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Abstract 

Genome-wide association studies (GWAS) have identified more than 200 genomic loci for breast 

cancer risk, but specific causal genes in most of these loci have not been identified. In fact, 

transcriptome-wide association studies (TWAS) of breast cancer performed using gene expression 

prediction models trained in breast tissue have yet to clearly identify most target genes. To identify 

novel candidate genes, we performed a joint TWAS analysis that combined TWAS signals from 

multiple tissues. We used expression prediction models trained in 47 tissues from the Genotype-

Tissue Expression data using a multivariate adaptive shrinkage method along with association 

summary statistics from the Breast Cancer Association Consortium and UK Biobank data. We 

identified 380 genes at 129 genomic loci to be significantly associated with breast cancer at the 

Bonferroni threshold (p < 2.36 × 10−6). Of them, 29 genes were located in 11 novel regions that 

were at least 1Mb away from published GWAS hits. The rest of TWAS-significant genes were 

located in 118 known genomic loci from previous GWAS of breast cancer. After conditioning on 

previous GWAS index variants, we found that 22 genes located in known GWAS loci remained 

statistically significant. Our study maps potential target genes in more than half of known GWAS 

loci and discovers multiple new loci, providing new insights into breast cancer genetics.  

 

Introduction 

Breast cancer is the most common malignancy among women in most countries around the world, 

accounting for one quarter of all cancer cases in women1. In the past fifteen years, genome-wide 

association studies (GWAS) have identified over 200 loci significantly associated with breast 

cancer 2-4. While some of these findings have yielded functional insights into breast cancer 4, these 

genetic variants account for a relatively small proportion of heritability, suggesting more genetic 

variants have yet to be identified. Because the vast majority of risk variants identified in GWAS 

are located in intergenic regions and are not nonsynonymous coding variants, the putative genes 

on which these risk variants act to cause breast cancer remain unclear for most GWAS-identified 

loci.  

To further elucidate the role of genetic variants in complex traits, transcriptome-wide association 

studies (TWAS) have been conducted to quantify the relationship between a predicted level of 
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genetically regulated gene expression and the phenotype of interest 5,6. TWAS of breast cancer 

have identified dozens of genes whose expression are significantly associated with breast cancer 

and its subtypes 4,7-9. However, these genes only account for only a small proportion of known 

GWAS loci of breast cancer. These TWAS were performed primarily by associating a cis-

regulated level of gene expression with breast cancer in single tissues (breast tissue or whole 

blood). Our recent study demonstrated that integrating information from multiple tissues in TWAS 

could improve association detection 10. In addition, existing TWASs used gene expression 

prediction models trained in data from older versions of the Genotype-Tissue expression (GTEx) 

project, such as versions 6 or 7. The recent version 8 of GTEx has much larger sample sizes 

compared to the older versions, so the expression models trained in GTEx v8 will be more accurate 

to predict expression levels than those trained in older versions 11,12. By using GTEx v8, one can 

explore heritability for expression more efficiently and more genes can pass the filtering threshold 

and be used for TWAS analysis 12. Therefore, the prediction models trained in GTEx (v8) have the 

potential to increase the power of TWAS in detecting susceptibility genes.  

In this study, we aimed to identify novel candidate genes for breast cancer by performing joint 

TWAS analyses of breast cancer by combining TWAS information from multiple tissues. We 

applied our TWAS method to the summary statistics from a meta-analysis of data from 122,977 

breast cancer cases and 105,974 controls in the Breast Cancer Association Consortium (BCAC) 3 

and 10,534 breast cancer cases and 185,116 controls in UK Biobank (UKB) 13. 

Results  

Joint TWAS combining information across multiple tissues. We used expression prediction 

models trained in 47 tissues of European ancestry (with sample sizes ranging from 65 to 588 and 

a median of 194) from the GTEx v8 data using a multivariate adaptive shrinkage (MASH) method 
11,12,14. In total, 21,227 genes across the 47 tissues with prediction models, including 14,634 genes 

expressed in breast tissue, were tested in our TWAS analysis.  

To acquire higher power in the TWAS analysis, we first performed a GWAS analysis in a 

breast cancer dataset from UKB and then combined the UKB GWAS results with the previously 

published GWAS results of the BCAC data 3 by a meta-analysis with the software METAL15. 

Using meta-analysis summary statistics, we performed a traditional TWAS individually in each 
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tissue by S-Predixcan 16, and then joint TWAS using the aggregated Cauchy association test 

(ACAT) 17 , which combined p-values of single-tissue TWAS across the 47 tissues.  

The results of the joint TWAS analysis are summarized in the Manhattan plots against the 

variant-based GWAS analysis results (Supplementary Figure S1). Of the 21,227 genes tested in 

our joint TWAS analysis, we identified 380 genes whose predicted expression was associated with 

breast cancer risk at the Bonferroni-corrected threshold of p < 2.4×10-6 (Supplementary Table S1). 

Only 141 genes were identified when TWAS analysis used only breast tissue, i.e. conventional 

single-tissue TWAS approach 16 (Supplementary Table S2). Of these 141 genes, 127 genes were 

also identified in the joint, multi-tissue TWAS. The remaining 14 genes identified only in the 

breast-tissue TWAS analysis were only marginally significant, so we focused on results from the 

joint TWAS. Supplementary Table S3 shows the detailed single-tissue TWAS results for the 380 

genes in the analysis of two databases (BCAC, UKB) pooled and separately. We found that Z 

scores across tissues were moderately concordant on average, with an intraclass correlation 

coefficient of 0.528, but the agreement between tissues as well as the strongest association signals 

varied across genes. These findings suggest that the multi-tissue joint TWAS could provide 

additional information compared to traditional single target tissue TWAS, and address the 

possibility that for different genes the target tissue(s) could vary. We also found that TWAS results 

using the BCAC and UKB databases were very consistent with a Pearson r = 0.859 (Supplementary 

Figure S2).  

