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Abstract

For vectorborne diseases the basic reproduction number R0, a measure of a disease’s
epidemic potential, is highly temperature dependent. Recent work characterizing these
temperature dependencies has highlighted how climate change may impact geographic
disease spread. We extend this prior work by examining how newly emerging diseases,
like Zika will be impacted by specific future climate change scenarios in four diverse
regions of Brazil, a country that has been profoundly impacted by Zika. We estimated a
temperature-dependent R0(T ), derived from a compartmental transmission model,
characterizing Zika (and, for comparison, dengue) transmission potential. We obtained
historical temperature data for the 5-year period 2015–2019 and projections for
2045–2049 by fitting cubic spline interpolations to data from simulated atmospheric
data provided by the CMIP-6 project (specifically, generated by the GFDL-ESM4
model), which provides projections under four Shared Socioeconomic Pathways (SSP).
These four SSP scenarios correspond to varying levels of climate change severity. We
applied this approach to four Brazilian cities (Manaus, Recife, Rio de Janeiro, and São
Paulo) that represent diverse climatic regions. Our model predicts that the R0(T ) for
Zika peaks at 2.7 around 30◦C, while for dengue it peaks at 6.8 around 31◦C. We find
that the epidemic potential of Zika and dengue will increase beyond current levels in
Brazil in all of the climate scenarios. For Manaus, we predict that the annual R0 range
will increase from 2.1–2.5, to 2.3–2.7, for Recife we project an increase from 0.4–1.9 to
0.6–2.3, for Rio de Janeiro from 0–1.9 to 0–2.3, and for São Paulo from 0–0.3 to 0–0.7.
As Zika immunity wanes and temperatures increase, there will be increasing epidemic
potential and longer transmission seasons, especially in regions where transmission is
currently marginal. Surveillance systems should be implemented and sustained for early
detection.

Author summary

Rising temperatures through climate change are expected to increase arboviral disease
pressure, so understanding the impact of climate change on newly emerging diseases
such as Zika is essential to prepare for future outbreaks. However, because disease
transmission may be less effective at very high temperatures, it is uncertain whether
risk will uniformly increase in different regions. Mathematical modeling is a useful tool
for predicting the impact of temperature on arbovirus risk. We used a
temperature-dependent infectious disease transmission model to derive a

September 23, 2022 1/15

 . CC-BY 4.0 International licenseIt is made available under a 

 is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity.(which was not certified by peer review)preprint 
The copyright holder for thisthis version posted September 27, 2022. ; https://doi.org/10.1101/2022.09.26.22280352doi: medRxiv preprint 

NOTE: This preprint reports new research that has not been certified by peer review and should not be used to guide clinical practice.

https://doi.org/10.1101/2022.09.26.22280352
http://creativecommons.org/licenses/by/4.0/


temperature-dependent basic reproduction number. We then used historical
temperature data and temperature projections for the years 2045-2049 to forecast Zika
risk in four cities in Brazil under various climate change scenarios. We predict an
overall increase in arbovirus risk, as well as extended risk seasons in cities that are not
currently suitable for year-round spread, such as Rio de Janeiro. We also found
little-to-no protective effect of increasing temperatures even in warmer climates like
Manaus. Our results indicate that preparation for future Zika outbreaks (and of those
of other arboviruses including dengue) should include the implementation of national
disease surveillance and early detection systems.

Introduction 1

The Zika and dengue viruses are closely related arboviruses that are primarily 2

transmitted to humans through the Aedes aegypti and A. albopictus mosquitoes. Brazil 3

carries an especially large share of the disease burden, with an estimated 1.5 million 4

Zika cases since the beginning of the 2015–16 outbreak [1]. Zika was introduced in the 5

Americas in 2015 [2], causing numerous outbreaks in countries throughout Latin 6

America, including Brazil, Colombia, and Venezuela. Because vector-borne disease 7

transmission depends on temperature, recent work has outlined the potential for climate 8

change to facilitate its re-emergence (and emergence in new regions) [3–5]. Given the 9

concerning health outcomes of Zika —including microcephaly and Guillain-Barre 10

syndrome—the unpredictability of how the changing climate will influence the spread of 11

the virus throughout the western hemisphere is a growing cause of concern. 12

Dengue has a longer history in the region, originally emerging in the Americas in the 13

