component14, Component2
2weeks right	Backward HLR	5000 permutations with testing on 22% data	4	Component42, Component39, Component15, Component3
3m left	Backward HLR	5000 permutations with testing on 22% data	7	Component37, Component35, Component26, Component21, Component14, Component4, Component2

				Component42, Component40, Component35, Component33, Component32, Component30, Component29, Component28, Component26, Component25, Component22, Component21
3m right	Backward HLR	5000 permutations with testing on 22% data	25	Component20, Component17, Component16, Component15, Component14, Component13, Component11, Component10, Component8, Component7, Component5, Component3, Component2
1y left	Backward HLR	5000 permutations with testing on 22% data	8	Component28, Component26, Component24, Component18, Component16, Component13, Component7, Component2
1y right	Backward HLR	5000 permutations with testing on 22% data	7	Component32, Component30, Component27, Component24, Component19,

				Component17, Component12
2weeks left	Forward HLR	5000 permutations with testing on 22% data	3	Component2, Component8, Component24
2weeks right	Forward HLR	5000 permutations with testing on 22% data	5	Component1, Component3, Component15, Component23, Component40
3m left	Forward HLR	5000 permutations with testing on 22% data	3	Component21, Component14, Component36
3m right	Forward HLR	5000 permutations with testing on 22% data	4	Component1, Component7, Component14, Component35
1y left	Forward HLR	5000 permutations with testing on 22% data	4	Component2, Component9, Component24, Component36
1y right	Forward HLR	5000 permutations with testing on 22% data	3	Component9, Component32, Component46

		LOOCV on training set (80%)		
2weeks	Backward	and test on 20% with 1000	1	
left	Stepwise	permutations		Component2
				Component1
				Component3
		LOOCV on training set (80%)	5	Component5
2weeks	Backward	and test on 20% with 1000		Component37
right	Stepwise	permutations		Component44

3m left	Backward Stepwise	LOOCV on training set (80%) and test on 20% with 1000 permutations	2	Component2 Component25
3m right	Backward Stepwise	LOOCV on training set (80%) and test on 20% with 1000 permutations	5	Component18 Component27 Component29 Component35 Component44
1y left	Backward Stepwise	LOOCV on training set (80%) and test on 20% with 1000 permutations	2	Component2 Component24
1y right	Backward Stepwise	LOOCV on training set (80%) and test on 20% with 1000 permutations	3	Component17 Component32 Component46
2weeks left	Forward Stepwise	LOOCV on training set (80%) and test on 20% with 1000 permutations	1	Component2
2weeks right	Forward Stepwise	LOOCV on training set (80%) and test on 20% with 1000 permutations	4	Component3 Component7 Component21 Component40
3m left	Forward Stepwise	LOOCV on training set (80%) and test on 20% with 1000 permutations	2	Component2 Component24
3m right	Forward Stepwise	LOOCV on training set (80%) and test on 20% with 1000 permutations	4	Component1 Component35 Component40 Component46
1y left	Forward Stepwise	LOOCV on training set (80%) and test on 20% with 1000 permutations	1	Component2