Of the 380 genes identified in our joint TWAS, 32 genes have been reported in previous 

TWAS (Supplementary Tables 1 and 4), 80 genes have been implicated in previous GWAS, such 

as FGFR2, TOX3, and ESR1 (Supplementary Tables 1 and 5), and eight genes were reported both 

in previous TWAS and GWAS, such as TNFSF10. The genes implicated by multiple previous 

GWAS studies were more likely to be re-discovered in our TWAS. The 380 genes are distributed 

among 129 genomic loci (Figure 1). Based on NHGRI-EBI GWAS Catalog 18 and literature 

review, we curated 222 GWAS loci of breast cancer susceptibility (Supplementary Table 6). Our 

joint TWAS identified 351 significant genes that are located in 118 known GWAS susceptibility 

loci. The remaining 29 genes are located in 11 novel loci that are at least 1Mb away from any risk 

variant identified in previous GWAS and are not in linkage disequilibrium (LD) with risk variants 

(Table 1). Of the 29 genes found in novel loci, 13 genes in 7 loci were also significant in the breast 
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tissue-based TWAS at the Bonferroni threshold. For example, we found MAP2K4 in the 17p12 

locus was significant in both multi-tissue joint TWAS and breast tissue-based TWAS, although 

there was no reported GWAS signal in this locus (Figure 2). 

Conditional joint TWAS on published GWAS index variants. To determine whether the 

associations for the genes identified by the joint TWAS were independent of GWAS association 

signals, we performed conditional analyses adjusting for nearby GWAS index risk variants. We 

found 22 genes located in 12 known GWAS loci that were conditionally significant (Table 2). This 

suggests that additional genetic variants, which are neither genome-wide significant nor in LD 

with GWAS significant variants, may account for the association between expression of these 

genes and breast cancer risk at these loci.  

Colocalization analysis and gene-based fine mapping.  Within an LD block region, the LD 

among single nucleoid polymorphisms (SNPs) can induce significant gene-trait associations for 

non-causal genes as a function of the expression quantitative trait loci (eQTL) weights used in 

predicting expression 19. To identify causal genes among the 380 TWAS-identified genes, we 

performed colocalization analysis and gene-based fine mapping. For colocalization, we used the 

package ENLOC 20 to identify evidence of colocalization between the GWAS and the eQTL 

signals by calculating regional colocalization probabilities (RCP). An RCP at a gene greater than 

a threshold (such as 0.5) provides supportive information that the gene identified by the joint 

TWAS has a high probability of being causal. In our analysis, 110 of 380 genes had RCP values 

greater than 0.5 (Supplementary Table 1). 

In the gene-based fine-mapping of TWAS using the package FOCUS 19, we generated 

credible sets of genes at the confidence level of 90% and calculated marginal posterior inclusion 

probability (PIP) for each gene. If a gene is in a credible set and has a high PIP, then the gene is 

likely to be causal. In our fine-mapping analysis, 140 genes were found to be in credible sets.  

Based on the co-localization and fine mapping analyses, there were 58 genes in credible 

sets and with RCP values greater than 0.5, exhibiting strong evidence of being causal genes (Table 

3). These 58 genes were located in 47 loci. For most loci, co-localization and fine-mapping 

identified only one causal gene candidate, eliminating many TWAS-identified genes; for example, 

ASH1L in locus 1q22 (out of 18 TWAS-identified genes) and FGFR2 in locus 10q26.13 (out of 3 

TWAS-identified genes) were identified as possible causal genes. For fewer loci, multiple 
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candidate genes were identified after co-localization and fine mapping; for example, GSTM1, 

GSTM2, and GSTM4, three members of the glutathione S-transferase multigene family, were 

suggested to be possible causal genes in locus 1p13.3 in our analysis (Table 3, Figure 2).  

Gene Set Enrichment and Functional Annotation. Of the 380 TWAS-identified genes, 321 are 

protein-coding genes, 54 are long non-coding RNA (lncRNA) genes, and 5 are pseudogenes. We 

tested the enrichment of this set of protein coding and lncRNA genes against background gene sets 

from multiple databases using the FUMA software package 21. We found these TWAS-identified 

genes were significantly enriched in several biological pathways, such as the Trail signaling 

pathway, Fas signaling pathway, apoptosis pathway, biosynthesis, and cell cycle regulation; all of 

these pathways are important in cancer development or a hallmark of cancer, which further 

warrants efforts into studying how the genes identified in our TWAS may contribute to breast 

cancer etiology (Supplementary Table S7). Interestingly, we found significant enrichment in the 

genes underlying several breast cancer risk factors, including body fat distribution, mammographic 

density, alcohol use, and body height22, suggesting that the TWAS-identified genes may indirectly 

contribute to breast cancer susceptibility through their impacts on known lifestyle/environmental 

risk factors. We also found strong enrichment for other diseases, such as inflammatory bowel 

disease, diabetes, and other cancers (including melanoma, chronic myeloid leukemia, and cancers 

of the esophagus, prostate, and bladder), suggesting that some of breast cancer genes have 

pleiotropic effects. These results were consistent with the notion that there are shared genetic 

components between various cancer sites23, and suggest that further research into collating TWAS 

results across cancers may be beneficial to understanding their shared genetic etiologies. Lastly, 

differential gene expression analysis in GTEx showed that the TWAS-identified genes had strong 

tissue specificity, although our joint TWAS weighted each tissue similarly; the most up-expressed 

tissues of these genes were uterus, breast, ovary and vagina (Supplementary Figure S3).  

Discussion 
In this study, we performed a breast cancer TWAS analysis that leveraged the genetically predicted 

gene expression levels across multiple tissues. We identified 380 significant genes at the 

Bonferroni threshold, including 29 genes located in 11 novel loci and 351 genes located in 118 

known GWAS susceptibility loci. In more than half of the known breast cancer GWAS loci, our 

study was able to identify possible susceptibility gene(s). We also found 22 genes in known GWAS 

All rights reserved. No reuse allowed without permission. 
(which was not certified by peer review) is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity. 

The copyright holder for this preprintthis version posted October 1, 2022. ; https://doi.org/10.1101/2022.09.30.22280575doi: medRxiv preprint 

https://doi.org/10.1101/2022.09.30.22280575


7 
 

loci that were independent of previously reported GWAS risk variants, suggesting potentially new 

breast cancer susceptibility signals. Lastly, through co-localization and fine-mapping analysis, we 

inferred that 58 genes have a high probability of being causal genes. Generally, our study findings 

are consistent with previous TWASs; of the 78 genes reported in previous TWASs,4,7-9,24 32 genes 

were replicated in our study.  

