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 2 

Abstract 1 

Brain ventricular and subcortical structures are heritable both in size and shape. Genetic 2 

influences on brain region size have been studied using conventional volumetric 3 

measures, but little is known about the genetic basis of ventricular and subcortical shapes. 4 

Here we developed pipelines to extract seven complementary shape measures for lateral 5 

ventricles, subcortical structures, and hippocampal subfields. Based on over 45,000 6 

subjects in the UK Biobank and ABCD studies, 60 genetic loci were identified to be 7 

associated with brain shape features (P < 1.09 × 10-10), 19 of which were not detectable 8 

by volumetric measures of these brain structures. Ventricular and subcortical shape 9 

features were genetically related to cognitive functions, mental health traits, and multiple 10 

brain disorders, such as the attention-deficit/hyperactivity disorder. Vertex-based shape 11 

analysis was performed to precisely localize the brain regions with these shared genetic 12 

influences. Mendelian randomization suggests brain shape causally contributes to 13 

neurological and neuropsychiatric disorders, including Alzheimer's disease and 14 

schizophrenia. Our results uncover the genetic architecture of brain shape for ventricular 15 

and subcortical structures and prioritize the genetic factors underlying disease-related 16 

shape variations.  17 

 18 

Keywords: ABCD; Brain disorders; GWAS; Hippocampus subfields; Mental health; 19 

Subcortical and ventricular shapes; UK Biobank. 20 
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 3 

Human brain ventricular and subcortical structures are involved in complex brain 1 

activities and have important roles in the regulation of cognitive, emotional, and motor 2 

functions1-7. Morphometric variations of these brain structures can be quantified in-vivo 3 

by structural magnetic resonance imaging (MRI). MRI-based volumetric measures (such 4 

as regional brain volumes) can estimate a region’s overall size, providing a conventional 5 

measure of the gross variation of the structure. However, such aggregate measures may 6 

not be sensitive to within-region local changes and may not fully capture the complexity 7 

of structural deformations. Shape analysis has gained increasing attention to overcome 8 

these limitations and characterize brain morphometry beyond simple volumetric traits8-9 
11. Recent studies have found that shape features can precisely localize shape 10 

deformations in brain structures, providing finer-grained information of the location and 11 

pattern of morphological variations, which may not be detectable in traditional volume 12 

analysis12,13. For example, shape analysis of the ventricular and subcortical structures has 13 

provided sensitive biomarkers for healthy aging14 and the onset and progression of a wide 14 

range of brain diseases, including Alzheimer’s disease (AD)15,16, schizophrenia17,18, 15 

epilepsy19, major depressive disorder (MDD)20,21, 22q11.2 deletion syndrome22, and 16 

bipolar disorder23. 17 

 18 

Both size (volume) and shape of brain ventricular and subcortical structures have been 19 

found to be heritable in family studies24,25 and general populations13,26-28. For example, 20 

the narrow sense single-nucleotide polymorphism (SNP) heritability estimates for the 21 

volume of ventricular and subcortical structures were all higher or close to 40%26,27 in the 22 

UK Biobank29 (UKB) studies, and the highest SNP heritability estimates for shape features 23 

ranged from 32.7% to 53.3% across structures in the Rotterdam Study28. Genome-wide 24 

association studies (GWAS) have been conducted to uncover the genetic basis of 25 

ventricular and subcortical volumes30-40, yielding hundreds of associated genetic variants 26 

and shared genetic influences with brain disorders and complex traits. However, there is 27 

no large-scale GWAS on ventricular and subcortical shape features and their genetic 28 

architecture has yet to be determined.  29 

 30 

Using raw MRI from over 45,000 subjects in the UKB and Adolescent Brain Cognitive 31 

Development41 (ABCD) studies, we developed pipelines to extract ventricular and 32 
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 4 

subcortical shape features and characterized their genetic architectures. We identified 60 1 

novel genetic loci that contributing to the shape variations, 19 of which cannot be 2 

identified in previous GWAS of volumetric measures of these brain structures using the 3 

same datasets. We found ventricular and subcortical shape features had shared genetic 4 

influences with many cognitive traits and major brain disorders. We further revealed the 5 

localized pattern of genetic effects in vertex-wise analysis and identified causal genetic 6 

links between brain shape and disorders using Mendelian randomization analysis. The 7 

results of this shape study demonstrated genetic effects on ventricular and subcortical 8 

structures at a finer spatial resolution than that of traditional volumetric analysis. Our 9 

GWAS results will be available through the Brain Imaging Genetics Knowledge Portal (BIG-10 

KP) https://bigkp.org/.  11 

 12 

RESULTS 13 

Generating reproducible ventricular and subcortical shape features  14 

We developed pipelines to extract shape features from raw structural MRI images for 8 15 

ventricular and subcortical structures, including the left/right lateral ventricles, nucleus 16 

accumbens, amygdala, caudate, hippocampus, pallidum, putamen, and thalamus. 17 

Furthermore, we studied 7 subfields of the hippocampus, namely the left/right cornu 18 

ammonis 1 (CA1), CA3, fimbria, hippocampus-amygdala-transition-area (HATA), 19 

hippocampal tail, presubiculum, and subiculum (Fig.1A). An overview of our workflow can 20 

be found in Fig. S1. Shape deformations are usually decomposed into two components: 21 

one within the surfaces, and the other along the normal axis of the surfaces. For each 22 

vertex in the shape image, we calculated 7 complementary shape statistics, including the 23 

radial distance from the medial model14 (referred to as the radial distance); the (log) 24 

determinant and two eigenvalues of the Jacobian matrix from the surface tensor-based 25 

morphometry (TBM) model42 (referred to as the determinant, eigenvalue1, and 26 

eigenvalue2); and three features from the multivariate surface TBM (mTBM) model10,11 27 

(referred to as the mTBM1, mTBM2, and mTBM3) (Figs.1B and S2). Briefly, the radial 28 

distance describes morphometric changes along the surface normal direction11 and is also 29 

called the radial thickness10. On the other hand, the 6 surface TBM and mTBM model 30 

features capture surface deformations perpendicular to the surface normal axis (such as 31 

rotation, dilation, and shear within the surfaces). For example, the determinant of 32 
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 5 

Jacobian matrix is analogous to a surface area43, measuring local area dilation or 1 

contraction. It quantifies the surface dilation ratio between the given template and the 2 

study subject by matching a small surface patch around a particular point of the subject 3 

surface to the corresponding point on the template. The three advanced surface mTBM 4 

features analyze the full surface tensor using log-Euclidean metrics and can capture more 5 

complicated surface deformations10,11.  6 

 7 

After extracting vertex-wise maps, we aggregated them and generated region-specific 8 

summary-level features for downstream genetic analyses. For each shape statistics, we 9 

have two groups of features. The first group includes 210 structure-averaged shape 10 

features in regions or subfields by taking the mean across all the vertices within the 11 

structure (7 shape measurements × (8 shape structures + 7 hippocampal subfields) × 2 12 

hemispheres). In the second group, we applied principal component analysis to extract 13 

1,120 region-specific principal components (PCs) by taking the top 10 PCs of the vertex-14 

wise map for each of the 7 statistics in the 8 ventricular and subcortical structures 15 