1600s [6]. It was eliminated by the 1960s through widespread use of pesticides, but it 14

re-emerged in the early 1980s [7]. Since its re-emergence, dengue has remained endemic 15

throughout many Latin American countries [8]. Due to dengue’s endemicity and wide 16

geographic spread, it has been better studied than Zika and provides a useful point of 17

comparison as we consider the potential impact of climate change on these arboviruses. 18

As a result of climate change, it is estimated that about half of the world population 19

will live in geographic regions that will be suitable for arbovirus transmission by the 20

year 2050 [9]. Several factors make Brazil particularly vulnerable to both the drivers 21

and impacts of climate change. Primary among these is the deforestation within the 22

Amazonian region as well as widespread increases in temperature, both of which are 23

conducive to mosquito breeding [10]. In fact, the 2015 Zika outbreak in Brazil has been 24

partially attributed to the El Niño conditions that year [11]; Aedes aegypti, the primary 25

vector of Zika and dengue [12], is particularly suited to warm, humid conditions. Brazil, 26

therefore, is an important region to study forecasts of Zika transmission potential. Prior 27

forecast studies of arbovirus transmission potential were primarily focused on North 28

America [13–15] with fewer studies occurring in South America. 29

In the 1990s, when researchers started using mathematical modeling to consider the 30

impacts of climate change on vector-borne disease transmission, several studies began to 31

incorporate temperature-dependent parameters such as vector competence, vector 32

lifespan, and extrinsic incubation period [5, 16]. More recently, temperature-dependent 33

R0s for vector-borne diseases have revealed an interesting range of peaks depending on 34

the pathogen and mosquito species [17–19]. Of particular interest, Mordecai et al. found 35

that disease risk peaks at the highest temperatures for pathogens that are transmitted 36

by the A. aegypti mosquito [19]. The same group has also theorized that this finding 37

means that with increasing temperatures, vector-borne disease risk in Africa will shift 38

from malaria to arboviral diseases [20]. As climate change has the potential to shift 39

much of the world into temperatures where these higher peaks occur, it is important to 40

better understand both the range of uncertainty across climate change scenarios as well 41
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as the likely geographic and temporal heterogeneity in disease risk. 42

We extend prior work [21] that developed temperature dependent R0 expressions to 43

forecast future global trends of Zika and, as a comparison, dengue transmission risk in 44

Brazil for the years 2045–2049, across a range of plausible climate change scenarios. 45

Specifically, we explore how projections might vary across regions within a country and 46

the likely impact of year-to-year temperature variation. We developed a basic 47

reproduction number R0(T ) as function of temperature-dependent vector parameters, 48

and we used this temperature-dependent R0(T ) to project seasonal disease risk in four 49

Brazilian cities representative of the different climate regions of Brazil. Our work 50

extends and complements existing projections of Zika risk in Brazil [4] and the 51

temperature-dependent reproduction number literature more broadly [17–21] by 52

assessing geographic and year-to-year heterogeneity in projected risk across climate 53

change scenarios. 54

Materials and methods 55

Data 56

To examine the potential impacts of climate change across a variety of climates, we 57

selected four cities representative of diverse climatic regions of Brazil: Manaus, a city in 58

the Amazon Rainforest with a tropical rainforest climate; Recife, an Atlantic coastal 59

city with a tropical monsoon climate; Rio de Janeiro, an Atlantic coastal city with a 60

tropical savanna climate; and São Paulo, a southern city with a humid subtropical 61

climate. All cities are at approximately sea level and within the suitable elevation range 62

for an abundant A. aegypti population, i.e., up to 1,600 meters [22,23]. 63

We obtained the historical and projected future temperature (using the tas variable, 64

or daily-mean 2-meter air temperature) data from ISIMIP (The Inter-Sectoral Impact 65

Model Intercomparison Project) [24] from the downscaled bias-adjusted GFDL-ESM4 66