Our study identified substantially more TWAS significant genes than all previous studies 

combined, possibly because of several notable differences in methodologies. First, we used GWAS 

data from a large number of breast cancer cases (N=133,511) and controls (N=291,090) from 

BCAC and UKB. This large sample size provided high statistical power in the association analysis. 

If we had used summary statistics exclusively from BCAC like in previous studies 4,8, our joint 

TWAS would have only identified 294 genes as opposed to the 380 genes we identified using both 

BCAC and UKB datasets. Second, we aggregated TWAS signals across 47 tissues. This multi-

tissue approach resulted in more genes being identified compared to the TWAS using breast tissue 

alone. This suggests that while breast tissue is an important tissue to utilize when conducting breast 

cancer TWASs, other tissues can contribute additional information for gene discovery. For 

example, our multi-tissue approach identified FGFR2, a gene with strong evidence in breast cancer 

etiology, but this gene has not been identified in previous TWASs and would have been missed if 

we had utilized only the TWAS exclusive to breast tissue. Third, we used expression prediction 

models trained in GTEx v8 with the MASH method based on fine mapping to select possible causal 

eQTLs as predictors for each gene. The expression models trained in GTEx v8 can be more 

accurate than those trained in older versions of GTEx for three reasons: a) The sample sizes for 

tissues in GTEx v8 are larger than those in older versions of GTEx (for example, we used 329 

samples from GTEx v8 to build prediction models of breast tissue in European ancestry 

individuals, while Wu et al. 8 used 67 samples from v6);  b) Selecting possibly causal eQTL 

through fine mapping can reduce the probability that non-causal eQTLs were used in the prediction 

models 12; and c) MASH accounts for eQTL correlation across tissues and provides more accurate 

estimates of beta coefficients of eQTLs used as final weights in the prediction models. By using 

the prediction models trained in GTEx (v8) data, we were able to perform this joint TWAS analysis 

on 21,227 genes with prediction models of good performance (i.e., with eQTL signals). In contrast, 

two previously published large TWAS that relied on breast tissues in older version of GTEx and 

traditional methods can evaluate a smaller subset of genes7,8. Wu et al8 evaluated 8,597 genes in 
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their TWAS and commented that several highly implicated breast cancer susceptibility genes, such 

as ESR1, TERT and MARS30, could not be investigated because of poor performance of prediction 

models. Our study was able to identify these genes as significant at the Bonferroni threshold. 

Similarly, Feng et al.7 investigated only 901 genes in their TWAS.  

We identified 29 genes in 11 novel loci, which are at least 1Mb away from any risk variants 

and not in LD with risk variants reported in previous GWAS. This finding suggests that 

transcriptome-based association studies are able to discover novel cancer susceptibility signals, 

extending the capacity of variant-based association studies. These novel genes and loci are 

plausibly important in breast cancer susceptibility, given evidences from previous studies in other 

cancers or known cancer pathways. For example, MAP2K4 in the 17p12 locus, has not been 

reported to be important in breast cancer susceptibility. We found the predicted expression of 

MAP2K4 in multiple tissues, including breast tissue, was positively associated with breast cancer 

risk. Both colocalization analysis (RCP=0.64) and fine-mapping analysis (PIP=0.893) suggested 

that MAP2K4 is a possible causal breast cancer gene and the effect was driven by multiple weak 

variants. MAP2K4 (a.k.a MKK4) is a member of the MAPK family, which act as an integration 

point for multiple biochemical signals and are involved in a wide variety of cellular processes such 

as proliferation, differentiation, transcription regulation, and development. MAP2K4 has been 

found to be a metastasis suppressor gene in ovarian carcinoma25. Furthermore, MAP2K4 was 

identified as a driver gene mutated in both early and metastatic breast cancer 26,27. Taken together, 

it is possible that MAP2K4 was a breast cancer susceptibility gene in the novel 17p12 locus.  

Most of our TWAS-identified genes are located in known GWAS susceptibility loci. 

Interestingly, we are able to identify possible susceptibility genes in more than half of the known 

breast cancer GWAS loci. In these scenarios, TWAS revealed possible target genes that risk 

variants identified in GWAS act on to cause breast cancer. Using eQTL analyses, Guo et al 28 

inferred 101 target genes in known breast cancer GWAS loci. We re-discovered 51 of these 101 

genes in our TWAS. 

One interesting GWAS locus is 1p13.3, a gene rich region containing >20 genes within 

400kb (Figure 2). Although none of the SNPs in this locus reached GWAS significance in BCAC, 

this locus was recently reported to be associated with breast cancer in a cross-ancestry study29. Of 

the genes in this region, it is unclear which ones are breast cancer susceptibility genes simply based 

on GWAS signals. Our TWAS found that the predicted expression of GSTM1, GSTM2, and 

All rights reserved. No reuse allowed without permission. 
(which was not certified by peer review) is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity. 

The copyright holder for this preprintthis version posted October 1, 2022. ; https://doi.org/10.1101/2022.09.30.22280575doi: medRxiv preprint 

https://doi.org/10.1101/2022.09.30.22280575


9 
 

GSTM4 in multiple tissues, including breast tissue, was inversely associated with breast cancer 

risk. After adjusting for GWAS index SNPs in conditional analysis, the three genes were no longer 

significant, suggesting GWAS risk SNPs may be responsible for the observed TWAS signals. Both 

colocalization analysis (RCP>0.99) and fine-mapping analysis suggested that all three genes are 

possible breast cancer candidate genes. GSTM1, GSTM2, and GSTM4 are members of the 

glutathione S-transferase multigene family, which can detoxify xenobiotics, including 

carcinogenic compounds and thus were proposed as cancer susceptibility genes,30 and 

the GSTM1 null genotype has been associated with risk of several other cancers31-37. Therefore, 

there exists evidence that all three genes are possible cancer suppressors responsible for GWAS 

signals in 1p13.3 through carcinogen metabolism.  