(left/right, 7 × 8 × 2 × 10) (Methods). Principal component analysis is a well-established 16 

method for dimension reduction with a wide range of neuroimaging applications. In shape 17 

analysis, the top-ranked PCs can characterize the strongest variation components of 18 

shape statistics within each structure, which can provide more microstructural details 19 

about shape deformations omitted by structure-averaged measures, while alleviating 20 

multiple testing burdens (Fig.1C). Clinically, variations represented by these PCs may 21 

localize shape changes that are more relevant to specific brain-related complex traits or 22 

diseases.  23 

 24 

We evaluated the intra-subject reproducibility of the above region or subfield-specific 25 

shape features using the repeat scans from the UKB repeat imaging visit (average time 26 

between visits = 2 years, average n = 2,788). Specifically, we quantified individual-level 27 

differences between the two visits by calculating the intraclass correlation coefficient 28 

(ICC) of each shape feature between two observations from all revisited individuals. The 29 

average ICC was 0.443 (standard error = 0.234) across the 1,330 (210 + 1,120) shape 30 

features (Table S1). There were 457 shape features with ICC > 0.5, including 117 features 31 

for lateral ventricles, 246 for subcortical structures, and 94 for hippocampal subfields (Fig. 32 
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 6 

S3A, mean ICC = 0.722, standard error = 0.132). The average ICC of the 7 shape statistics 1 

ranged from 0.684 to 0.752 (Fig. S3B), and the lateral ventricles had the highest mean ICC 2 

across all the 8 structures (Fig. S3C, mean ICC = 0.816, standard error = 0.129). Our later 3 

genetic analyses focused primarily on these 457 reproducible shapes features (ICC > 0.5, 4 

363 region-level and 94 subfield-level traits) (Table S2).  5 

 6 

Heritability and associated genetic loci of ventricular and subcortical shape features  7 

We estimated SNP heritability (h2) for these 457 reproducible shapes features using the 8 

UKB individuals of white British ancestry via GCTA44 (average n = 32,631, phases 1-3 9 

release). Most heritability estimates (456/457) were significant after adjusting for 10 

multiple comparisons using the Benjamini-Hochberg procedure to control the false 11 

discovery rate (FDR) at 0.05 level (Fig. S4A and Table S3). The mean heritability ranged 12 

from 22.1% to 27.3% (standard error = 1.85%) across the 7 groups of shape statistics, 13 

suggesting different shape deformation measures were under comparable genetic 14 

controls (Fig. S4B). The highest heritability reported in each structure ranged from 51.2% 15 

(for lateral ventricles) to 19.3% (for amygdala) (Fig. S2C). On average, lateral ventricles 16 

had higher heritability than that of subcortical structures (32.2% vs. 21.6%, P < 2.2 × 10-17 
16). Subfield analysis provided more information for genetic influences on different parts 18 

of the hippocampus. For example, we found the CA3 subfield had the highest heritability 19 

among the 7 subfields, while the lowest heritability was observed on the HATA subfield 20 

(Fig. S4D). In addition, the heritability estimates were largely consistent in females and 21 

males (Fig. S5, correlation = 0.83).  22 

 23 

It is known that the volumetric measures of these structures were also heritable26-28. To 24 

quantify the genetic effects additionally contributing on shape measures, we compared 25 

the estimates of genetic variance for 363 region-level shape features before and after 26 

adjusting for their corresponding regional volumes as covariates (Table S4). For the 129 27 

mean and first PC (PC1) shape features, we found that the average genetic variance 28 

reduced from 0.241 to 0.145, indicating that 39.8% (0.096/0.241) genetic variations were 29 

shared by regional brain volumes and shape features (Fig. 2A). In this group of shape 30 

features, the proportion varied greatly from region to region. For example, the largest 31 

proportion was observed in the lateral ventricles (79.2%) and the least was observed in 32 
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 7 

the amygdala (3.4%). As both mean and PC1 features captured the major variations in the 1 

brain region45, these results quantified the overlapping genetic influences between shape 2 

and volumetric measures. On the other hand, for other PCs (other than the PC1s), the 3 

genetic variance estimates were much more consistent before and after adjusting for 4 

regional volumes (Fig. 2B). It was common for these PCs to capture more local variations 5 

that are not captured by the mean or PC1s45. Specifically, the average proportion of 6 

reduction was 11.9% and the reductions were small for the majority of shape features. 7 

There was a substantial reduction of shape features in a few second PCs (PC2) on the 8 

lateral ventricles (70.9%), which can be explained by the fact that the ventricles were large 9 

and therefore the second PC still mainly reflected global variations. Overall, these results 10 

suggest that local PCs of shape features can detect genetic influences which are largely 11 

independent of those found in regional volumes or aggregated shape measures. 12 

 13 

We performed GWAS for the 457 shape features using the UKB individuals of white British 14 

ancestry (average n = 32,631, Methods). The average intercept in linkage disequilibrium 15 

score regression (LDSC)46 was 1.0072 (range = (0.982, 1.034)), indicating no genomic 16 

inflation of summary statistics because of confounding factors. At a stringent significance 17 

level 1.09 × 10-10 (5 × 10-8/457, additionally adjusted for the number of shape features), 18 

622 independent (linkage disequilibrium [LD] r2 < 0.1) significant shape-variant 19 

associations47 were identified, which were distributed across 60 genomic regions 20 

(cytogenetic bands). There were 38 regions associated with the lateral ventricles, 10 with 21 

hippocampal subfields, 9 with hippocampus, 7 with putamen, 6 with nucleus accumbens, 22 

6 with caudate, 4 with pallidum, and 4 with thalamus (Fig. 2C). Table S5 summarizes the 23 

list of index genetic variants and their associated shape features. Among the 60 regions, 24 

19 were not identified by ventricular and subcortical regional volumes (at the 5 × 10-8/30 25 

significance level) in the same dataset. The genetic effects were highly consistent 26 

between males and females in the sex-specific GWAS (Fig. S6, correlation = 0.966), where 27 

analysis was conducted for females and males separately.  28 

  29 

Using 5 independent European and non-European datasets, we replicated the genomic 30 

loci identified in our discovery GWAS. First, we performed GWAS on a UKB European 31 

dataset, which includes European individuals in the new UKB phase 4 data (early 2021 32 
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 8 

release) and individuals of white but non-British ancestry in the UKB phases 1-3 data 1 

(UKBE, removed the relatives of the discovery sample, average n = 4,596). Of the 622 2 

identified independent (LD r2 < 0.1) shape-variant associations, 410 (65.9%) from 37 3 

(61.7%, 37/60) loci passed the 0.05 nominal significance level in UKBE. Their genetic 4 

effects all had concordant directions in the UKBE and original discovery GWAS and were 5 

highly similar (correlation = 0.980). Second, we repeated GWAS on a validation dataset 6 

with UKB non-European subjects (UKBNE, average n = 1,224). In this dataset, 19 loci can 7 

be validated, and most of their associations (83/86) had the same directions with those 8 

in the discovery GWAS and UKBNE. The validated genetic effects were highly consistent 9 

between the white British discovery GWAS and non-European GWAS (correlation = 10 

0.931). These results suggest similar genetic effects on subjects from different ancestries 11 

in the same cohort.  12 

 13 

Next, we carried out GWAS on 3 ABCD validation datasets: the ABCD European (ABCDE, 14 

average n = 3,177), ABCD Hispanic (ABCDH, average n = 662), and ABCD Black (ABCDB, 15 

average n = 1,002). In ABCDE, 23 of the 60 genomic loci were significant at nominal 16 

significance level and had the same effect direction as in the UKB discovery GWAS.       17 

The ABCDH and ABCDB had 13 and 15 validated loci, respectively. Interestingly, we found 18 

that the genetic effects of 3q28 locus on lateral ventricles were much larger in the three 19 