(Geophysical Fluid Dynamics Laboratory, NOAA) climate forcing [25–27]. GFDL-ESM4 67

is a CMIP-6 model (Coupled Model Intercomparison Project, phase 6), generally agreed 68

to accurately capture historical temperatures in South America [28,29]. To extract 69

temperature data for each of the four cities, we calculated the nearest model grid point 70

to each city’s location, which is available at a 0.5◦x0.5◦ latitude-longitude spatial 71

resolution. 72

For our historical baseline, we used data from 2015–2019, a five-year period 73

encompassing the Zika outbreak in Brazil. For our forecast, we used 30-year projections, 74

i.e., projected temperature data for the years 2045–2049. For the temperature 75

projections, we use four SSP (Shared Socioeconomic Pathways) climate scenarios: 76

SSP126, SSP245, SSP370, and SSP585 [30]. These scenarios represent different 77

climate-relevant levels of socioeconomic development (taking into consideration factors 78

like sustainable consumption, protection of vulnerable land, fertility and rates) and their 79

corresponding greenhouse gas concentrations. Here, increasing climate change severity 80

corresponds to increasing numbers, where SSP585 corresponds to fossil-fueled developed 81

while the SSP126 would require substantial mitigation efforts on a global level to 82

achieve. The GFDL-ESM4 model provides temperatures for previous years for each of 83

the four SSP scenarios, starting in 2015, (i.e., each scenario has different historical 84

temperature data for those years). We use the SSP585 scenario for our historical 85

temperatures (most closely corresponding to RCP (Representative Concentration 86

Pathway) 8.5 from CMIP-5), because this trajectory is thought to most closely align 87

with the carbon dioxide emissions from those years [31,32]. 88

We summarized the historical and projected temperature data in two ways using 89

period cubic B-splines. First, we obtain both a baseline year-round temperature dataset 90

September 23, 2022 3/15

 . CC-BY 4.0 International licenseIt is made available under a 

 is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity.(which was not certified by peer review)preprint 
The copyright holder for thisthis version posted September 27, 2022. ; https://doi.org/10.1101/2022.09.26.22280352doi: medRxiv preprint 

https://doi.org/10.1101/2022.09.26.22280352
http://creativecommons.org/licenses/by/4.0/


10

15

20

25

30

2015 2016 2017 2018 2019
Year

Te
m

pe
ra

tu
re

 (
°C

)

Manaus

Recife

Rio de Janeiro

São Paulo

Fig 1. Daily temperature in 4 Brazilian cities, 2015–2019. Periodic cubic spline
models are fit to the data for Manaus, Recife, Rio de Janeiro, and São Paulo to develop
mean seasonal temperature models.

by averaging the daily temperatures from our 5-year dataset (2015–2019), and a 91

2045–2049 projected year-round temperature dataset from the averages of the years 92

2045–2049 (see S1 Appendix). By smoothing over the 5 years, we projected average 93

climate and smooth any anomalies that occur in the projections for 2045–2049, giving 94

an estimation of overall changes in risk by the second half of the 2040s as compared to 95

the recent past. Second, to better capture the year-to-year variation, we also fit the 96

periodic splines to each of the five years separately for both the historical and projected 97

temperatures to better understand reasonable likely deviation from the mean projection 98

(see S1 Appendix). The period cubic B-splines were fit to the temperature data using 99

the pbs package [33] in R (v4.0; R Foundation for Statistical Computing; Vienna, 100

Austria). 101

Infectious disease transmission model 102

We modified an existing vectorborne infectious disease transmission model [21] to 103

include birth and death processes. The basic model structure comprises an SLIR 104

(susceptible, latent, infectious, recovered) model for human transmission and SLI model 105

for mosquito transmission, using standard exponential birth and death processes for the 106

human population. The model tracks the numbers of susceptible Sh, latently infected 107

Lh, infectious Ih, and recovered Rh humans (with total human population Nh), as well 108

as the number of susceptible Sm, latently infected Lm, and infectious Im mosquitoes. 109