Another interesting example is the TNFSF10 gene in 3q26.21 (Figure 2). This gene was 

first implicated in a GWAS of African ancestry population for estrogen receptor (ER)-negative 

breast cancer38, and was later implicated in a GWAS of European ancestry population for overall 

breast cancer3; however, different risk SNPs were reported between the two studies. In the present 

study, we found high expression of TNFSF10 in several tissues, including breast, was associated 

with lower risk of breast cancer. This gene is the only significant gene in the 3q26.21 locus; it was 

not significant in our conditional analysis after adjusting for index SNPs. It had a high RCP (0.67) 

in colocalization analysis. A recently published study deleted the TNFSF10 gene from TNBC cells 

using CRISPR-Cas9 technology and stimulated cells with either poly (I:C), a synthetic analogue 

of double-stranded RNA virus, or IFN-β, and found that depletion of TNFSF10 clearly reduced 

poly (I:C)-induced or IFN-β-induced apoptosis39. Furthermore, the researcher edited rs13074711, 

the risk variant reported in previous GWAS38, using CRISPR-Cas9 technology, and found it 

altered TNFSF10 expression and IFN-β-induced apoptosis 39. Taken together, there is strong 

evidence that TNFSF10 is a possible cancer suppressor responsible for GWAS signal in 3q26.21 

through immune defense mechanisms.  

Determining causality of TWAS-identified genes remains challenging because these genes 

may be associated with disease phenotypes through their correlation with disease causal gene(s) 

in the same LD region. Based on gene-based fine-mapping and colocalization methods, we 

proposed 58 genes in 47 loci to have a high probability of being causal genes. Still, these genes 

need to be investigated in future functional experiments. Guo et al 28 used luciferase reporter assays 

to study functional target genes, and they found a significant difference between alternative and 
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reference alleles in promoter activity for five genes (DCLRE1B, SSBP4, MRPS30, ATG10, and 

PAX9) but failed to show functional activity for the gene ARRDC3. These findings are consistent 

with ours: We found all five genes were TWAS significant and four of them (DCLRE1B, SSBP4, 

ATG10, and PAX9) are in our proposed list of causal genes (Table 3). We did not find ARRDC3 to 

be TWAS significant.  

The current study has several limitations. First, although the joint TWAS identified more 

genes than single-tissue TWAS, it may generate more false positive hits because it utilizes other 

tissues not relevant to phenotype of interest 40. However, the target tissue for cancer development 

might not be distinct, and gene expression across multiple tissues could be partially correlated 10,11. 

We also observed moderate consistency between results of single tissue TWAS. For instance, 

breast tissue is presumably the target tissue for breast cancer, but gene expression in liver might 

better reflect carcinogen metabolism. Fortunately, the ACAT method used in our joint TWAS 

analysis calculates a weighted average of p-values from multiple tissues and is relatively 

conservative in identifying significant genes. Strikingly, the top tissues in which the joint TWAS-

identified genes were upregulated were all female tissues (breast, uterus, ovary and vagina), 

suggesting that our joint TWAS method was able to automatically prioritize target tissues. One 

focus of our future method research is to develop more efficient methods to combine TWAS 

signals across tissues by effectively accounting for the correlation of the signals across tissues or 

giving high weights to potential target tissues.  

Second, the current study only analyzed data from European ancestry and focused on 

overall breast cancer risk. Breast cancer is a heterogeneous disease consisting of several molecular 

subtypes. The genetic architecture of estrogen-receptor (ER) negative breast cancer may be 

different from the estrogen-receptor positive subtype. In the BCAC consortium, 76% patients had 

ER-positive breast cancer3, so the current study may mainly identify genes for susceptibility of 

ER-positive breast cancer. Future TWAS studies that focus on ER-negative breast cancer or in 

other racial/ethnic populations are highly desirable. Lastly, the current study only examined overall 

expression of genes but did not consider the effect of RNA splicing on disease etiology. Li et al.41 

reported that RNA splicing is another primary link between genetic variation and complex 

diseases. Therefore, TWAS evaluating associations of genetically predicted splicing with breast 

cancer have great promise for identifying novel putative candidate disease genes. We are currently 

working on a splicing-based TWAS of breast cancer. 

All rights reserved. No reuse allowed without permission. 
(which was not certified by peer review) is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity. 

The copyright holder for this preprintthis version posted October 1, 2022. ; https://doi.org/10.1101/2022.09.30.22280575doi: medRxiv preprint 

https://doi.org/10.1101/2022.09.30.22280575


11 
 

 

In conclusion, our joint TWAS identified more than 300 breast cancer genes for further 

functional investigation. Our approach has discovered new susceptibility loci and mapped out 

candidate genes in multiple known susceptibility loci. Future studies in diverse populations and 

with a focus on homogenous phenotypes of breast cancer using innovative TWAS methodology 

are warranted. There is potential to map out most candidate genes in GWAS loci of breast cancer, 

the most common malignancy affecting women across the world.  

 

 

URLs 
PrediXcan GTEx v8 MASHR models, https://predictdb.org/; BCAC summary statistics, 

https://bcac.ccge.medschl.cam.ac.uk/bcacdata/oncoarray/oncoarray-and-combined-summary-

result; UK Biobank, http://ukbiobank.ac.uk; FUMA software, http://fuma.ctglab.nl; Plink 2.0, 

https://www.cog-genomics.org/plink/2.0/  

 

Methods 

GWAS summary statistics from the BCAC on women of  European ancestry. In our meta-

analysis, we used the summary statistics data from the GWAS of breast cancer in 122,977 cases 

and 105,974 controls of European ancestry from the BCAC. The details of the BCAC have been 

described previously 3,42. Briefly, the BCAC included: 1) 61,282 female cases with breast cancer 

and 45,494 female controls of European ancestry that were genotyped using the OncoArray 

including 570,000 SNPs; 2) 46,785 breast cancer cases and 42,892 controls of European ancestry 

from Collaborative Oncological Gene-environment Study (iCOGS) that were genotyped using a 

custom Illumina iSelect genotyping array containing ~211,155 variants; and 3) 11 other breast 

cancer genome-wide association studies (GWAS; 14,910 cases and 17,588 controls). Genotype 

data from iCOGS, OncoArray, and GWAS were imputed using the October 2014 release of the 