ABCD datasets than those of the UKB discovery sample, especially for the non-European 20 

subjects in ABCDH (mean absolute genetic effects 0.082 vs. 0.3367, P = 1.35 × 10-7) and 21 

ABCDB (mean absolute genetic effects 0.082 vs. 0.401, P = 1.67 × 10-4). The 3q28 locus 22 

was reported to have the strongest associations with lateral ventricular volume31 and was 23 

widely associated with Alzheimer’s disease risk and biomarkers48. Larger 3q28 effects in 24 

ABCD may suggest that the genetic effects on lateral ventricles were stronger for younger 25 

subjects and/or non-European subjects. Overall, 43 of the 60 loci can be validated in at 26 

least one of the 5 datasets, 30 loci can be validated in more than one dataset, and 5 loci 27 

can be consistently validated in all datasets, including 3q28, 17q24.1, 14q32.11, 12q14.3, 28 

and 10q26.13. The validated loci (such as 3q28) may have higher genetic effect sizes in 29 

ABCD than in UKB discovery GWAS. These validation results were summarized in Figure 30 

S7 and Table S5.  31 

 32 
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 9 

Finally, we detected gene-level associations using MAGMA49 and FUMA47. MAGMA 1 

reported 127 significant genes with 1,343 associations (P < 5.82 × 10-9, adjusted for 457 2 

phenotypes), covering all the ventricular and subcortical structures (Fig. S8 and Table S6). 3 

Among the 127 significant genes, 59 were identified by regional brain volumes35, 53 were 4 

observed in DTI parameters45, and 12 overlapped with functional MRI (fMRI) traits50. Eight 5 

genes were associated with all the 4 brain imaging modalities, including FAM175B, 6 

FAM53B, METTL10, and RP11-12J10.3 (METTL10-FAM53B readthrough) in the 10q26.13 7 

region, as well as EPHA3 (3p11.1), ZIC1 (3q24), ZIC4 (3q24), and DAAM1 (14q23.1). The 8 

FAM175B, FAM53B, and METTL10 genes had important functions in ribosomal translation 9 

and cell regeneration51, and have been mapped to cocaine dependence52 and subjective 10 

well-being53. The EPHA3 was involved in axon guidance54 and was highly expressed in 11 

mesenchymal subtype glioblastoma55. The DAAM1 was an important part of the planar 12 

cell polarity signaling in neural development56 and was highly expressed in human 13 

cerebral cortex57. In addition, the ZIC genes were important components in patterning 14 

the cerebellum58. Overall, these 127 MAGMA-significant genes showed gene ontology 15 

enrichments59 in “cell morphogenesis involved in differentiation (GO:0000904)” and “T 16 

cell receptor signaling pathway (GO:0050852)” biological processes at FDR 0.05 level (P < 17 

2.76 × 10-6). We also used FUMA47 to map significant variants (P < 1.09 × 10-10) to genes 18 

through a combination of their base pair location, gene expression, and 3D chromatin (Hi-19 

C) interaction. FUMA reported 383 associated genes, 313 of which were not discovered 20 

in MAGMA (Table S7). These results demonstrate the polygenic genetic architecture of 21 

shape features and prioritize important genes involved in the biological pathways of brain 22 

functions and diseases. 23 

 24 

The shared genetic influences with complex brain traits and disorders.  25 

We took a further look into the 43 validated regions, providing variant annotations and 26 

details of shared genetic influences with other complex traits and diseases. For all the 27 

independent (LD r2 < 0.1) significant variants (and variants in LD, r2 ≥ 0.6) detected in these 28 

validated regions, we searched for their GWAS signals reported in the NHGRI-EBI GWAS 29 

catalog60. Shape deformation of ventricular and subcortical structures has substantial 30 

regional and local genetic overlaps with complex traits and clinical endpoints. The full 31 

information was presented in Table S8, and below we highlighted some regions and their 32 
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 10 

reported variants and genes reported for brain structures/functions, neurological 1 

disorders, psychiatric disorders, psychological traits, migraine, cognitive traits, 2 

educational attainment, sleep/physical activity, osteoarthrosis/pain, Alzheimer's Disease 3 

biomarkers, diabetes/kidney diseases, blood traits, blood pressure, smoking/drinking, 4 

lung/liver, and lipoprotein cholesterol.  5 

 6 

Our results were concordant with previous GWAS results for regional brain volumes and 7 

cortical thickness in many genomic loci, including 3q24 (index variant rs2279829, the 8 

nearest gene ZIC4), 8q24.12 (rs10283100, ENPP2), 9q31.3 (rs734250, LPAR1), 9q33.1 9 

(rs10983205, ASTN2), 11q14.3 (rs1531249, FAT3), 11q23.1 (rs34077344, LINC02550), 10 

11q23.3 (rs10892133, DSCAML1), 12q14.3 (rs61921502, MSRB3), 12q23.3 (rs12369969, 11 

NUAK1), 12q24.22 (rs7132910, HRK), 14q22.3 (rs945270, KTN1), and 16q22.3 (rs7193665, 12 

ZFHX3) (Figs. S9-S20). For example, rs7132910 was identified to be associated with 13 

hippocampal volume61. It the current study, we found rs7132910-associations with 14 

multiple shape features of the hippocampus, particularly the subiculum subfield. 15 

Additionally, rs2279829 and rs7132910 were expression quantitative trait loci (eQTLs) of 16 

ZIC4 and TESC in human brain tissues62, suggesting that these shape-associated variants 17 

were known to affect gene expression levels in human brain. Among these regions, we 18 

also tagged genetic variants (LD r2 ≥ 0.6) reported for risk-taking63, alcohol consumption, 19 

smoking initiation64, lung function65, chronic obstructive pulmonary disease (COPD)66, 20 

blood pressure65, and Alzheimer's disease pathologies67.  21 

 22 

Our shape GWAS results frequently tagged regions reported for white matter 23 

microstructure, including 17q24.1 (rs62072157, GNA13), 2p13.2 (rs34754475, DYSF), 24 

3q28 (3:190672426_CT_C, GMNC), 5q14.2 (rs12187334, ATP6AP1L), 7p21.1 (rs4329170, 25 

TWISTNB), 7p22.2 (rs1183079, GNA12), 7p22.3 (rs368699386, AMZ1), 14q32.12 26 

(rs529889896, CCDC88C), 16q24.2 (rs56023709, C16orf95), and 16q24.3 (rs8404, CDK10) 27 

(Figs. 3A and S21-S30). For example, rs62072157 was associated with (the ninth PC of) 28 

the radial distance of the right lateral ventricle, and it also had significant associations 29 

with the fornix (column and body) and anterior corona radiata white matter tracts (P < 4 30 

× 10-9). Rs62072157 was an eQTL of GNA13 and RGS9 in brain tissues62. The GNA13 was a 31 

core gene involved in early brain development regulations68 and has been implicated in 32 
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 11 

brain diseases such as schizophrenia69. In addition, rs1183079 was a brain eQTL of AMZ1, 1 

which was associated with mTBM2 and radial distance of the right lateral ventricle, as 2 

well as multiple white matter tracts, such as the body of corpus callosum, anterior corona 3 

radiata, retrolenticular part of internal capsule, posterior corona radiata, and superior 4 

corona radiata (P < 5.5 × 10-11). Furthermore, rs8404 was a brain eQTL of CDK10, SPATA33, 5 