Our model includes three temperature-independent, human parameters: the birth/death 110

rate µh, the transition rate from latency to infectiousness σh (which we assumed to be 111

two days less than the intrinsic incubation period, as infectiousness precedes symptom 112

onset [34]), and the recovery rate γ. The birth and death rates µh were fixed to single 113

value based on current life expectancy for this analysis rather than projected; because 114

the model is focused on epidemic potential (see below) rather than simulation, the 115

results are not sensitive to these values (impacting the results only in the probability 116

that that an latent or infected individual may die before recovery). 117

Our model also includes eight temperature-dependent (T ) A. aegypti mosquito 118

parameters, five of which are independent of the pathogen: biting rate a(T ), the number 119

of eggs laid per day ϵ(T ), the probability of egg to adult survival θ(T ), the egg to adult 120
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development rate ρ(T ), and the adult mosquito mortality rate µm(T ). One temperature 121

dependent mosquito parameter not included in our eight parameters is the carrying 122

capacity K(T ), which is the maximum number of mosquitoes that the environment can 123

sustain. This parameter can be modeled as function of the other vector parameters [21] 124

(see S1 Appendix) and therefore does not appear in the R0(T ) formula we derive. 125

The three additional temperature-dependent parameters depend on the specific 126

pathogen: the extrinsic incubation rate, that is the latency to infectiousness rate σm(T ), 127

the per bite probability of pathogen transmission from mosquito to human πmh(T ), and 128

the per bite probability of pathogen transmission from human to mosquito πhm(T ). We 129

define vector competence as the product of πmh(T ) and πhm(T ), denoted (πhmπmh)(T ). 130

For Zika we have temperature dependent estimates for the vector competence product 131

but not the constituent parameters. 132

Like Mordecai et al [17, 35], the temperature dependence of these 8 parameters are 133

described by one of four formulas: a Brière (cT (T − T0)
√
(Tm − T )), quadratic 134

(c(T − Tm)(T − T0)), inverse quadratic (c(T − Tm)(T − T0))
−1

, or constant c, as 135

appropriate for the shape of the relationship in the data (Table 1). T0 and Tm are the 136

minimum and maximum temperatures for which a given parameter takes on a non-zero 137

value. The parameter c is fit to the data [35,36]. Plots of the temperature dependence 138

of the biting rate a, the extrinsic incubation rate σm, and the vector competence 139

(πhmπmh) are given in the Figure S3, distinguishing between dengue and Zika where 140

appropriate. 141

Here we use different values of lifespan and extrinsic incubation estimates from 142

Mordecai et al [35]. Because the mosquito mortality rate should largely be independent 143

of the pathogen, we merge the data from [35] and [15] to generate a compiled 144

temperature-dependent mosquito mortality µm(T ). Maximum likelihood estimates for 145

the parameters c, T0, and Tm were obtained assuming mosquito lifetimes were Poisson 146

distributed (see supplementary material). Similarly, the extrinsic incubation rate was 147

refit to exclude sources from papers which studied other arboviruses such as Yellow 148

Fever. We parameterize the number of mosquitoes (Nm) and the number of humans 149

(Nh) as a single parameter, Nm

Nh
, corresponding to the density of mosquitoes (i.e., the 150

number of mosquitoes per human). 151

The parameters are summarized in Table 1, and the model equations are given below. 152

dSh

dt
= µh ·Nh − a(T ) · πmh(T ) ·

Im
Nh

· Sh − µh · Sh

dLh

dt
= a(T ) · πmh(T ) ·

Im
Nh

· Sh − σh · Lh − µh · Lh

dIh
dt

= σh · Lh − γ · Ih − µh · Ih
dRh

dt
= γ · Ih − µh ·Rh

dSm

dt
= ϵ(T ) · θ(T ) · ρ(T ) · µm(T )−1Nm

(
1− Nm

K(T )

)
−(

a(T ) · πhm(T ) · Ih
Nh

+ µm(T )

)
· Sm

dLm

dt
= a(T ) · πhm(T ) · Ih

Nh
· Sm − (σm(T ) + µm(T ))Lm

dIm
dt

= σm(T ) · Lm − µm(T ) · Im

(1)
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Table 1. Parameters of the temperature-dependent vectorborne arbovirus
disease transmission model. †: see supplementary material.

