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Abstract 

Diagnosis of mild traumatic brain injury (mTBI) is challenging, as the symptoms are diverse 

and nonspecific. Electrophysiological studies have discovered several promising indicators of 

mTBI that could serve as objective markers of brain injury, but we are still lacking a diagnostic 

tool that could translate these findings into a real clinical application.  

Here, we used a multivariate machine-learning approach to detect mTBI from resting-state 

magnetoencephalography (MEG) measurements. To address the heterogeneity of the 

condition, we employed a normative modeling approach and modeled MEG signal features of 

individual mTBI patients as deviations with respect to the normal variation. To this end, a 

normative dataset comprising 621 healthy participants was used to determine the variation in 

power spectra across the cortex. In addition, we constructed normative datasets based on age-

matched subsets of the full normative data. To discriminate patients from healthy control 

subjects, we trained support vector machine classifiers on the quantitative deviation maps for 

25 mTBI patients and 20 controls not included in the normative dataset.  

The best performing classifier made use of the full normative data across the entire age range. 

This classifier was able to distinguish patients from controls with an accuracy of 79%, which 

is high enough to substantially contribute to clinical decision making. Inspection of the trained 

model revealed that low-frequency activity in the theta frequency band (4–8 Hz) is a significant 

indicator of mTBI, consistent with earlier studies. The method holds promise to advance 

diagnosis of mTBI and identify patients for treatment and rehabilitation.  

Significance statement  

Mild traumatic brain injury is extremely common, but no definite diagnostic method is yet 

available. Objective markers for detecting brain injury are needed to direct care to those who 

would best benefit from it. We present a new approach based on MEG recordings that first 

explicitly addresses the variability in brain dynamics within the population through normative 

modeling, and then applies supervised machine-learning to detect pathological deviations 

related to mTBI. The approach can easily be adapted to other brain disorders as well and could 

thus provide a basis for an automated tool for analysis of MEG/EEG towards disease-specific 

biomarkers.  
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Introduction 

Due to its high prevalence and potential long-term adverse health effects, accurate diagnosis of 

mild traumatic brain injury (mTBI) is of high importance. Objective diagnosis of mTBI 

remains a challenge, however, as structural imaging methods such as magnetic resonance 

imaging (MRI) as well as neuropsychological testing often fail to detect clinically significant 

abnormalities (Bigler et al., 2016; Dikmen et al., 2017). Diagnosis of mTBI after the acute 

phase is further complicated by posttraumatic symptoms that are nonspecific to mTBI and 

highly variable across patients (Wäljas et al., 2015). 

Studies employing noninvasive functional neuroimaging techniques such as functional 

magnetic resonance imaging (fMRI), electroencephalography (EEG) or 

magnetoencephalography (MEG) have provided group-level evidence of changes in brain 

activity following mTBI, even several months after the trauma and in the absence of clinical 

symptoms (Huang et al., 2014; Lewine et al., 2007; Pontifex et al., 2009; Rogers et al., 2015). 

New objective measures based on functional brain imaging might prove essential for improving 

the accuracy and reliability of the diagnosis, and for identifying patients who are at risk of 

chronic symptoms and would benefit from intervention. 

Electrophysiological recordings of brain activity, such as MEG and EEG, provide a range of 

measures (e.g. amount of low-frequency activity, posterior alpha frequency and power, 

alterations in functional connectivity) that reflect the altered functional state of brain regions 

and networks after mTBI (Castellanos et al., 2010; Dimitriadis et al., 2015; Haneef et al., 2013; 

Lewine et al., 2007). However, the ability to determine the clinical status of individual mTBI 

patients based on single – or univariate – measures is extremely limited (Lewine et al., 2019), 

and it is not clear which MEG/EEG measures are most informative of disease pathology. Thus, 

compound – or multivariate – analysis that jointly exploits multiple measures could potentially 

increase our ability to accurately detect pathology related to mTBI. 

Extraction of objective measures from functional imaging data in mTBI is particularly 

challenging since the mechanism, location and nature of the head insult, as well as the clinical 

symptoms are largely heterogeneous. Moreover, individual variation in brain activity is large 
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even in the healthy population and the majority of mTBI patients experience a prompt recovery. 

Therefore, regarding patients and control subjects as clearly delineated and distinct groups, 

may not properly reflect the nature of this disorder (Kapur et al., 2012; Marquand et al., 2016). 