VPS9D1, MC1R, and ACSF3. Rs8404 was associated with multiple shape features of the 6 

left hippocampus and affected the integrity of the retrolenticular part of internal capsule 7 

and superior longitudinal fasciculus tracts (P < 2 × 10-8). The CDK10 was important for 8 

neural development70. In addition to Alzheimer's disease biomarkers48 and COPD66, we 9 

found shared genetic influences with type 2 diabetes71 and blood traits (such as plasma 10 

homocysteine levels72 and platelet distribution width73) on these white matter-11 

overlapping genomic loci.   12 

 13 

In 6p22.1 and 18q21.2 regions, we observed the shared genetic influences between shape 14 

features and multiple psychiatric disorders and psychological traits. For example, we 15 

tagged rs7766356 (nearest gene ZSCAN23, 6p22.1) and rs11665242 (DCC, 18q21.2), which 16 

have been implicated with schizophrenia74,75 (Figs. S31-S32). Rs7766356 was an eQTL of 17 

ZSCAN23, ZSCAN31, ZKSCAN3, and ZSCAN26, which might represent drug targets for 18 

schizophrenia76. We also tagged risk variants for bipolar disorder77 (e.g., rs144447022) 19 

and MDD78 (e.g., rs926552) in these two regions and for neuroticism79 in 5q14.3 (e.g., 20 

rs16902900, TMEM161B) (Fig. S33). In 2q24.2, 6q22.32, 8p11.21 regions (Fig. 3B and Figs. 21 

S34-S36), as well as the 6p22.1 and 18q21.2 regions related to brain disorders, we found 22 

shared genetic influences with a wide range of cognitive and educational traits, such as 23 

intelligence80 (e.g., rs2268894, DPP4, 2q24.2), educational attainment81 (e.g., 24 

rs11759026, CENPW, 6q22.32; rs2974312, SMIM19, 8p11.21), self-reported math ability81 25 

(e.g., rs71559051, H2BC15, 6p22.1), and verbal-numerical reasoning82 (e.g., rs62100026, 26 

DCC, 18q21.2). Finally, we tagged sleep-related variants in 10p12.31 and 11q14.1 regions, 27 

such as insomnia83 (e.g., rs12251016, MLLT10, 10p12.31; and rs667730, DLG2, 11q14.1, 28 

Figs. S37-S38). These results suggest the shape features could be used as imaging 29 

biomarkers to study the etiologic study of brain-related diseases and complex traits.  30 

 31 

 . CC-BY-NC-ND 4.0 International licenseIt is made available under a 

 is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity.(which was not certified by peer review)preprint 
The copyright holder for thisthis version posted September 27, 2022. ; https://doi.org/10.1101/2022.09.26.22279691doi: medRxiv preprint 

https://doi.org/10.1101/2022.09.26.22279691
http://creativecommons.org/licenses/by-nc-nd/4.0/


 12 

Our results also help us to better understand the genetic links between brain atrophy and 1 

the health of other organs. For example, the index rs10901814 (FAM53B, 10q26.13) was 2 

associated with the shape features in the hippocampus and lateral ventricles and it was a 3 

brain eQTL for EEF1AKMT2 and LHPP genes. In this region, we tagged risk variant (index 4 

variant rs4962691 for estimated glomerular filtration rate (eGFR)84, which was a clinical 5 

biomarker for kidney function and disease (Fig. 3C). Brain and kidney had similar 6 

hemodynamic mechanisms and shared physiological links85. Cognitive impairment and 7 

accompanied brain structural changes (such as hippocampus volume) have been 8 

frequently reported in chronic kidney disease86,87. To precisely localize the pattern of 9 

genetic effects on brain shapes, we took the eGFR lead index rs4962691 and performed 10 

vertex-wise analysis on spatial maps of hippocampus and lateral ventricles. We found that 11 

the rs4962691-related shape deformation was mainly localized to specific areas of the 12 

hippocampus and lateral ventricles, such as the hippocampal tail and CA1, as well as the 13 

atrium and posterior horn of lateral ventricles (Fig. 3D). These genetic overlaps and local 14 

structural variations may represent the mediated brain changes related to the cognitive 15 

impairment in chronic kidney disease.  16 

 17 

Genetic correlations with complex traits and clinical outcomes  18 

We explored genetic correlations (GC) between shape features and a wide range of other 19 

complex traits. First, we used LDSC88 to examine pairwise genetic correlation between the 20 

457 shape features and 211 brain structural traits, including 101 regional brain volumes35 21 

and 110 diffusion tensor imaging (DTI) parameters45. Among the 96,427 (457 × 211) tests, 22 

16.22% were significant at the FDR 5% level (Fig. S39 and Table S9). Both regional brain 23 

volumes and DTI parameters had significant genetic correlations with ventricular and 24 

subcortical shape features. For DTI parameters, the strongest associations were observed 25 

on the lateral ventricles, and the top 5 associated white matter tracts included the fornix, 26 

body of corpus callosum, superior corona radiata, posterior corona radiata, and posterior 27 

limb of internal capsule (P < 1.49 × 10-55). Meanwhile, either the fornix or body of corpus 28 

callosum tracts consistently had the strongest associations with the subcortical structures, 29 

such as the hippocampus (P = 9.67 × 10-25), nucleus accumbens (P = 2.18 × 10-23), amygdala 30 

(P = 4.51 × 10-8), caudate (P = 1.32 × 10-19), pallidum (P = 9.36 × 10-16), putamen (P = 2.73 31 

× 10-15), and thalamus (P = 8.95 × 10-38). Our subfield analysis further revealed that the 32 
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fornix and body of corpus callosum associations were mainly localized in the 1 

presubiculum subfield of hippocampus (P < 3.68 × 10-14). The fornix located below the 2 

corpus callosum and connected the hippocampus to subcortical structures89. Our results 3 

suggested that the fornix integrity and shape deformations had strong genetic overlaps. 4 

For regional brain volumes, we found associations for volumes of both cortical and 5 

subcortical structures. As expected, the ventricular and subcortical structures had strong 6 

genetic correlations with subcortical volumes. In addition, genetic correlations were also 7 

widely observed between cortical structures and ventricular and subcortical shapes. Top-8 

ranked cortical volumes included the left/right insula (with putamen, P < 7.61 × 10-18), 9 

left/right isthmus cingulate (with ventricle and hippocampus presubiculum, P < 9.77 × 10-10 
10), left/right lingual (with ventricle, P < 2.70 × 10-14), left/right pericalcarine (with 11 

ventricle, P < 3.41 × 10-12), and left/right cuneus (with ventricle, P < 2.37 × 10-10). Overall, 12 

these results suggest that ventricular and subcortical shape features are genetically 13 

related to white matter integrity and structural variations of cortical regions.  14 

 15 

Next, we examined genetic correlations between the 457 shape features and 48 complex 16 

traits and diseases. At the FDR 5% level (457 × 48 tests), we found the shape features were 17 

associated with brain disorders (such as attention-deficit/hyperactivity disorder (ADHD), 18 

schizophrenia, and anorexia nervosa), cognitive traits (such as cognitive function, 19 

intelligence, and reaction time), sleep traits (such as snoring, insomnia, extreme 20 

chronotype), neuroticism, risk-taking, metabolic traits, and cardiovascular diseases (such 21 

as hypertension and coronary artery disease (CAD)) (Fig. S40 and Table S10). For example, 22 

ADHD was positively correlated with shape features of the left hippocampus and lateral 23 

ventricles (|GC| > 0.184, P < 5.69 × 10-4, Figs. 4A-4B). In ADHD, there have been reports 24 

of abnormalities in hippocampal structures, possibly as a result of the brain's efforts to 25 

compensate for disruptions of time perception and a tendency to avoid waiting90. The 26 