Temperature-dependent parameters (Zika and dengue)

Parameter Definition Source Function T0 Tm c
a biting rate (day−1) [35] Brière 13.35 40.08 2.02E-4
ϵ eggs laid per female (day−1) [35] Brière 14.58 34.61 8.56E-3
θ probability of mosquito egg to adult sur-

vival
[35] Quadratic 13.56 38.29 -5.99E-3

ρ mosquito egg to adult development rate
(day−1)

[35] Brière 11.36 39.17 7.86E-5

µm adult mosquito mortality rate [35,36] Inverse 8.53 38.07 -1.68E-1
Temperature-dependent parameters (Zika)
σz
m virus extrinsic incubation rate [36] Brière 18.27 42.31 1.74E-4

(πhmπmh)
z vector competence [36] Quadratic 22.72 38.38 -3.54E-3

Temperature-dependent parameters (dengue)
σd
m virus extrinsic incubation rate [35]† Brière 10.68 43.09 6.91E-5

πd
mh probability of transmission to human

(per bite)
[35] Brière 17.05 35.83 8.49E-4

πd
hm probability of transmission to vector

(per bite)
[35] Brière 12.22 37.46 4.91E-4

Temperature-independent parameters (Zika and dengue)
µh human birth/death rate (day−1) [37] Constant — — (75.7×

365)−1

Nm

Nh
Ratio of A. aegypti to humans [38] Constant — — 9.75E-1

Temperature-independent parameters (Zika)
σz
h human latency rate (day−1) [34,39] Constant — — 1/4

γz human recovery rate (day−1) [34,39] Constant — — 1/5
Temperature-independent parameters (dengue)
σd
h human latency rate (day−1) [34] Constant — — 1/4

γd human recovery rate (day−1) [34] Constant — — 1/5

Basic reproduction number 153

The basic reproduction number R0 is a measure of the epidemic potential of an 154

infectious disease system [40,41]. It represents the expected number of secondary 155

infections caused by a single infectious case over their infectious period in an otherwise 156

susceptible population. If R0 > 1, an epidemic is expected to grow and if R0 < 1, an 157

epidemic is expected to die out. R0 is an appropriate metric for our our projections 158

because there is too much uncertainty what specific circulation patterns will be over 159

time and in population-level immunity to project specific outbreak dynamics in 30 years. 160

Our approach instead focuses on transmission potential. Even if there is substantial 161

population immunity suppressing Zika and dengue circulation, understanding 162

transmission potential is still useful and can inform arboviral disease potential more 163

broadly. 164

In the context of vectorborne disease systems, there is some subtlety to the 165

interpretation of R0: strictly speaking, a disease generation-based R0, as derived by the 166

next generation matrix (NGM) [42,43] and denoted below as RNGM
0 , treats hosts 167

(humans) and vectors (mosquitoes) as equally important, essentially taking the mean of 168

human-to-vector infections and vector-to-human infections. Because we observe human 169

cases, only, it is usually preferable and more interpretable to use the expected number 170

of new human infections per infectious human, namely R0 = (RNGM
0 )2. This 171
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formulation is consistent with classic approaches [44]. We use the next generation 172

method to derive a formula for RNGM
0 and thus this latter temperature-dependent 173

R0(T ) for our model (see S1 Appendix). 174

R0(T ) =
(
RNGM

0 (T )
)2

=
a(T ) · πmh(T ) · σm(T )

µm(T )(σm(T ) + µm(T ))
· a(T ) · πhm(T ) · σh

(σh + µh)(γ + µh)
· Nm

Nh
(2)

Incorporating the virus-specific parameter values into this expression, we derive 175

values for Zika, 176

R0,z(T ) =
(a(T ))2 · (πhmπmh)

z(T ) · σz
m(T ) · σz

h

µm(T )(σz
m(T ) + µm(T ))(σz

h + µh)(γz + µh)
· Nm

Nh
, (3)

and dengue, 177

R0,d(T ) =
(a(T ))2 · πd

mh(T ) · πd
hm(T ) · σd

m(T ) · σd
h

µm(T )(σd
m(T ) + µm(T ))(σd

h + µh)(γd + µh)
· Nm

Nh
, (4)

as a function of the pathogen-specific, temperature dependent parameters. 178

Results 179

Temperature-dependent basic reproduction numbers 180

The temperature-dependent shape of the R0(T ) curve is similar for Zika and dengue 181

(Figure 2). For example, the peak R0 occurs at approximately 30.5◦C. One the other 182

hand, R0 increases above 1 at a cooler temperature for dengue compared to Zika (23◦C 183

vs 25◦C respectively), and the peak R0 value is greater for dengue than Zika (6.8 vs 184

2.7). The greater R0 for dengue is primarily driven by vector competence (the 185

probability of transmission to human times the probability of transmission to vector, see 186

supplementary material). To a lesser degree, the shorter extrinsic incubation period of 187

DENV (Dengue virus) also contributes to its larger R0. Note that the R0 metric 188

considers a fully susceptible population, and the effective reproduction numbers for real 189

populations decrease proportionally to the fraction of the population that is immune. 190
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Fig 2. Temperature-dependent R0(T ) for Zika and dengue.