This variability can partially be addressed by normative modeling (Marquand et al., 2016), 

where the aim is to map the full range of normal variation within the population and quantify 

statistical deviations of individual patients. Different normative modeling approaches have 

recently been applied to neuroimaging data to study disorders such as schizophrenia (Kia and 

Marquand, 2019; Pinaya et al., 2019; Wolfers et al., 2018), dementia (Pinaya et al., 2021; 

Ziegler et al., 2014) and autism (Pinaya et al., 2019; Zabihi et al., 2019). The methods have 

shown significant promise in providing predictions of disease states at the level of individual 

subjects. 

In this study, we compare source-level power spectra computed from resting-state MEG 

recordings of mTBI patients and their healthy controls to a large normative reference dataset 

for the purpose of modeling the pathological features of individual mTBI patients as extreme 

values or deviations with respect to the normal variation. To discriminate the group of mTBI 

patients from healthy control subjects, we train a support vector machine (SVM) classifier 

(Vapnik, 1995) on the resulting quantitative deviation maps. 

A key question in normative modeling is the choice of the reference cohort, which should 

capture a wide range of variation in the population (Marquand et al., 2019). An important 

consideration is therefore the matching of the demographics of the normative reference data to 

the subject. As there is significant neurophysiological variation across demographic groups, 

interesting disease-related effects may be diluted if the applied normative data represents the 

whole population. Here, we explore this question by comparing the results obtained with age-

matched and non-matched normative data. 

Materials and methods  

Datasets 

We employed a dataset originally measured by Kaltiainen and colleagues (Kaltiainen et al., 

2019, 2018), comprising resting-state MEG recordings from 25 mild traumatic injury patients 

and 20 healthy controls. In addition, we employed a large, separate dataset, utilizing MEG 

recordings from a total of 621 healthy participants (Taylor et al., 2017) as normative data. 
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mTBI patients and healthy controls  

The patient group consisted of 25 mild traumatic brain injury patients (11 females, 14 males) 

with a mean age of 42 years (range 20–59 years). The control group comprised 20 healthy 

subjects (8 females, 12 males) with a mean age of 39 years (range 19–58 years). All patients 

and controls were without neuropsychological disorders, medication affecting the central 

nervous system, substance abuse or earlier history of TBI. The study was approved by the 

Ethics Committee of Helsinki and Uusimaa Hospital District. All participants’ consent was 

obtained in accordance with the Declaration of Helsinki.  

The patients’ level of consciousness was assessed with the Glasgow Coma Scale (GCS) 

(Teasdale and Jennett, 1974) shortly after the injury. GCS addresses the level of consciousness, 

ranging from three (deep unconsciousness) to 15 (alert and awake). The GCS scores varied 

between 14 and 15, thus fulfilling the criteria for mTBI. All patients maintained TBI symptoms 

at their first MEG measurement. At their MEG measurement sessions, the patients filled in the 

Rivermead Post-Concussion Symptoms Questionnaire (RPQ) (King et al., 1995), which 

measures the severity of post-concussive symptoms after TBI with a five-step scale, compared 

with the situation before the accident. The maximum score is 64, but answering “no more of a 

problem as before the accident” yields one point. The scores of the questionnaire varied from 

3 to 36 with an average of 17.2. The demographics of the patient group, as well as their GCS 

and RPQ scores, are presented in Table 1. All patients fulfilled the criteria for mTBI according 

to the American Congress of Rehabilitation Medicine (ACRM) criteria (Kay et al., 1993) with 

loss of consciousness of less than 30 minutes at the time of the accident, GCS varying between 

13–15 at 30 min after the accident and the duration of post-traumatic amnesia less than 24h.  

All patients underwent an MEG measurement within 6 months (26 weeks) after the trauma. 

The recordings of 12 patients were performed at the subacute stage within 2 months of the 

injury. The MEG measurements were performed at Aalto Neuroimaging MEG Core, Aalto 

University School of Science, Espoo, Finland, using a 306-channel whole-head MEG device 

(Elekta Neuromag; MEGIN Oy, Helsinki, Finland). During the recordings, data were filtered 

to 0.03–330 Hz and sampled at 1000 Hz. Electrocardiogram and horizontal and vertical electro-

oculograms were measured for managing artifacts caused by heartbeat and eye movement, 

respectively. Here, from those recordings, we use one MEG session where the subjects rested 

with eyes closed for 10 minutes. The subjects were instructed to sit relaxed and avoid 
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movement. The measurement was briefly paused twice to confirm that the subjects remained 

awake and alert. 