Rotterdam Study reported that ADHD-related genetic variants were associated with 27 

structural brain changes in the lateral ventricles91. In addition, schizophrenia was 28 

genetically associated with shape features of the thalamus and hippocampus (|GC| > 29 

0.133, P < 6.14 × 10-4). Both the thalamus and hippocampus had crucial roles in functional 30 

and structural pathways related to schizophrenia92 and smaller volumes in the two 31 

structures were frequently reported in schizophrenia patients93,94. An earlier study using 32 
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subcortical brain volumes was not able to detect genetic overlap between schizophrenia 1 

risk and subcortical structures95. Furthermore, most significant genetic correlations with 2 

cognitive function, intelligence, and education were with the lateral ventricles (|GC| > 3 

0.113, P < 5.42 × 10-4), while the reaction time additionally had genetic correlations with 4 

the thalamus (|GC| > 0.115, P < 7.90 × 10-4, Fig. 4C). Ventricular enlargement was strongly 5 

correlated with cognitive performance decline96. The thalamus passed information 6 

between the brain and body and anticipatory thalamic activity can predict reaction time97. 7 

We also observed specific genetic correlations for other traits, such as between insomnia 8 

and the caudate (|GC| > 0.141, P < 7.85 × 10-4), risk tolerance and the hippocampus (|GC| 9 

> 0.283, P < 8.15 × 10-4), and automobile speeding and the lateral ventricles (|GC| > 0.148, 10 

P < 3.52 × 10-4). Furthermore, we found that CAD was genetically correlated with the 11 

hippocampus and lateral ventricles (|GC| > 0.260, P < 6.40 × 10-4, Fig. 4D). CAD had long-12 

term negative impact on brain health and reduced neural connectivity changes in the 13 

hippocampus were observed in CAD and may contribute to cognitive impairment98. A 14 

significant genetic correlation between AD and the hippocampus was not observed. 15 

 16 

Phenome-wide association study using shape polygenic risk scores 17 

We tested associations between the 457 shape features and more complex traits and 18 

clinical outcomes using polygenic risk scores (PRS) of shape features in the UKB non-19 

imaging cohort (Methods). A total of 276 complex traits and clinical outcomes were 20 

selected from a variety of categories (Table S11). Briefly, we constructed PRS using PRS-21 

CS99 for shape features on unrelated UKB subjects without brain MRIs (n = 379,860, also 22 

removing relatives of imaging subjects). We then focused on the UKB white British 23 

subjects and randomly selected 70% individuals (average n = 202,405) as discovery 24 

sample to test pairwise associations (457 × 276 tests) and validated these results in a hold-25 

out dataset consisting of the rest of 30% white British subjects (average n = 86,736), UKB 26 

white non-British subjects (average n = 20,746), and UKB non-white subjects (average n = 27 

21,587). Detailed information on the adjusted covariates can be found in the Methods 28 

section. We prioritized significant associations in the validation sample (at the nominal 29 

significance level) with concordant regression coefficients when they passed the 30 

Bonferroni significance level in the discovery sample. Among the 457 × 276 tests, 2,907 31 

were significant at Bonferroni significance level in the discovery sample, among which 32 
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94.60% (2,750) were validated (Fig. S41 and Table S12). We highlighted below the 1 

association patterns with clinical outcomes, mental health, cognitive function, physical 2 

activity, lifestyle, and biomarkers.  3 

 4 

We observed significant associations between shape PRS and multiple diseases, including 5 

diabetes, hyperthyroidism, hypothyroidism, multiple sclerosis, psoriasis, and vascular 6 

heart problems. For example, diabetes was significantly associated with PRS for multiple 7 

shape features of the left hippocampus and its subfields (|b | > 0.0109, P < 2.47 × 10-7). 8 

These findings were consistent with previous studies showing patients with long diabetes 9 

had higher risk of hippocampal atrophy, and loss of hippocampal neuroplasticity and 10 

neurogenesis100,101. In addition, both hyperthyroidism and hypothyroidism were mostly 11 

associated with shape PRS of the lateral ventricles and hippocampus (and hippocampal 12 

subfields) (|b | > 0.0107, P < 3.87 × 10-7). Adults with hypothyroidism were reported to 13 

have decreased hippocampal volume102 and people with hyperthyroidism had smaller 14 

grey matter volume in bilateral hippocampus103. Hyperthyroidism and hypothyroidism 15 

had also been linked to changes of brain ventricle size104. Multiple sclerosis was mostly 16 

associated with shape features of the putamen and hippocampus (|b | > 0.0108, P < 3.42 17 

× 10-7). Decreased putamen and hippocampal volumes have been reported in multiple 18 

sclerosis patients105,106. We also found associations between vascular heart problems and 19 

shape PRS of the hippocampus (|b | > 0.0105, P < 3.71 × 10-7), consistent with previous 20 

studies showing decreased hippocampal volume among patients with vascular heart 21 

problems107.  22 

 23 

There were significant associations between shape PRS and multiple mental health traits 24 

related to anxiety, depression, and neuroticism (|b | > 0.0106, P < 1.09 × 10-11). Most of 25 

these mental health traits were associated with shape features of the hippocampus and 26 

its subfields. These observed associations were consistent with recent findings on 27 

reduced hippocampal volume in subiculum108 and fimbria109 among patients with MDD. 28 

Significant associations were also found between mental health and shape PRS of other 29 

brain structures, such as between nervous feelings and the nucleus accumbens, 30 

neuroticism and the putamen, as well as tiredness/lethargy and the caudate. 31 

 32 
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The blood biochemistry biomarkers were widely associated with the shape PRS of all 1 

structures, with the majority of associations involving the hippocampus, hippocampal 2 

subfields, and lateral ventricles. Examples of associated biomarkers included 3 

apolipoprotein A, aspartate aminotransferase, glycated haemoglobin (HbA1c), high-4 

density lipoprotein (HDL) cholesterol, insulin-like growth factor 1 (IGF-1), total protein, 5 

and urate (|b | > 0.009, P < 4.28 × 10-42). It is known that urate caused hippocampal 6 

infection, which in turn induced cognitive dysfunction110. HbA1c measured the blood 7 

sugar level and was used in diagnosis of diabetes. Our results were consistent with a 8 

recent study that higher level of HbA1c was associated with smaller hippocampal 9 

volume111. In summary, shape PRS uncovered the links between shape features and a 10 

wide range of complex traits and diseases. As the shape PRS were genetically predicted 11 

traits, these observed associations also indicate the widespread underlying shared 12 

genetic influences.   13 

 14 

Causal relationships with clinical endpoints detected by Mendelian randomization.   15 

To explore the causes and consequences of shape deformations, Mendelian 16 

randomization (MR) was used to identify potential causal relationships between the 457 17 

shape features and 288 clinical endpoints collected by FinnGen112 and the Psychiatric 18 

Genomics Consortium113 (Table S13). We tested 14 different MR methods114-117, and the 19 

detailed implementation information can be found in the Methods section.  20 

 21 

At the Bonferroni significance level (P < 3.92 × 10-8), we found strong evidence of genetic 22 

causal effects from shape features to brain disorders, including AD, schizophrenia, and 23 

cross disorders (five major psychiatric disorders118) (Fig. 5A and Table S14). For example, 24 

multiple ventricular shape statistics had significant genetic causal effects on Alzheimer’s 25 

disease (|b | > 0.474, P < 2.73 × 10-8), most of which were from the left lateral ventricle. 26 