Risk projections based on 5-year temperature data 191

The climate change scenarios project a year-round increase of R0 by 2045–2049, with 192

varying degrees of difference among the risk projections between the specific SSP 193

scenarios (Figure 3). Exceptions include the extreme temperatures seen in the warm 194
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season in Manaus and the cool season in Rio de Janeiro and São Paulo. For Manaus, we 195

predict the annual Zika R0 range, currently 2.1–2.5, to shift to 2.3–2.7, for Recife we 196

project the range to shift from 0.4–1.9 to 0.6–2.3, for Rio de Janeiro to shift from 0–1.9 197

to 0–2.3, and for São Paulo to shift from 0–0.3 to 0–0.7. The increase in R0 is not 198

uniform throughout the year as can be seen in the graphs for Rio de Janeiro in 199

particular, where the R0 value increases by a far larger amount during the months of 200

October through April than it does earlier in the year (R0 remains 0 throughout the 201

summer months in all scenarios, but increases as high as 0.8 in the fall and winter 202

months). To a lesser extent, R0 increases are also non-uniform for Recife (increasing 203

around 0.1 earlier in the year and as high as 0.5 by late Summer). These effects are due 204

to a combination of the non-uniform temperature changes in the temperature projection 205

data over the year and the non- linearity of the R0 formula. We see some minor 206

attenuation of risk because of higher temperatures across the risk projections in the 207

warmest months in Manaus, where temperatures are projected to reach just above 35◦C 208

in the SSP585 scenario. However, in this scenario, the peak risk still far surpasses that 209

of the baseline risk, occurring at two different times in the year corresponding to the 210

bookends of the observed dip in risk (around September and November). 211

Our baseline risk estimates for Rio de Janeiro and Recife suggest that the current 212

risk season for Zika, i.e., the time for which R0 > 1, is late fall through spring which is 213

largely consistent with data from the 2015–16 outbreak [45,46]. Dengue follows a 214

similar trend, but with a longer risk season. Our risk projections suggest that the 215

arbovirus risk season for Rio de Janeiro will increase by approximately 2–3 months by 216

2045–2049 and that the Zika risk seasons in Recife will increase by around 2 months. In 217

São Paulo, the R0 for dengue more reliably sits above 1 during the beginning of the year 218

in our projections for 2045–2049, peaking at 2.1 in SSP585, nearly double the peak R0 219

value from the baseline. 220
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Fig 3. Projection of seasonal epidemic potential by 2045-2049 R0(T (t)).
Projections are given for Zika (top row) and dengue (bottom row) for each city and
climate change scenario.

Risk projections based on individual-year data 221

Our risk projections based on individual year data (Figure 4) highlight the 222

heterogeneity of the Zika risk projections from year-to-year (the corresponding figure for 223

dengue can be found in S1 Appendix). The projections for Manaus contrast with the 224

projections from the other three cities, which still show largely consistent increase in 225

disease risk throughout the year for each year. For example, Manaus sees a sharp 226

September 23, 2022 8/15

 . CC-BY 4.0 International licenseIt is made available under a 

 is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity.(which was not certified by peer review)preprint 
The copyright holder for thisthis version posted September 27, 2022. ; https://doi.org/10.1101/2022.09.26.22280352doi: medRxiv preprint 

https://doi.org/10.1101/2022.09.26.22280352
http://creativecommons.org/licenses/by/4.0/


decrease in risk in fall 2045 for SSP585, demonstrating potentially erratic shifts in peak 227

risk seasons for this city to earlier in the year. As it is likely that outbreaks in Recife 228

and Rio de Janeiro fuel epidemic potential in Manaus and vice versa (i.e., through 229