Table 1 Demographics of the mTBI patients  
Patienta Age-group (years)b GCS RPQ Delay (weeks)c Lesionsd 

1 40-44 15 3 17 – 

2 50-54 15 3 9 + 

3 40-44 14 24 22 + 

4 45-49 14 29 20 + 

5 35-39 14 13 15 + 

6 30-34 15 18 17 + 

7 55-59 15 3 3 + 

8 50-54 15 8 9 – 

9 35-39 15 31 9 – 

10 20-24 14 2 4 + 

11 40-44 14 27 7 + 

12 40-44 14 28 26 – 

13 35-39 14 25 7 + 

14 35-39 15 9 3 – 

15 25-29 14 3 4 – 

16 35-39 14 25 4 + 

17 50-54 14 6 9 + 

18 25-29 15 16 1 – 

19 25-29 14 3 3 + 

20 54-59 14 36 1 + 

21 50-54 14 34 3 + 

22 50-54 15 14 1 – 

23 20-24 15 25 1 – 

24 40-44 14 14 4 + 

25 55-59 15 32 3 – 

 

Average 41.6 14.4 17.2 8.0 60% 

 
aThe data were obtained from Kaltiainen and colleagues (Kaltiainen et al. 2018; Kaltiainen et al. 2019). The patients are in the same order as 
in Table 1 of Kaltiainen et al. (Kaltiainen et al. 2019).  
bFive-year age groups 

cThe time between the injury and the MEG measurement. Times expressed in months were converted to weeks using a factor of 4.345 (the 
average number of weeks in a month). 
dLesions observed in comprehensive MRIs. 
GCS – Glasgow Coma Scale score; RPQ – Rivermead Post-Concussion Symptoms Questionnaire. 
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Anatomical MRI images (Signa HDX 1.5 T, General Electric, Milwaukee, WI, USA) were 

acquired from all subjects. MRIs from patients were acquired within one week to 16 months 

after the injury. Trauma lesions were detected in 15 of the 25 (60%) patients (see Table 1). 

Normative dataset  

A large open neuroimaging dataset by the Cambridge Centre for Ageing and Neuroscience 

(Cam-CAN) (Taylor et al., 2017), containing MEG and MRI measurements of nearly 700 

healthy participants aged 18 to 87, was used for creating the normative reference data. The 

curated, cross-sectional Cam-CAN dataset contains measurements from approximately 50 men 

and 50 women in each age decade (18–27, 28–37, 38–47, 48–57, 58–67, 68–77 and 78–87 

years). In this study, only the resting-state, eyes-closed MEG and anatomical MRI were used. 

Further details of the dataset are presented by Taylor and colleagues (Taylor et al., 2017) . 

Subjects with missing or incomplete resting-state MEG measurements or T1-weighted MRI 

images were excluded from the analyses, resulting in a set of 621 subjects. The number of 

subjects in each age group was 56, 92, 104, 93, 95, 102 and 79, from the youngest to oldest. 

Data preprocessing  

Artifact removal and data augmentation 

The temporal extension of the signal space separation (tSSS) (Taulu and Simola, 2006) method 

implemented in the MaxFilter software package (MEGIN Oy) was used for reducing external 

artifacts in the MEG data. To suppress artifacts caused by cardiac activity and eye movement, 

independent component analysis (ICA) (Hyvärinen and Oja, 2000) was used for identifying 

components most prominently related to the aforementioned sources. In most cases, 1–2 

components were removed, but for some subjects three or even four components were removed 

based on manual inspection of the spatial patterns and time courses of the components. The 

FastICA algorithm available in MNE-Python software (Gramfort et al., 2013) was used for the 

ICA processing. 

Data augmentation was applied on the samples by means of a sliding window with a length of 

200 seconds and stride of 50 seconds. This resulted in seven time series for each subject and a 

total sample size of 315 data points. 
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Source modeling  

An automated source-modeling pipeline was applied on the measurements to compute power 

spectral densities (PSDs) at each cortical location using the MNE-Python software (Gramfort 

et al., 2014). 

Reconstruction of each subject’s cortical surface was performed using the FreeSurfer software 

(Dale et al., 1999; Fischl et al., 1999) from T1-weighted anatomical MRI images. For the 

forward computation, a surface-based source space with the ico-4 decimation was created, 

resulting in a set of 5124 cortical locations at which the amplitudes of the current dipoles were 

estimated. A single-compartment BEM head model was formed based on brain surface 

tessellations obtained by the FreeSurfer watershed algorithm (Ségonne et al., 2004). The 

coregistration of the MEG and MRI coordinate frames was performed automatically using 

MNE-Python and fiducial points calculated using the FieldTrip (Oostenveld et al., 2011) 

toolbox in MATLAB. 