AD can affect gray and white matter structures surrounding the ventricles, and ventricular 27 

enlargement and expansion have been frequently identified in AD9,119-121. Our findings 28 

provide further evidence for the causal genetic pathway underlying brain structural 29 

variations and Alzheimer’s disease. There was a consistent sign of causal genetic effects 30 

across different MR methods. In addition, shape features of the putamen and 31 

hippocampus were causally linked to schizophrenia (|b| > 0.339, P < 1.97 × 10-8). In 32 
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schizophrenia, neuropsychological impairments have been associated with hippocampal 1 

structures94. It is well known that the putamen is associated with both increased 2 

dopamine synthesis capacity and frontostriatal dysconnectivity in schizophrenia, as well 3 

as with antipsychotic treatment effects122. Additionally, we did not detect causal genetic 4 

links to schizophrenia by analyzing the volumes of putamen and hippocampus structures 5 

(|b| < 0.293, P > 0.0011). Furthermore, there were significant genetic causal relationships 6 

between shape features and other diseases of the nervous system, such as carpal tunnel 7 

syndrome (|b | > 0.249, P < 1.26 × 10-8) and migraine (|b | > 0.256, P < 7.61 × 10-14). All 8 

of the above results passed the MR-Egger intercept test, indicating the absence of 9 

horizontal pleiotropy. 10 

 11 

Additionally, we identified causal relationships where sleep traits were the exposure and 12 

brain structural traits were the outcome at Bonferroni significance level (P < 1.12×10-8). A 13 

large proportion of the significant findings (26/42) were related to the diseases of the 14 

circulatory system, such as aortic aneurysm, calcific aortic valvular stenosis, heart failure, 15 

and hypertensive heart disease (Fig. 5B and Table S14). For example, calcific aortic 16 

valvular stenosis had causal genetic links to the shape of the pallidum (|b | > 0.059, P < 17 

1.02 × 10-8), and hypertensive heart disease may lead to the changes of the fimbria 18 

subfield (|b | > 0.075, P < 4.28 × 10-9). Multiple brain disorders, such as stroke123 and 19 

dementia124, can be caused by diseases of the circulatory system. We also found that 20 

COPD was causally related to the shape of hippocampus and lateral ventricles (|b | > 21 

0.064, P < 9.87 × 10-9). Cognitive impairments and related alterations of hippocampus had 22 

been found in COPD patients125. Overall, our MR results suggest that genetic causal 23 

pathways may exist between brain shapes and brain disorders, such as Alzheimer’s 24 

disease. These findings also reveal possible genetic mechanisms of non-brain diseases 25 

(e.g., heart diseases) that underlie brain health.  26 

 27 

DISCUSSION 28 

Brain volumes are commonly used to analyze brain ventricular and subcortical structures. 29 

Increasing evidence, however, indicates that volumetric measurements can only partially 30 

capture structural complexity. As a result, shape analysis has been performed to uncover 31 

deformations that are not visible in volumetric analysis. Using over 45,000 MRI scans in 32 
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the UKB and ABCD studies, our study uncovered the genetic architecture of shape 1 

features within the ventricular and subcortical regions. We identified genetic connections 2 

between shape features and a wide range of complex traits and clinical outcomes. 3 

Leveraging shape features identified new loci that could not be identified by brain 4 

volumes and provided fine details for localizing the genetic effect patterns within brain 5 

structures. The results of our study improved the spatial resolution for identifying 6 

genetically important brain areas that influenced clinical outcomes. For example, 7 

rs4962691, a risk variant for eGFR, had genetic effects in specific parts of the 8 

hippocampus and lateral ventricles. These shape features may be used as 9 

endophenotypes of the cognitive impairment in kidney disease. In summary, as one of 10 

the first large-scale studies to examine the genetic architecture of ventricular and 11 

subcortical shape features, our results provide specific shape biomarkers that can be used 12 

in clinical research questions.  13 

 14 

The present study has a few limitations. First, the current analysis mainly used data from 15 

the European UKB subjects, which may limit the generalizability of our research findings. 16 

In the validation analysis, we have observed that European-significant genetic variants 17 

tended to have larger effects in non-European cohorts of the ABCD study. The inclusion 18 

of more global samples and identification of cross-population components of genetic 19 

effects on brain shape will be of great interest in future studies. Second, we used PCA to 20 

extract low-rank features from vertex-wise maps, which can capture local shape 21 

deformations while mitigating multiple testing burden for genome-wise testing. PCA is a 22 

powerful statistical tool to extract linear structures in the data. Nevertheless, PCA may 23 

not be the most efficient method for reducing dimensions because complicated shape 24 

variations can be non-linear. It might be possible to generate more powerful shape 25 

features using variational autoencoder126 and transfer learning127. Lastly, we studied 26 

hippocampal subfields, which may reflect specific biological processes and cognitive 27 

functions128,129. Other subcortical structures (such as amygdala130) and lateral ventricles12 28 

can also be divided into different portions or subregions with distinct functions. The 29 

development and application of automated segmentation methods in large-scale MRI 30 

datasets will enable the discovery of genetic influences at the subfield level for more brain 31 

structures. 32 
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 1 

METHODS 2 

Methods are available in the Methods section. 3 

Note: One supplementary information pdf file, one supplementary figure pdf file, and one 4 

supplementary table zip file are available. 5 
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 4 

METHODS 5 

Shape features and imaging datasets.  6 

The raw structural MRI data from the UKB and ABCD studies were used in this study. The 7 

UKB study’s ethics approval was obtained from the North West Multicentre Research 8 

Ethics Committee (approval number: 11/NW/0382). The procedures of the ABCD study 9 

were approved by the institutional review boards at ABCD collection sites (approval 10 

numbers: 201708123 and 160091). The image collection and processing procedures can 11 

be found in Alfaro-Almagro, et al. 131 for the UKB study and Casey, et al. 132 for the ABCD 12 

study.  13 

 14 

The shape feature generation pipeline was detailed in the Supplementary Note and an 15 

overview of the procedures and examples were virtualized in Figures S1 and S42. Briefly, 16 

we focused on 8 ventricular and subcortical structures, including the left/right lateral 17 

ventricles, nucleus accumbens, amygdala, caudate, hippocampus, pallidum, putamen, 18 

and thalamus. We constructed the vertex-wise map for 7 different shape statistics, 19 

including radial distance, mTBM1, mTBM2, mTBM3, determinant, eigenvalue1, and 20 

eigenvalue2. For each shape statistics, we aggregated these vertex-wise data by 1) taking 21 

the mean across all vertices for each structure; and 2) generating the top-ranked PCs for 22 

each structure (left and right hemispheres separately). Intuitively, the purpose of these 23 

PCs was to capture global and local variations within the vertex-wise representation of 24 

brain structures. Typically, the first one or two PCs represented the global patterns, which 25 

were similar to the mean values. Other PCs, however, captured local variations that mean 26 

or top-ranked PCs missed. See Figure 1C for an illustration. Additionally, we segmented 27 

the hippocampus and calculated the mean of shape statistics for each of the following 28 

subfields: the left/right CA1, CA3, fimbria, HATA, hippocampal tail, presubiculum, and 29 

subiculum. In total, we had 1,330 (210 mean values and 1,120 PCs) shape features. Based 30 

on the UKB revisit data, we calculated the reproducibility (ICC) and selected those with 31 
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ICC > 0.5, resulting in a final set of 457 shape features (363 at the structure-level and 94 1 

at the subfield-level) for genetic analysis. See Table S1 for their names and descriptions.  2 

 3 

We analyzed the above 457 reproducible traits in the following datasets: 1) the white 4 