1000 Genomes Project data as a reference. Genetic association results for breast cancer risk were 

combined using inverse-variance fixed-effect meta-analyses 3. 
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GWAS analysis using data from UK Biobank. The UK Biobank project recruited approximately 

500,000 participants, ages 40 to 69, between 2007 and 2010, across 22 study centers in the United 

Kingdom. The project collected detailed demographic, lifestyle, and disease histories at baseline, 

as well as disease occurrences through prospective follow-up and database linkages13. Whole-

genome genotyping was conducted using UK Biobank Axiom Arrays for 488,377 participants, 

and imputation was performed using Haplotype Reference Consortium and 1000 Genomes phase 

3 as reference panels to obtain >90 million genetic markers13. In this study, we selected female 

individuals with both phenotypic and genotypic data available. Unrelated individuals with 

European ancestry were selected using principal component analysis. We further filtered out 

samples with genotyping call rate <5%. After these exclusions, the analysis included 10,534 breast 

cancer cases and 185,116 controls. We performed GWAS analysis using logistic regression 

adjusting for age (age at diagnosis for cases and age at last date of follow-up for controls) and top 

ten eigenvectors from principal component analysis with software package Plink 2.043.  

 

Gene expression prediction models. Gene expression prediction models were built with the 

genotype and RNA-seq data in 49 tissues of European ancestry from the GTEx project (v8)12. 

Specifically, building prediction models for a gene includes the following steps: 1) Across all 

tissues, cis-eQTLs were discovered with a false discovery rate of 5% per tissue. Only genes with 

cis-eQTLs were selected. 2) Fine mapping was performed in each tissue in the corresponding cis 

gene region by the dap-g method 20,44 to select variants with minor allele frequency > 0.01 and 

posterior inclusion probabilities (PIPs) > 0.01. Then in each credible set, only the variant with top 

PIP was kept. For the 49 tissues, a union of selected variants across 49 tissues were obtained and 

LD pruning was applied to the union of variants to remove redundant variants. 3) The MASH 

method was applied to the marginal eQTL effects across the 49 tissues at the union of variants to 

jointly estimate effects of eQTLs, allowing sparse effects (that is, with many zero effects) and 

accounting for correlation among non-zero effects in different tissues 14. 4) The predicted 

expression of the gene in each tissue was calculated as the linear combination of genotypes 

multiplying by their estimated effect sizes. In this study, the prediction models for two tissues 

(prostate and testis) were removed as they were not relevant to breast cancer in women. 
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Summary statistic-based imputation. For variants included in the GTEx prediction models but 

not in the GWAS summary statistics, we imputed z-scores with the method ImpG-Summary 45. 

The ImpG-Summary method assumes under null hypothesis, the vector 𝒁𝒁 of z-scores at all SNPs 

in a locus is approximately distributed as a Gaussian distribution, 𝒁𝒁∼ 𝑁𝑁(𝟎𝟎,Σ) with Σ being the 

correlation matrix among all pairs of SNPs induced by LD and estimates posterior mean of z-

scores at unobserved SNPs. We used the GWAS summary statistics and correlation matrix 

estimated by using the genotype data in the GTEx samples as input of the ImpG-Summary method. 

Joint TWAS across multiple tissues. The joint TWAS analysis includes two steps: 1) performing 

traditional TWAS analysis in each of the 47 tissues by the software S-Predixcan 16 to obtain the p-

values 𝑝𝑝𝑘𝑘  (𝑘𝑘 = 1, … ,47), and 2) constructing test statistic by ACAT method 17 that combined p-

values for each gene from the single tissue TWAS analyses across the 47 tissues. Specifically, the 

ACAT test statistic is 𝑇𝑇𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴 = ∑ 𝑤𝑤𝑘𝑘tan ((0.5− 𝑝𝑝𝑘𝑘)π47
𝑘𝑘=1 ), where 𝑤𝑤𝑘𝑘  are nonnegative weights. We 

used 𝑤𝑤𝑘𝑘 = 1/47. The p-value of the ACAT test statistic is approximated by 1
2
− (arctan 𝑇𝑇)/π. 

Conditional joint TWAS. To test if the signals at the 380 genes by the joint TWAS are 

independent of a set of published GWAS index SNPs (Supplementary Table S6), we performed 

TWAS conditional on these index SNPs that were genome-wide significant (p<5×10-8). At each 

gene, we considered two sets of SNPs: the target set of SNPs used for predicting gene expression 

and the conditioning set of significant index SNPs from published GWAS within ±2 Mb of the 

transcription start or stop sites of the gene. For the target set of SNPs, we calculated adjusted 

effects (beta) on breast cancer risk and their variances, after conditioning on the index SNPs using 

the conditional and joint multiple-SNP (COJO) analysis method of Yang et al 46. We then ran S-

Predixcan 16 on these conditional summary statistics in single tissues and performed the joint 

TWAS analysis that combines p-values from the single tissue analyses using the ACAT method17. 

Colocalization analysis. For the 378 genes identified by the joint TWAS, we calculated RCPs by 

the method ENLOC 20. ENLOC divides the genome into roughly independent LD blocks using the 

approach described in Berisa & Pickrell 47. For a gene located in a specific LD block, ENLOC 

calculates the colocalization probability of causal GWAS hits and causal eQTLs in the LD block. 

To calculate RCP for a gene in an LD block, we used the GTEx (v8) eQTLs for the gene and the 

meta-analysis GWAS summary statistics in the LD block.  
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Gene-based fine mapping. We performed a gene-based statistical fine-mapping over the gene–

trait association signals from TWAS using the software package FOCUS (fine-mapping of causal 

gene sets) 19. For a LD block, FOCUS estimate sets of genes that contain the causal genes at a 

predefined confidence level ρ (that is, ρ-credible gene sets; for example, ρ = 90%). FOCUS also 

computes the marginal PIP for each gene in the region to be causal given the observed TWAS 

statistics. FOCUS accounts for the correlation structure induced by LD and prediction weights 

used in the TWAS and controls for certain pleiotropic effects. FOCUS takes as input GWAS 

summary data, expression prediction weights, and LD among all SNPs in the risk region. FOCUS 

assumes a single target causal tissue. When the expression prediction model at a gene in the target 

causal tissue is unavailable, alternative tissues with correlated expression levels are used as a 

proxy. We used 47 tissues and related expression prediction weights from the GTEx v8 and 

assigned the breast tissue as the target causal tissue. 