For the calculation of the inverse operator, noise covariance matrices were computed from 

recordings without a subject (“empty-room recording”) performed during the same 

measurement session. The ICA solutions computed for each subject’s recording were applied 

also to these empty-room recordings. The noise covariance matrix and the forward solution 

were used to compute the dSPM inverse solution, which was applied to the complex-valued 

8192-point Fourier transform of the Hann-windowed (50% overlap) raw data over a frequency 

range of 1–40 Hz. A source-level PSD was obtained by taking the magnitude of the estimate 

at each source point, yielding a matrix X of size 5124 (number of source locations) × 319 

(number of frequency values). Finally, the subject-specific cortical PSDs were morphed to a 

reference brain (the “fsaverage” brain provided by FreeSurfer) to enable comparison of the 

power spectra across subjects (see Figure 1A).  

Feature engineering 

To obtain normative models, the mean μ and standard deviation σ of the power spectra were 

calculated across the subjects from the normative dataset (Figure 1B). These statistics were 

then used for converting the power spectrum matrices for the patients and their healthy controls, 

into deviations maps of Z-scores over the entire cortex, calculated as  

,    (1) 
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where X ∈ R5124×319 is the power spectrum of an individual subject. 

In addition, data binning was performed both over the spatial and the frequency dimensions to 

reduce dimensionality. The brain sources were automatically grouped together according to an 

anatomical parcellation scheme with 448 cortical regions (Khan et al., 2018), where the activity 

of a cortical region was represented by the mean power of the source points within that region 

(see Figure 1C). 

 

Figure 1. Analysis pipeline. (A) Data preprocessing. Source-level power spectra were first 
calculated for each cortical region and morphed to a common brain template. (B) Construction 
of normative models. The mean μ and standard deviation σ were calculated across subjects 
within the reference dataset to obtain normative data for each location and frequency. Three 
different types of normative models were constructed: a full normative model containing all 
participants from the reference dataset across the entire age range (depicted in blue, mean 
values across all frequencies and cortical locations are shown), an age-matched model 
containing a subset of participants within the same age range as the patient/control (depicted 
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in green), and for comparison a random model with a subset of reference data of random ages 
(shown in red). (C) Classification procedure. The normative models were used for converting 
the power spectra of the patients and controls into deviation scores (z-scores). The deviation 
scores, binned into 448 cortical parcels and six frequency bands, were then entered into the 
classification procedure. 
 

In the frequency dimension, six frequency bands were defined: delta (1–4 Hz), theta (4–8 Hz), 

alpha (8–13 Hz), low beta (13–17 Hz), high beta (17–30 Hz), and gamma (30–40 Hz). The 

average was taken over the power values corresponding to each frequency interval (not shown 

in Figure 1). Binning the data into cortical parcels and into canonical frequency bands 

significantly reduced the dimensionality of the data: the resulting power spectra of size 448×6 

were only 0.16% the size of the original data. Finally, the deviation matrices were flattened 

into feature vectors containing the six frequency features for each cortical region, resulting in 

2688 features per subject. 

Model training and validation  

A support vector machine with a radial basis-function kernel was selected for classifying the 

measurements of mTBI patients and controls due to its ability to perform well in high-

dimensional settings, even when the size of the dataset is smaller than the number of features 

(Nayak et al., 2015). 

A nested cross-validation strategy was selected for evaluating model performance. In the inner 

5-fold cross-validation loop, the best values for the regularization hyperparameters C and γ 

were chosen based on the best average accuracy across the folds. In the outer 7-fold loop, the 

model was re-trained using the chosen hyperparameters and evaluated using the independent 

validation set of the fold. To reduce possible bias of a single cross-validation split, the nested 

procedure was repeated 5 times with a different split each round, resulting in a total of 35 folds 

in the outer loop. The splits were stratified by the target labels. 

The hyperparameter values tested in the inner cross-validation loop were 1, 5 and 10 for C and 

0.1, 0.01 and 0.001 for γ. The penalty parameter C was weighted inversely proportional to class 

frequencies to avoid bias towards the positive class (patients) which had a small majority. 

The data were centered by subtracting the median and scaled to the range between the 1st and 

3rd quartile of the data. The median and the interquartile range were calculated from the 
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training data at each cross-validation fold and applied to both training and testing data before 

fitting and evaluating the model. 

The employed data augmentation approach resulted in multiple samples corresponding to the 

same subject, which leads to the samples being dependent. To avoid leaking information, the 

cross-validation splits were constructed so that the samples of any single subject were included 

only in the training or only in the validation set, but never both. The predicted class label for 

each subject, positive (patient) or negative (control), was determined by the label given to the 

majority of samples from that subject. 