British discovery dataset, where the data were from white British subjects in UKB phases 5 

1 to 3 imaging data (average n = 32,631, released up through 2020); 2) the UKB European 6 

validation dataset, which included White individuals in the newly released UKB phase 4 7 

data and the UKB non-British white individuals in phases 1 to 3 data (UKBE, removed the 8 

relatives of the discovery sample, average n = 4,596); 3) the UKB non-European validation 9 

dataset that consisting of non-White subjects in the UKB phases 1 to 4 data (UKBNE, 10 

average n = 1,224); 4) the UKB first revisit dataset (average n = 2,788); and 5) the ABCD 11 

dataset (average n = 8,496). The average age (at imaging) of all UKB subjects was 64.2 12 

(standard error = 7.73), 51.6% were females; the average age for all ABCD students was 13 

9.93 (standard error = 0.62), 48.2% were females. Self-reported ethnicity (Data-Field 14 

21000) was used to assign ancestry in UKB, whose accuracy was verified in Bycroft, et al. 15 
133. We assigned ancestry to the ABCD participants based on self-reported ethnic 16 

background combined with SNPweights134 inferences, see Zhao, et al. 45 for more 17 

information.  18 

  19 

Heritability and GWAS analysis. We downloaded UKB imputed genetics data133 (Data-20 

Category 263) and locally imputed the ABCD genetic data using the Michigan Imputation 21 

Server (https://imputationserver.sph.umich.edu/) with the 1000 Genomes Phase 3 22 

(Version 5) reference panel45. In both UKB and ABCD, the following quality controls were 23 

performed on imaging subjects with genetics data: 1) removing subjects with > 10% 24 

missing genotypes; 2) removing genetic variants with minor allele frequency (MAF) < 0.01; 25 

3) removing genetic variants with missing genotype rate > 10%; 4) removing variants that 26 

failed the Hardy-Weinberg test at 1 × 10-7 significance level; and 5) removing genetic 27 

variants with imputation INFO score < 0.8. We used GCTA44 to estimate SNP-based 28 

heritability with all autosomal SNPs in the white British discovery dataset (average n = 29 

32,631). The adjusted covariates include age (at imaging), age-squared, sex, age-sex 30 

interaction, age-squared-sex interaction, imaging site, the top 40 genetic PCs133, 31 

volumetric scaling, head motion, head motion-squared, brain position, and brain position-32 
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squared37,40. For the 363 structure-level shape features, the genetic variance estimates 1 

were also extracted from the GCTA and were compared before and after additionally 2 

adjusting for the regional volumetric measurements. Specifically, for each of the 7 3 

subcortical structures, we additionally controlled the corresponding FIRST subcortical 4 

volumes (Category 1102). For the lateral ventricles, we adjusted for the regional volumes 5 

estimated from ANTs135. The genome-wide association analysis was conducted with a 6 

linear mixed effect model using fastGWA136, adjusted for the same covariates as the 7 

GCTA. We also conducted GWAS separately in validation datasets and adjusted for only 8 

the top 10 genetic PCs rather than the top 40. In the ABCD dataset, we performed 9 

validation GWAS separately for African American, European, and Hispanic subjects, 10 

removing one subject randomly from each twin pair45. In all analyses, we removed values 11 

greater than five times the median absolute deviation from the median for each 12 

continuous phenotype or covariate variable.  13 

 14 

We used FUMA47 (version v1.3.8) to characterize genomic loci with European LD files from 15 

the 1000 Genomes. To define the LD boundaries, FUMA used independent significant 16 

variants, which were genetic variants whose P-value smaller than the predefined 17 

threshold (here was 1.09 × 10-10, 5 × 10-8/457) and were independent of other significant 18 

variants (LD r2 < 0.6). FUMA then constructed LD blocks for these independent significant 19 

variants by tagging all variants in LD (r2 ≥ 0.6) with at least one independent significant 20 

variant with a MAF ≥ 0.0005. There may have been variants from the 1000 Genomes 21 

reference panel that were not included in the GWAS. Moreover, within these significant 22 

variants, we defined independent lead variants as those that were independent from 23 

each other (LD r2 < 0.1). In the case of close LD blocks (<250 kb based on the closest 24 

boundary variants of LD blocks), they were merged into one genomic locus. Independent 25 

significant variants and all the variants in LD with them (r2 ≥ 0.6) were looked up on the 26 

NHGRI-EBI GWAS catalog (version e104_2021-09-15) to search for associations (P < 9 × 27 

10-6) reported for any traits. For selected colocalized index variants, we also performed 28 

association analysis in vertex-wise data to illustrate local association patterns. The 29 

significance threshold was set to be 0.05/number of vertices in each structure. We 30 

adjusted for the same set of covariates as in the above genome-wise analysis.  31 

 32 
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Gene-based testing was performed using UKB white British discovery GWAS summary 1 

statistics for 18,796 protein-coding genes via MAGMA49 (version 1.08). We used default 2 

MAGMA settings with zero window size around each gene. We also conducted functional 3 

annotation and mapping analysis in FUMA, where genetic variants were annotated with 4 

their genomic functionality and then were mapped to 35,808 candidate genes using 5 

positional, eQTL, and 3D chromatin interaction information. Brain-related tissues/cells 6 

were selected in all options and the default values were used for all other parameters in 7 

FUMA. LDSC88 (version 1.0.1) was used to infer genetic correlations. LD scores were 8 

computed using 1000 Genomes European data provided by LDSC. The major 9 

histocompatibility complex (MHC) region was removed from the HapMap3 variants. 10 

 11 

Polygenic risk scores on UKB non-imaging subjects. As a first step, we constructed a PRS 12 

based on PRS-CS99 for each shape feature. We input GWAS summary statistics from the 13 

UKB white British discovery dataset (average n = 32,631), and randomly selected 1,500 14 

subjects from the UKB European validation dataset as validation. We used all default 15 

parameters in the PRS-CS software (https://github.com/getian107/PRScs) and generated 16 

the PRS for all non-imaging individuals in the UKB study (removing relatives of the UKB 17 

imaging individuals). The second step was to explore the associations with 276 18 

phenotypes across various trait domains using these non-imaging UKB individuals, 19 

including 24 mental health traits (Category 100060), 5 cognitive traits (Category 100026), 20 

12 physical activity traits (Category 100054), 6 electronic device use traits (Category 21 

100053), 8 sun exposure traits (Category 100055), 3 sexual factor traits (Category 22 

100056), 3 social support traits (Category 100061), 12 family history of diseases (Category 23 

100034), 21 diet traits (Category 100052), 9 alcohol drinking traits (Category 100051), 6 24 

smoking traits (Category 100058), 34 blood biochemistry biomarkers (Category 17518), 3 25 

blood pressure traits (Category 100011), 3 spirometry traits (Category 100020), 32 early 26 

life factors (Categories 135, 100033, 100034, and 100072), 9 greenspace and coastal 27 

proximity (Category 151), 2 hand grip strength (Category 100019), 13 residential air 28 

pollution traits (Category 114), 5 residential noise pollution traits (Category 115), 2 body 29 

composition traits by impedance (Category 100009), 4 health and medical history traits 30 

(Category 100036), 3 female specific factors (Category 100069), 1 education trait 31 
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(Category 100063), and 57 curated disease phenotypes based on Dey, et al. 137 (Table 1 

S11). 2 

 3 

We used a discovery-validation design and repeated our analysis in two independent 4 

samples: 1) the discovery sample, which consisted of 70% randomly selected independent 5 