travel between the cities), this closer alignment of peak risk season between the cities 230

may cause a problematic interaction. 231

São Paulo’s risk is also highly variable between the different years and SSP scenarios, 232

highlighting important distinctions between each of the scenarios. For example, our 233

projections show a dramatic difference in the year 2049 for the SSP585 scenario 234

compared to the other scenarios. These results suggest that the year-to-year 235

heterogeneity in temperature and thus on arbovirus disease risk in the future will likely 236

depend on regional climate factors and year-specific weather patterns. 237

historical baseline year/

projection year
      2015/2045       2016/2046       2017/2047       2018/2048       2019/2049
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0
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R
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R
0

0

1

2

3
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0

0

1

2

3
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R
0

Recife

0

1

2

3

Jan Apr July Oct

R
0

0

1

2

3
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R
0

0

1

2

3

Jan Apr July Oct

R
0

0

1

2

3

Jan Apr July Oct

R
0

0

1

2

3

Jan Apr July Oct

R
0

Rio de Janeiro

0

1

2

3
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R
0

0

1

2

3
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R
0

0

1

2

3

Jan Apr July Oct

R
0

0

1

2

3

Jan Apr July Oct

R
0

0

1

2

3

Jan Apr July Oct

R
0

São Paulo

0

1

2

3

Jan Apr July Oct

R
0

0

1

2

3

Jan Apr July Oct

R
0

0

1

2

3

Jan Apr July Oct

R
0

0

1

2

3

Jan Apr July Oct

R
0

0

1

2

3
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R
0

Historical Baseline Low (SSP 126) Medium (SSP 245) High (SSP 370) Very High (SSP 585)

Fig 4. Year-to-year variation of seasonal epidemic potential R0(T (t))
projections for Zika. Projections of the seasonal temperature in each of 2015–2019
under each climate change scenario demonstrate year-to-year heterogeneity in projected
risk.

Discussion 238

Zika and dengue’s temperature profile for R0 peaks at a relatively high temperature, 239

around 30◦C; therefore, prior work has suggested that climate change will both increase 240

their transmission potential and geographic extent of transmission [19]. When 241

examining the impact of climate change projections on Brazil, we find general 242

agreement with this conclusion but also find variability across different climatic regions 243

within the country. This variability across different climate zones is evident in Figure 4, 244

which shows that Manaus is a region on the cusp of experiencing a decrease in arbovirus 245

risk at certain times of the year in certain years, while both Recife and Rio de Janeiro 246

show large increases in risk throughout the year. In places like Recife and Rio de 247

Janeiro, we project the extension of the risk season. In São Paulo, a city that lies on 248

borderline of reliable A. aegypti suitability [3, 47,48] we see that it is likely that future 249

arboviral risk will depend on how specifically the climate changes. These results 250

highlight that transmission is likely to expand into geographic regions with climates 251

that currently have only borderline conditions for transmission. Regions with current 252

temperatures that are too cold to sustain year-round transmission will become 253

increasingly vulnerable to newly seeded outbreaks sparking seasonal epidemics. 254

Temperature-dependent R0(T ) curves, used here and in other studies, indicate that 255

there is a potential for increasing temperatures to have a protective effect. The curves 256
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for dengue and Zika begin to decrease sharply after they peak at around 30◦C, both 257

decreasing to 1 by around 35◦C (95◦F). Of the four cities in the analysis, Manaus is the 258

only city to reach this peak temperature, and even in the high emission scenario, the 259

maximum temperature in our projections is only briefly above 30◦C at the beginning of 260

October. Thus, even in regions with warmer tropical rain forest climates like Manaus, 261

our results show that in most regions climate change is not likely to have a substantial 262

or consistent protective effect on arbovirus transmission. 263

Over the past decades, numerous studies have looked at the impact of temperature 264

changes on vector-borne disease transmission [3, 5, 13,16,20,49–51]. There is general 265

consensus among these studies that both dengue and Zika will spread into areas that 266

are becoming increasingly suitable for transmission (e.g., the Southeastern United 267

States) and that risk will increase in currently endemic areas. The 268

temperature-dependence of mosquito-borne disease transmission is a complicated mix of 269

multiple processes, each of which increases, then decreases with increasing temperature. 270