To test the effect of using normative data from a specific age group, the model was trained and 

evaluated on an age-matched subset of the normative data, i.e., only the power spectra 

belonging to the same age decade as the subject were used. The age groups were defined 

according to the normative dataset as 18–27, 28–37, 38–47, 48–57 and 58–67 years. To ensure 

that the possible difference in the results was not due to the smaller size of the normative 

dataset, the model was also evaluated on a dataset where the normative data used for each 

subject were randomly subsampled so that the size of the normative dataset was equal to the 

number of normative samples in the subject’s age group. The results of the randomized 

procedure were averaged over three repetitions to reduce the effect of a single random 

sampling. 

In addition to the above three ways of employing the large normative dataset, we trained and 

evaluated the model on a dataset where the features were created from only the power spectra 

of the mTBI patients and their healthy controls, applying the same binning scheme as described 

earlier but without computing the Z-scores using normative data. This was done to assess the 

performance of the proposed normative modeling approach compared to classifying the power 

spectra as such. 

The statistical significance of the results was explored using permutation tests, where the model 

was cross-validated 1000 times with randomly permuted group labels for subjects. A p-value 

< 0.05 was considered significant. 

Estimating feature significance 

After verifying the predictive capabilities of the model, permutation feature importance 

(Breiman, 2001) was used for estimating how much the model relies on each individual feature 
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for aiding the classification. The method can be used to interpret even nonlinear classifiers and 

is defined as the decrease in prediction performance (in this case, accuracy) when the values of 

the feature are randomly permuted while keeping other features intact. 

We expected that many of the features within the dataset would be highly correlated: for 

example, the alpha-band power values in two neighbouring regions are probably very similar. 

To reduce multicollinearity of the features, the number of features was reduced with a 

hierarchical clustering approach, where the Spearman rank correlations between features were 

clustered using Ward’s method. A threshold of 2 was manually selected to form the clusters, 

the first feature of each cluster was picked, and the resulting set of features was used to train 

the model with the cross-validation approach described before. The selection of features to be 

removed was performed only on the training data of each fold to avoid leaking information to 

the test set. The permutation importance was calculated on the test data of each fold and finally 

averaged across folds. 

Correlation of patient demographics and classification 

The effects of each mTBI patient’s age, timing of the MEG recording and RPQ score on the 

classifier’s performance (Table 1) were inspected by calculating the Spearman rank correlation 

coefficients. The fraction of times each patient was predicted correctly and the average decision 

function values of each patient were calculated over the five repeats of the 7-fold cross 

validation. The decision function values are proportional to the distance of the samples from 

the hyperplane separating the classes, and so they are indicators of the classifier’s confidence 

regarding a particular sample. The predicted class corresponds to the sign of the decision 

function output. 

Data availability 

The data that supports the findings of the study are available upon reasonable request from the 

authors. The dataset is not publicly available as it contains information that could compromise 

the privacy of the research participants. The Cam-CAN dataset is publicly available upon 

request at https://camcan-archive.mrc-cbu.cam.ac.uk/dataaccess/. 
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Results  

Deviation scores 

Figure 2A shows the average deviation scores for the patient and control groups after binning 

the data in the spatial dimension. The patient group shows higher average activation compared 

to the normative dataset, mainly around 10 and 20 Hz as well as at frequencies over 30 Hz. The 

deviation values for the control subjects are overall slightly lower compared to the normative 

dataset, which might be an effect of different measurement sites.  
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Figure 2 (A) Group-average, relative power spectra of mTBI patients and healthy 
controls. Horizontal axis is frequency (Hz), vertical axis the cortical location (indices of the 
448 cortical regions ordered alphabetically), and the color indicates the Z-score with respect to 
the normative data at that frequency and cortical location. (B) Relative power spectra 
associated with different classification results. The average Z-score maps for patients (first 
row) and controls (second row) by classification output, from left to right: correctly classified 
samples, incorrectly classified samples and the difference between the correctly and incorrectly 
classified samples.  

Classification performance 

The mean and standard deviation of the accuracy, sensitivity, and specificity across the cross-

validation folds are reported in Table 2 for the three different approaches that were used for 

selecting the normative data (using the whole normative dataset, an age-group-matched subset, 

or a random subset of the same size as the age-matched set), as well as for the results obtained 

without using normative data. 