Gene Set Enrichment and Functional Annotation. For the set of 380 significant genes identified 

by the joint TWAS, we conducted enrichment of protein-coding and lncRNA genes against gene 

sets from multiple biological pathways, functional categories, and databases by the FUMA 

package 21. Specifically, we used the GENE2FUNC module of FUMA and specified 33,527 

protein-coding and lncRNA genes as the background genes for enrichment testing. Multiple testing 

correction was performed per data source of tested gene sets (e.g., canonical pathways, 

GWAScatalog categories) using Bonferroni adjustment. We reported pathways/categories with 

adjusted P-value ≤ 0.05 and at least 2 genes that overlapped with the gene set of interest.  
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Figure 1. Ideogram of the 380 genes in the context of known GWAS loci of breast cancer. 

Figure 2. Exemplar genes in 3 loci identified by the joint TWAS analysis.  

Table 1. The 29 genes identified by joint TWAS located at 11 genomic loci at least 1 Mb away 
from previous GWAS hits. 

Table 2. The 22 genes identified by joint TWAS in the 12 known loci and significant after 
adjusting for known GWAS SNPs. 

Table 3. The 58 candidate causal genes in 47 loci that are in the credible set and RCP>0.5.  
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UKB datasets 
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genes in GTEx v8 shows tissue specificity 
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Figure 1. Ideogram of the 380 genes in the context of known GWAS loci of breast cancer. 
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Figure 2. Exemplar genes in 3 loci identified by the joint TWAS analysis.  
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Table 1. The 29 genes identified by joint TWAS located at 11 genomic loci at least 1 Mb away from previous GWAS hits. 

Locusa Gene symbol Position (hg38) 
Joint ACAT 
P-value 

Breast P-
value PIPb 

In 
CSb 

Max 
RCPc 

RCP in 
breast 

1q21.1, L1 H2BP2 chr1:143,875,171-143,904,650 8.10e-10 NA 0.008 No NA NA 
 H3-2 chr1:143,894,544-143,905,977 1.86e-11 9.13E-01 0.000 No 0.000 0.000 
 FAM72C chr1:143,955,287-143,971,986 4.92e-12 NA 0.005 No 0.348 0.011 
3p21.31, L2 CDHR4 chr3:49,790,732-49,799,873 1.76e-06 NA 0.172 Yes 0.840 0.742 
6q22.31 HSF2 chr6:122,399,551-122,433,119 1.59e-09 5.69E-10 1.000 Yes 0.304 0.042 
7q22.1, L1 SPDYE3 chr7:100,307,702-100,322,196 1.90e-07 NA 0.136 No 0.514 0.514 
 PILRB chr7:100,352,176-100,367,831 2.25e-07 1.71E-07 0.852 Yes 0.395 0.395 
 PILRA chr7:100,367,530-100,400,096 2.62e-07 3.47E-07 0.000 No 0.296 0.208 
 ZCWPW1 chr7:100,400,826-100,428,992 6.62e-07 8.53E-06 0.000 No 0.264 0.059 
 MEPCE chr7:100,428,322-100,434,126 2.58e-07 NA 0.012 No 0.261 0.021 
 PPP1R35 chr7:100,435,282-100,436,497 1.26e-06 NA NA  NA 0.301 0.091 
 C7orf61 chr7:100,456,620-100,464,260 6.71e-07 2.92E-07 0.000 No 0.235 0.235 
 TSC22D4 chr7:100,463,359-100,479,232 8.79e-07 1.38E-06 0.000 No 0.175 0.000 
 NYAP1 chr7:100,483,927-100,494,802 1.81e-06 5.41E-02 0.000 No 0.882 0.000 
9q34.2 ABO chr9:133,233,278-133,276,024 2.09e-07 1.78E-03 0.014 No 0.814 0.814 
11q23.1 PPP2R1B chr11:111,726,908-111,766,389 3.91e-08 1.76E-08 0.492 Yes 0.578 0.095 
 RP11-108O10.2 chr11:111,768,668-111,778,360 1.17e-07 5.84E-08 0.183 Yes 0.484 0.013 
 ALG9 chr11:111,782,195-111,871,581 2.52e-07 NA 0.002 No 0.611 0.038 
 FDXACB1 chr11:111,874,056-111,881,243 1.52e-07 8.58E-04 0.001 No 0.575 0.049 
 HSPB2 chr11:111,912,734-111,914,093 7.28e-08 NA 0.322 Yes NA  NA  
11q23.2 HTR3B chr11:113,904,796-113,949,079 1.84e-06 NA 0.906 Yes 0.000 0.000 
12q13.3 PRIM1 chr12:56,731,296-56,752,374 1.80e-06 1.86E-06 0.442 Yes 0.958 0.011 
 R3HDM2 chr12:57,253,762-57,431,043 2.08e-06 9.19E-01 NA  NA 0.640 0.640 
17p12 MAP2K4 chr17:12,020,829-12,143,830 1.20e-06 7.28E-07 0.893 Yes 0.426 0.426 
20q11.22-q11.23 CPNE1 chr20:35,626,031-35,664,956 1.77e-06 3.04E-05 0.039 No 0.325 0.093 
 PHF20 chr20:35,771,974-35,950,370 1.20e-06 1.18E-06 0.328 Yes 0.140 0.039 
 CNBD2 chr20:35,954,564-36,030,700 2.05e-06 1.71E-06 0.250 Yes 0.940 0.867 
20q13.33 RGS19 chr20:64,073,181-64,079,988 6.56e-07 1.76E-06 0.166 Yes 0.951 0.799 
 OPRL1 chr20:64,080,082-64,100,643 5.38e-07 2.81E-07 0.792 Yes 0.000 0.000 

a L1 and L2 denote the 1st and 2nd locus defined by LD block in the same cytoband, respectively; b denote posterior inclusion probability (PIP) and credible set (CS) 
calculated by FOCUS; c Maximum marginal posterior inclusion probability (RCP) in all tissues calculated in colocalization analysis. 
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Table 2. The 22 genes identified by joint TWAS in the 12 known loci and significant after adjusting for known GWAS SNPs.  