Several studies concur that 26–29◦C is the optimal temperature window for arbovirus 271

transmission [35,36, 52,53]. Zika and dengue lie on the higher end of this range [20], at 272

around 30◦C, which is consistent with our estimates. Our R0(T ) estimates also span 273

ranges that are consistent with empirical estimates: a systematic literature review on 274

the basic reproduction numbers for dengue and Zika found the R0 of Zika (mean 3.0) to 275

be lower than the R0 of dengue (mean 4.3) in tropical climates, and our estimated 276

values are well within the substantial variation in individual study estimates [54]. Our 277

R0 for Zika is just below 3.0 even at its highest value. 278

The variability between the various SSP scenarios seen in Figure 4 along with 279

steepness of the temperature-dependent R0 curves (Figure 2) underscore the severe 280

consequences of small deviations in temperature projections with regards to arbovirus 281

risk. That is, our ability to control our emissions to prevent even small temperature 282

increases could have massive benefits relating to mosquito-borne illnesses. That being 283

said, by 2045–2049, even the best-case scenario (SSP126) corresponds to both 284

lengthening of the risk season—particularly for Rio de Janeiro—and increases in overall 285

disease pressure, indicating that international climate protection policy must be 286

accompanied with national-level preparedness including increased surveillance, and 287

diagnostic and treatment capacity. 288

For this analysis, we chose to focus on epidemic potential through the basic 289

reproduction number. Previous work has demonstrated that beyond epidemic potential, 290

there will be likely differences in epidemic dynamics, such as epidemic length, peak size, 291

and final size [21]. However, for the long-term projections we provide here, R0 is 292

appropriate—–there are too many unknowns in terms of what population-level 293

immunity will look like to make reasonable projections of specific dynamics. Indeed, it 294

is unclear whether these arboviruses will be circulating in the coming decades and 295

whether new pathogens will emerge. Thus, one strength of this study is the side-by-side 296

comparison of dengue and Zika risk, which gives a broader look at arbovirus epidemic 297

potential, regardless of the specific pathogen. Another strength is the applicability of 298

our results to other areas; the temperature-dependent R0(T ) we derived here could be 299

implemented for other areas of interest. Finally, our study also uses a fine temporal 300

granularity, which gives us the ability to provide a more in depth understanding of 301

year-round dynamics and investigate arbovirus risk as a dynamic value that changes 302

over the course of a month or year. 303

However, our work is limited by its sole focus on temperature. Climate change is 304

likely to impact humidity and rainfall, and population density will also likely change in 305

the future. We do not account for these factors in our projections. Due to its extreme 306

variability, precipitation is generally thought to be a more complicated climactic factor 307

to project than temperature [55,56] and including this would have introduced 308
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tremendous uncertainty to the results, even using state-of-the-art model projections. 309

Another limitation is the uncertainty in population birth rates and changes in the 310

mosquito-to-human population density ratio. Changes in these parameters may impact 311

the epidemic potential of Zika and other arboviruses. 312

Conclusion 313

Our work provides a useful baseline for future planning to mitigate health impacts due 314

to climate change. It contributes to the larger literature of climate change health 315

impacts by exploring the likely heterogeneities in these health impacts both across 316

climatic regions within a country and from year-to-year. International cooperation will 317

be needed to mitigate emissions and their impacts up to and beyond 2045–2049. 318

Specifically, we should be developing our public health preparedness to offset increases 319

in transmission pressure due to climate. Transmission models coupled with climate 320

forecasts can provide the needed guidance on how best to develop a preparedness 321

infrastructure that will be resilient to climate change. Greater flexibility and 322

adaptability of arbovirus response and prevention may be necessary to accommodate 323

spatial and temporal heterogeneity in risk projections, especially in a country with as 324

much climatic diversity as Brazil. 325

S1 Appendix. Supporting information. In the supporting information, we 326

provide the periodic spline fits to the individual years in each city, provide the periodic 327

spline fits to the 5-year temperatures under each of the climate change scenarios in each 328

city, discuss the temperature-dependent mosquito carrying capacity, give the 329

temperature-dependent parameter models as well as the fits to the data were applicable, 330

and provide the individual-year risk projections for dengue (analogous to Figure 4). 331
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