Table 2 Classification of MEG data from mTBI patients and healthy controls 

Normative data Accuracya Sensitivitya Specificitya 

Full 0.790 (±0.154) 0.912 (±0.176) 0.638 (±0.277) 

Age-matched 0.761 (±0.150) 0.907 (±0.166) 0.581 (±0.277) 

Random 0.711 (±0.153) 0.914 (±0.154) 0.467 (±0.318) 

None 0.786 (±0.162) 0.912 (±0.154) 0.629 (±0.293) 

aThe average (± standard deviation) accuracy, sensitivity and specificity over a 5×7-fold repeated nested cross-validation with hierarchical 
clustering of correlated features. 

 

The largest accuracy (0.790) was achieved by using all available normative data. Using age-

matched normative data yielded slightly lower results: the accuracy was 0.761 with feature 

selection by clustering. When comparing the results using age-matched normative data to a 

random sample of normative data of the same size, the randomly selected normative data 

yielded a notably lower accuracy of 0.711. Classification without the use of normative data 

yielded an accuracy of 0.786, which is only marginally lower than the highest value obtained. 

Permutation tests indicated that the accuracy of the classifier was significantly higher than 

chance level at p < 0.05 for all classification tasks. 

In all cases the classifier had a high sensitivity, with the largest value (0.914) obtained for the 

random normative dataset. The specificity of the classifier was notably lower, at most 0.638 

with full normative data. Using age-matched normative data yielded a decrease in sensitivity 

and an increase in specificity when compared to a random selection of normative data. 
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Model interpretation 

To gain insight to the decision function of the classifier, averaged spectral Z-score maps of 

both patients and controls were plotted for correctly and incorrectly classified subjects together 

with their difference; see Figure 2B. In this analysis, the correct vs. incorrect classification was 

based on the best performing model, which used all available normative data without age-group 

matching. 

Similarly to the observations from Figure 2A, the correctly classified patients seem to be 

characterized by larger Z-scores around the alpha (∼10 Hz) and beta (∼20 Hz) frequencies and 

also in the high end of the spectrum – the gamma band. Higher activation can also be seen in 

the slower waves of the theta band. The mTBI patients incorrectly classified as controls appear 

to be lacking these features at least at the group level, which is likely the reason for their 

misclassification. For the control group, the most notable difference between the correct and 

incorrect classifications is in the 10-Hz frequency band, which shows higher values for the 

false positives. The difference plots show that the values of the correctly classified patients are 

overall slightly higher than those of the incorrectly classified patients, while the inverse is true 

for the controls.  

Figure 3A shows the permutation importance of the features selected by the hierarchical 

clustering method. Only 30 features with the largest mean importance are shown. A clear 

majority of the most significant features correspond to the theta frequency band. The list also 

includes a few features from the alpha, delta and low beta frequency bands. Cortical areas 

prominently present among the most important features are mostly located in the parietal lobe, 

such as the supramarginal gyrus, postcentral gyrus, superior and inferior parietal lobule and 

precuneus. Other featured areas include the precentral gyrus in the posterior frontal lobe and 

the middle and inferior temporal cortex in the temporal lobe. 

The mean values of the estimated feature importance for the theta and alpha bands are 

visualized superimposed on the cortical surface in Figure 3B. In line with the results in Figure 

3A, the most significant features are concentrated in the parietal lobe while there are also some 

in the temporal and occipital lobes and in parts of the frontal lobe. 
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Figure 3 (A) Feature importance. The feature importance (horizontal axis) is defined as the 
reduction in accuracy when the feature is randomly permuted. The labels of the features 
indicate the cortical region, the index of the subarea within the subdivided region, and the 
hemisphere (L for left, R for right) that the feature corresponds to. Only the 30 features with 
the largest mean importance are shown. (B) Cortical sources contributing to the 
classification of patients and controls at two frequency bands. The spatial distribution of 
the average feature importance, shown for the theta and alpha frequency bands. The values 
were calculated as the permutation feature importance. 

 

To further assess the reliability of the results, the Z-score map of each patient was visually 

compared to the findings of Kaltiainen and colleagues (Kaltiainen et al., 2018). In that study, 

theta band activity exceeding two standard deviations from the healthy subjects’ average was 

found in seven of the 26 mTBI patients, 25 of which were also analyzed in this study. The Z-

maps revealed such aberrant low-frequency activity in eight patients – of which five were the 

same as the ones identified in that earlier study – when the scores were computed using the full 

normative dataset. With age-matched normative data, the abnormality was found in one 
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additional patient. Representative examples of the Z-score maps of patients with abnormal theta 

activity are shown in Figure 4. As seen in the figure, the locations of this abnormal low-

frequency activity are highly variable. 