Locus 
Gene 
symbol Position (hg38) 

Joint 
ACAT P-

value 
Closest index 

SNPa 

Distance 
to closest 

index 
SNP (kb) 

P-value after 
adjusting for 

adjacent 
index SNPs PIPb In CSb 

Max 
RCPc 

5p15.33, L1 AHRR chr5:321,714-438,291 4.90e-07 rs116095464 0.0 2.04e-08 0.001 No 0.382 
 EXOC3 chr5:443,175-471,937 4.72e-07 rs116095464 98.2 1.54e-08 0.323 Yes 0.070 
6q25.1-q25.2 ZBTB2 chr6:151,364,115-151,391,559 9.74e-08 rs3757318 201.4 1.49e-08 0.648 Yes 0.009 
 RMND1 chr6:151,398,898-151,452,158 7.68e-07 rs3757318 140.8 1.80e-06 0.001 No 0.027 
8q21.13 HNF4G chr8:75,407,914-75,566,834 1.58e-12 rs72658071 14.4 9.67e-07 1.000 Yes 0.134 
9p21.3 CDKN2A chr9:21,967,752-21,995,301 1.39e-14 rs3057314 2.9 7.68e-09 0.001 No 0.323 
10q26.13 FGFR2 chr10:121,478,332-121,598,458 7.53e-17 rs2981582 0.0 9.61e-12 1.000 Yes 0.711 
11q13.3 TPCN2 chr11:69,048,932-69,136,316 1.08e-07 rs72932540 0.0 7.90e-10 0.000 No 0.000 

 
RP11-
554A11.8 chr11:69,147,228-69,171,564 6.64e-09 rs72932540 0.0 1.40e-10 0.000 No   

11q24.3 BARX2 chr11:129,375,848-129,452,279 2.33e-08 rs11822830 138.8 4.87e-09 0.000 No 0.003 
12p11.22 CCDC91 chr12:28,133,249-28,581,511 1.49e-15 rs7297051 111.4 3.48e-12 0.005 No 0.001 
17q21.2-
q21.31 CAVIN1 chr17:42,402,449-42,423,256 9.00e-07 rs138672638 2.5 1.69e-06 0.002 No 0.097 
19q13.32 GIPR chr19:45,668,221-45,683,722 9.26e-08 rs71338792 0.0 8.02e-10 0.001 No 0.364 
 FBXO46 chr19:45,710,629-45,730,896 1.90e-07 rs71338792 30.9 7.08e-08 0.461 Yes   
22q12.1 TTC28 chr22:27,978,014-28,679,840 3.29e-08 rs62235681 4.9 1.28e-10 0.000 No 0.000 
 CHEK2 chr22:28,687,743-28,742,422 4.12e-12 rs62235681 3.0 6.11e-16 0.998 Yes 0.002 
 HSCB chr22:28,742,039-28,757,515 4.66e-16 rs17879961 16.9 4.44e-16 0.002 No 0.000 
 CCDC117 chr22:28,772,674-28,789,301 3.02e-08 rs17879961 47.6 2.16e-12 0.003 No 0.000 
 XBP1 chr22:28,794,555-28,800,597 2.67e-08 rs17879961 69.5 8.70e-08 0.003 No 0.001 
22q13.1, L2 CBX6 chr22:38,861,422-38,872,249 8.57e-16 chr22:39359355 91.0 4.05e-15 0.922 Yes 0.000 
 APOBEC3A chr22:38,952,741-38,992,778 5.77e-16 chr22:39359355 0.0 <1.0e-19 0.334 Yes 0.000 
 APOBEC3B chr22:38,982,347-38,992,804 2.10e-15 chr22:39359355 19.0 <1.0e-19 0.334 Yes 0.004 

a Single nucleotide polymorphisms (SNP) that were identified in previous genome-wide association studies; 
b Denote posterior inclusion probability (PIP) and credible set (CS) calculated by the FOCUS method;  
c Maximum marginal posterior inclusion probability (RCP) in all tissues calculated in colocalization analysis. 
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Table 3. The 58 candidate causal genes in 47 loci that are in the credible set and RCP>0.5.  