The eight patients with abnormal theta activity (or nine in the age-matched case) were classified 

by the model with an accuracy of 0.950 (age-matched: 0.911). On the other hand, the same 

phenomenon within the theta frequency band was observed in three out of the 20 healthy 

controls with non-matched data and in four with age-matched data. These subjects were 

classified incorrectly without exception. 

 

Figure 4 Deviation score maps for theta-band power in four patients. The color indicates 
the Z-score with respect to the level of 4–8-Hz activity in the full normative data. 

 

To test whether the classification results were affected by age, delay between time of injury 

and the MEG recording, or the severity of the symptoms, we calculated correlations between 

these demographics and the classification results. We obtained the following correlations 
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coefficients: age and fraction of correct predictions –0.11…0.21, timing of MEG and fraction 

of correct predictions –0.29…0.01, RPQ and fraction of correct predictions –0.16…0.00, age 

and decision function output 0.00…0.24, timing of MEG and decision function output –

0.14…0.26, RPQ and decision function output –0.13…0.20. None of the correlations were 

statistically significant (p-value of the highest correlation was 0.16), indicating that the ability 

of the classifier to correctly detect mTBI was not significantly affected by the subject’s age, 

the delay of the MEG measurements after the injury, or the severity of the post-concussive 

symptoms on this dataset. 

Discussion 

Classification accuracy and significant features 

Finding objective diagnostic biomarkers for mTBI is challenging due to the high variability 

and nonspecificity of posttraumatic symptoms. Combining measurements of brain electric 

activity with machine learning could aid in identification of mTBI, and thus help clinical 

decision making. Here we show that mTBI patients can be separated from healthy controls with 

79.0% accuracy using quantified deviations from normative power spectra combined with 

supervised machine learning. Low-frequency activity in the theta frequency band (4–8 Hz) 

provided the most significant discriminative features for determining the classification results. 

Increased neural oscillatory activity below 8 Hz, previously associated with axonal injury 

(Huang et al., 2009)38, is the most frequent finding in mTBI patients even in the chronic stage 

of the injury (Dunkley et al., 2015; Haneef et al., 2013; Huang et al., 2014, 2012, 2009; 

Kaltiainen et al., 2018; Lewine et al., 2007; Robb Swan et al., 2015). The obtained results are 

thus in line with previous literature.  

Compared to earlier studies utilizing machine learning and neuroimaging data to predict mTBI 

at the subacute or chronic stage, the accuracy of the methods presented in this paper slightly 

exceed the accuracy of Cao et al (Cao et al., 2008), where 61 subjects were classified with 

77.1% accuracy using task-related EEG measurements, and Lewine et al. (Lewine et al., 2019), 

where a 75% accuracy was achieved for classifying 153 subjects using five global features 

calculated from resting-state EEG data. It is notable that we reach a comparable accuracy with 

only 45 subjects compared to 61 and 153 subjects in the earlier studies, respectively. In 
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addition, using features that quantify the deviation from a normative sample yields a more 

interpretable result. 

Considering that 10 out of 25 mTBI patients did not have any structural lesions visible in MRI 

scans and that more than half of the MEG recordings were conducted over a month post-injury, 

the achieved accuracy can be regarded as satisfactory. Furthermore, it is likely that the patient 

group includes subjects whose brain activity and function could be considered normal by all 

relevant metrics despite earlier trauma, so achieving an accuracy close to 100% may be an 

unrealistic goal. 

We used permutation feature importance for estimating the significance of each individual 

feature in the classification. Interestingly, features from the alpha, beta and gamma frequency 

bands were nearly absent from the list of the most significant features, even though these bands 

showed visible differences between patients and controls at group level. Previously, Zhang and 

colleagues have detected reduced beta power in frontotemporal regions (Zhang et al., 2020), 

but for changes in alpha and gamma oscillatory power after mTBI the reports of alterations in 

neural oscillatory power are contradictory (Antonakakis et al., 2016; Dunkley et al., 2015; 

Huang et al., 2020; Popescu et al., 2016). A possible explanation for the lack of significant 

features is that there is large physiological variability in these frequency bands between and 

even within individuals e.g. according to their vigilance and attention. Another explanation 

might be the outlier values in these bands that affect the average but do not contain much 

valuable information for the training of the SVM classifier, as the decision boundary of the 

SVM is robust to outliers.  