Locus Gene symbol Position (hg38) 
Joint ACAT 
P-value 

Breast 
P-value PIPa Max 

RCPb 
RCP in 

breast 
1p36.22 PEX14 chr1:10,472,288-10,630,758 7.45e-16 2.65E-10 0.288 0.707 0.002 
1p36.13 KLHDC7A chr1:18,480,930-18,485,974 1.51e-15 5.19E-13 1.000 1.000 0.038 
1p34.1-1p33 PIK3R3 chr1:46,040,140-46,133,036 7.22e-08 4.16E-08 0.848 0.800 0.062 
1p13.3 GSTM4 chr1:109,656,099-109,674,836 2.71e-07 1.27E-05 0.146 0.994 0.994 
 GSTM2 chr1:109,668,022-109,709,551 2.85e-08 8.63E-07 0.200 0.994 0.994 
 GSTM1 chr1:109,687,814-109,709,039 2.28e-09 6.79E-09 0.495 0.995 0.995 
1p13.2 DCLRE1B chr1:113,905,213-113,914,086 3.67e-10 2.35E-08 0.986 0.949 0.949 
1q22 ASH1L chr1:155,335,268-155,563,162 6.06e-11 1.52E-11 0.879 0.888 0.888 
1q32.2 LINC02767 chr1:207,959,292-207,969,329 1.35e-07 3.01E-08 0.992 0.630 0.630 
2p23.3 ADCY3 chr2:24,819,169-24,920,237 2.18e-10  NA 0.449 0.691 0.128 
2q31.1, L2 DLX2 chr2:172,099,438-172,102,900 3.71e-13 1.33E-13 1.000 0.919 0.209 
2q33.1 CASP8 chr2:201,233,443-201,361,836 8.45e-17 1.80E-14 0.993 0.868 0.000 
3p12.1 VGLL3 chr3:86,876,388-86,991,149 3.00e-10 1.20E-10 1.000 1.000 0.865 
3q23 ZBTB38 chr3:141,324,213-141,449,792 2.75e-16 2.04E-17 1.000 0.764 0.710 
4p14 TLR10 chr4:38,772,238-38,782,990 9.88e-13 4.05E-13 0.930 0.553 0.245 
 FAM114A1 chr4:38,867,677-38,945,739 1.76e-10 3.81E-05 0.263 0.866 0.866 
4q21.23 MRPS18C chr4:83,455,932-83,469,735 2.06e-07 5.47E-05 0.180 0.574 0.034 
4q22.1 PPM1K chr4:88,257,620-88,284,769 4.62e-08 1.03E-09 1.000 0.970 0.970 
5p15.1 MARCHF11 chr5:16,067,139-16,180,762 9.36e-13 7.80E-14 1.000 0.584 0.584 
5q14.1-q14.2 ATG10 chr5:81,972,023-82,276,857 2.79e-13 1.71E-08 0.389 0.738 0.738 
5q31.1, L1 SLC22A5 chr5:132,369,710-132,395,613 2.08e-10 4.22E-10 0.072 0.830 0.172 
 IRF1 chr5:132,440,440-132,508,719 5.57e-11  NA 0.928 0.680 0.051 
5q31.1, L2 HSPA4 chr5:133,052,013-133,106,449 7.48e-09 4.98E-01 0.843 0.638 0.638 
6p23 RANBP9 chr6:13,621,498-13,711,835 4.51e-13 6.33E-05 0.352 0.721 0.016 
6q14.1, L1 RP11-250B2.5 chr6:80,466,958-80,469,080 8.14e-08 3.30E-07 0.933 0.537 0.516 
6q22.31 HSF2 chr6:122,399,551-122,433,119 1.59e-09 5.69E-10 1.000 0.840 0.742 
6q23.1 L3MBTL3 chr6:130,013,699-130,141,449 6.31e-12 4.56E-11 1.000 0.990 0.590 
7q21.3, L2 BAIAP2L1 chr7:98,291,650-98,401,090 5.08e-08 2.51E-07 0.812 0.836 0.836 
7q22.1, L1 PILRB chr7:100,352,176-100,367,831 2.25e-07 1.71E-07 0.852 0.514 0.514 
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8p11.23 RP11-419C23.1 chr8:37,067,441-37,069,418 4.87e-17 6.32E-22 1.000 0.920 0.896 
10p15.1 GDI2 chr10:5,765,223-5,842,132 5.40e-07 8.15E-08 0.987 0.711 0.424 
10p12.31 MLLT10 chr10:21,524,646-21,743,630 1.95e-17  NA 1.000 0.854 0.659 
10q26.13 FGFR2 chr10:121,478,332-121,598,458 7.53e-17  NA 1.000 0.711 0.065 
11p15.5, L1 PANO1 chr11:797,511-799,190 1.40e-12 4.55E-13 0.216 0.798 0.660 
 PIDD1 chr11:799,179-809,753 2.25e-14 5.97E-14 0.773 0.973 0.845 
11p15.5, L2 PRR33 chr11:1,888,078-1,891,895 6.08e-17 5.65E-27 0.990 0.644 0.145 
11q13.1 OVOL1 chr11:65,787,063-65,797,214 2.83e-12 2.14E-10 0.983 0.679 0.171 
11q13.1 CTSF chr11:66,563,464-66,568,879 7.44e-07 1.10E-04 0.065 0.773 0.771 
11q23.1 PPP2R1B chr11:111,726,908-111,766,389 3.91e-08 1.76E-08 0.492 0.814 0.814 
 RP11-108O10.2 chr11:111,768,668-111,778,360 1.17e-07 5.84E-08 0.183 0.578 0.095 
 HSPB2 chr11:111,912,734-111,914,093 7.28e-08  NA 0.322 0.575 0.049 
12q22 NTN4 chr12:95,657,807-95,791,189 1.95e-16 2.46E-41 1.000 0.964 0.952 
14q13.3 PAX9 chr14:36,657,568-36,679,362 4.74e-17 5.61E-20 1.000 0.829 0.771 
15q24.1 ULK3 chr15:74,836,118-74,843,346 3.56e-08 6.78E-08 0.885 0.846 0.599 
15q26.1 RCCD1 chr15:90,954,881-90,963,125 5.71e-16 1.04E-15 1.000 0.857 0.851 
16q22.2 ZNF23 chr16:71,447,597-71,463,095 2.88e-07 2.73E-06 0.465 0.673 0.673 
17p12 MAP2K4 chr17:12,020,829-12,143,830 1.20e-06 7.28E-07 0.893 0.640 0.640 
 STXBP4 chr17:54,968,727-55,173,632 7.01e-17 9.98E-19 1.000 0.643 0.000 
17q25.3 CBX8 chr17:79,792,132-79,801,683 1.55e-10 8.57E-12 1.000 0.909 0.897 
19p13.13 RAD23A chr19:12,945,855-12,953,642 1.93e-06  NA 0.051 0.790 0.030 
 LYL1 chr19:13,099,033-13,103,161 4.68e-10  NA 0.827 0.867 0.182 
19p13.11, L1 ABHD8 chr19:17,292,131-17,310,236 1.18e-07 6.66E-05 0.701 0.712 0.191 
19p13.11, L2 SSBP4 chr19:18,418,864-18,434,562 7.67e-18 5.76E-24 1.000 0.757 0.757 
 ISYNA1 chr19:18,434,388-18,438,167 1.85e-17 2.54E-14 0.108 0.629 0.036 
19q13.31 KCNN4 chr19:43,766,533-43,780,976 7.65e-17  NA 1.000 0.962 0.143 
20q13.33 RGS19 chr20:64,073,181-64,079,988 6.56e-07 1.76E-06 0.166 0.940 0.867 
 OPRL1 chr20:64,080,082-64,100,643 5.38e-07 2.81E-07 0.792 0.951 0.799 
22q13.1, L1 MAFF chr22:38,200,767-38,216,507 2.50e-14  NA 1.000 0.715 0.123 

a Posterior inclusion probability (PIP) and credible set (CS) calculated by the FOCUS method;  
b Maximum marginal posterior inclusion probability (RCP) in all tissues calculated in colocalization analysis. 
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