The most significant features of the theta frequency band were found to be located in the 

parietal, temporal and occipital regions of the brain. The paucity of frontal features, however, 

is notable, since frontobasal areas are among the most frequent lesion sites after mTBI (Shin et 

al., 2017; Yuh et al., 2014). The locations generating mTBI-related low-frequency activity are 

typically highly variable (Huang et al., 2012), and likely to be influenced by the location of the 

impact to the head. This spatial variance was confirmed with visual inspection of the individual 

Z-score maps presented here. This heterogeneity highlights the need to focus on individual-

level abnormalities rather than a “typical mTBI patient”, as in a traditional case-control 

paradigm. 
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Normative modeling: advantages and considerations 

Interpretability of machine-learning models in a medical context is important due to safety and 

ethical concerns: clinicians should be able to identify possible errors in the model’s predictions 

(Watson et al., 2019). Normative modeling, an intuitive approach familiar from children’s 

growth charts, together with a supervised classifier has the potential to help place confidence 

in the model’s predictions and detect possible errors. In addition to the prediction of the model, 

the decisions can be aided with visualizations of the patients’ individual cortical Z-score maps, 

possibly limited to the theta frequency band. 

Many of the earlier studies utilizing a normative modeling approach have relied on Gaussian 

process regression (Williams and Rasmussen, 1996) for modeling the healthy variation 

(Marquand et al., 2016; Wolfers et al., 2018; Zabihi et al., 2019), which has a benefit of 

quantifying the uncertainty of the model. The method could be explored in the context of our 

proposed approach in future research. In this study, a relatively simple and straightforward 

calculation of Z-scores was adapted, as robust statistical inference was not of concern: the 

normative modeling provided features for supervised classification rather than being directly 

used for discriminating patients from controls. A larger normative dataset of thousands of 

measurements might also enable the use of state-of-the-art deep learning methods for building 

the normative model, such as deep autoencoders as in Pinaya and colleagues (Pinaya et al., 

2021, 2019), which have performed well in complex tasks but require a large number of 

samples to learn effectively. 

As neurophysiological patterns vary significantly with age, patients should be compared to 

their own age group in normative comparisons (Nuwer et al., 2005). In this study, selecting the 

normative data by each subject’s own age group for calculating the Z-score maps yielded better 

results compared to using an equally sized random sample of normative data. This suggests 

that true abnormalities are indeed more reliably identified if a subject is compared with their 

own age group: selecting the normative data by age may lead to better detection of phenomena 

normal for some age groups but possibly pathological for others. However, the highest 

accuracy was achieved by using all available normative data, which suggests that a sufficiently 

large normative dataset is needed to capture enough individual variation. A normative database 

integrated with a future clinical application should thus ideally aggregate thousands of M/EEG 

measurements of healthy subjects across different studies, sites and demographic variables to 
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enable selecting a sufficiently sized subset of normative data with suitable properties for each 

task. 

Large functional imaging datasets from clinical populations are rarely available, and drawing 

reliable conclusions about classification results is often hindered by the small size of the 

datasets. In this study, the effect of the size of the dataset was most clearly seen in the large 

standard deviations of the accuracy, sensitivity and specificity scores, which ranged from 0.15 

to 0.32. Larger clinical datasets would increase the robustness of the predictions and of the 

identification of the most significant features, but such large-scale patient data collection 

remains a challenge.  

We employed an SVM classifier, as they typically perform well on data with high 

dimensionality (Nayak et al., 2015). The nonlinearity of the SVM classifier does, however, 

introduce some limitations to the interpretability of the results, as the weights of the individual 

features are not directly interpretable. Importantly, the results of such methods should not be 

thought of as revealing exactly the location and frequency of the most discriminative features, 

but as giving a general sense about brain activation patterns associated with mTBI. 

Conclusions 

We introduced a normative modeling and machine learning approach capable of discriminating 

the MEG power spectra of mild traumatic brain injury patients from healthy controls with up 

to 79.0% accuracy, which is high enough to substantially contribute to clinical decision 

making. Most of the features that were significant for the classification corresponded to the 

theta frequency band, the activity of which has been associated with pathological phenomena, 

including mTBI, in earlier studies. The approach could be used to help differentiate mTBI-

related symptoms in patients with confounding factors who exhibit prolonged symptoms 

suggestive of TBI and/or problems with vocational performance, as well as for detecting 

patients in need for neuropsychological intervention.  

We demonstrated how the normative modeling approach provides a means to intuitively 

interpret the predictions of the classifier even at the level of individual patients, a framework 

that could be incorporated in future clinical applications. This would enable building a system 

where, for example, a brain scan of an individual patient could be automatically checked for 

different pathological patterns against a large normative database. The present study acts as an 
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example use case for such a system, with a preprocessing and classification pipeline that can 

be made fully automatic from the raw measurement data to the final results. 
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