UKB non-imaging subjects of white British ancestry (average n = 202,405) and 2) the 6 

validation sample, including the left 30% independent UKB white British non-imaging 7 

subjects (average n = 86,736), white non-British non-imaging subjects (average n = 8 

20,746), and non-white non-imaging subjects (average n = 21,587). The adjusted 9 

covariates included age, age-squared, sex, age-sex interaction, age-squared-sex 10 

interaction, as well as 40 genetic PCs. We reported P values from the two-sided t test and 11 

prioritized on the results that were 1) significant after Bonferroni correction in the 12 

discovery dataset, 2) significant at nominal significance level (0.05) in the validation 13 

dataset; and 3) the regression coefficients had matched directions in the discovery and 14 

validation datasets.   15 

 16 

MR analysis with clinical endpoints. We examined the genetic causal relationships 17 

between the 457 shape features and 288 clinical endpoints, where 275 of them were from 18 

FinnGen (https://www.finngen.fi/en/access_results) and 13 were from the PGC 19 

(https://pgc.unc.edu/). For FinnGen, we selected 275 clinical traits from the latest release 20 

(R7) and with more than 5,000 cases. To reduce the potential influence of sample overlap, 21 

we avoid PGC studies that have been using data solely from the UKB study. More detailed 22 

information can be found in Table S13. 23 

 24 

Before running MR methods, we performed standard preprocessing steps on GWAS data. 25 

The genetic variants were first selected with significance threshold 5 × 10!"  in the 26 

exposure GWAS. To ensure the genetic variants used in the MR were independent, LD 27 

clumping was implemented using 𝑟# = 0.01 , window size = 10,000, and the 1000 28 

Genomes European ancestry data being the reference panel. The harmonization 29 

procedure in the TwoSampleMR package (https://mrcieu.github.io/TwoSampleMR/) 30 

helped us infer the correct allele alignment, therefore the selected variants on the 31 
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exposure and the reported effect of the same variant on the outcome corresponded to 1 

the same allele. 2 

 3 

We tested 14 MR methods114-117, including the IVW, IVW multiple random effect model, 4 

IVW fixed effect model, MR-Egger, Simple Median, Weighted Median, Penalized 5 

Weighted Median, Simple Mode, Simple Mode (NOME), Weighed Mode, Weighted Mode 6 

(NOME), DIVW, GRAPPLE, and MR-RAPS. To ensure the reliability of our results, we 7 

compared estimates from different methods. After running MR analysis on all pairs 8 

between brain shape features and clinical endpoints, we used two steps to select the 9 

significant causal results. We first removed all the estimated causal associations with less 10 

than 6 variants used in the MR analysis. Then for the remaining estimates, we performed 11 

Bonferroni adjustments for multiple testing. Besides comparing estimates across 12 

different MR methods, we also tested potential violations in MR analysis to make sure 13 

our results were reliable. For example, a significant intercept of MR Egger regression 14 

indicated the presence of horizontal pleiotropy. All reported results have passed these 15 

tests.  16 

 17 

Code availability  18 

We made use of publicly available software and tools. The pipelines used in shape feature 19 

extractions can be found at https://www.nitrc.org/frs/?group_id=1461. The codes used 20 

in other parts of the paper are available upon reasonable request. 21 

 22 

Data availability  23 

The individual-level data used in the present study can be applied from the UKB 24 

(https://www.ukbiobank.ac.uk/) and ABCD (https://abcdstudy.org/) studies. Our GWAS 25 

summary statistics will be shared on Zenodo and at the BIG-KP https://bigkp.org/. Our 26 

GWAS results will also be available via the interactive web browser at 27 

http://165.227.78.169:443/. 28 

 29 

Figure Legends  30 

Fig. 1 Illustrations of brain structures and their shape features.  31 
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(A) In the left panel, we illustrate the 8 ventricular and subcortical structures, including 1 

the lateral ventricles, nucleus accumbens, amygdala, caudate, hippocampus, pallium, 2 

putamen, and thalamus. In the right panel, we present the 7 hippocampal subfields, 3 

including the cornu ammonis 1 (CA1), CA3, fimbria, hippocampus-amygdala-transition-4 

area (HATA), hippocampal tail, presubiculum, and subiculum. (B) We illustrate the spatial 5 

pattern of radial distance in the vertex-wise maps of 8 ventricular and subcortical 6 

structures. These maps were generated by averaging the data from 500 randomly 7 

selected UKB subjects. See Figure S2 for additional maps of other 6 shape statistics 8 

(mTBM1, mTBM2, mTBM3, determinant, eigenvalue1, and eigenvalue2). L, left; R, right. 9 

(C) Comparison between the mean radial distance (RD) and structure-specific RD principal 10 

components (PCs) on the lateral ventricles. (I) illustrates an example vertex-wise RD map 11 

within the lateral ventricles after inter-subject centralization; (II) shows the residual RD 12 

map after removing the within-subject mean RD; In (III) and (IV), instead of removing the 13 

within-subject mean as in (II), we removed the top one and 10 RD PCs, respectively. (V) 14 

illustrates the standard deviation across the vertices in residual RD map for each subject 15 

in the UKB (n = 32746). Comparing (II) with (III), the top one PC can capture more spatial 16 

variations than the mean RD and thus reduce the standard deviations of residuals in (V). 17 

(V) also shows that the standard deviations are further reduced after removing the top 18 

10 RD PCs (in (IV)), suggesting that additional PCs can account for more local spatial 19 

variations that are ignored by the mean RD (in (III)) or top one RD PC (in (II)).  20 

 21 

Fig. 2 Genetic variance and the associated genomic regions of shape features. 22 

(A-B) The dots represent the genetic variance estimates of shape features. We compare 23 

the original (marginal) genetic variance estimates before adjusting for corresponding 24 

volumetric measurements (x axis) and the conditional genetic variance estimates after 25 

adjusting for volumes (y axis). The results for the mean values and top one PCs (PC1s) are 26 

displayed in the left panel (A), and results for the other PCs are displayed in the right panel 27 

(B). We show the significant estimates after controlling the false discovery rate of multiple 28 

testing at 5% level. Based on these results, we find that volumes can partially capture the 29 

genetic influences on PC1s and mean features (in A), while they cannot capture the 30 

majority of genetic influences on other PCs (in B). (C) Ideogram of 60 genomic regions 31 
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influencing shape features (P < 1.09 × 10-10), 19 of which were not identified by the 1 

corresponding volumetric measurements. The colors of dots represent the different 2 

structures (and hippocampal subfields). Each signal dot indicates that at least one of the 3 

shape features of this brain structure is associated with the genomic region. The name of 4 

genomic regions replicated in more than one validation datasets or in one validation 5 

dataset at the nominal significance level were highlighted in red and brown labels, 6 

respectively.  7 

 8 

Fig. 3 Genetic loci associated with both shape features and other complex traits. 9 

(A) In the 17q24.1 region, we observed shared genetic influences (LD 𝑟# ≥ 0.6) between 10 

shape features (e.g., Vent_Right_RD_PC9, index variant rs62072157) and brain white 11 

matter microstructure (e.g., FX_MD, index variant rs35122942). Vent_Right_RD_PC9, the 12 

ninth PC of the radial distance in right lateral ventricle; FX_MD, the mean diffusivity in the 13 

fornix tract (column and body of fornix). (B) In the 2q24.2 region, we observed shared 14 

genetic influences (LD 𝑟# ≥ 0.6) between shape features (e.g., Hipp_Right_Eigen1_PC6, 15 

index variant rs1014445) and cognitive traits (e.g., intelligence, index variant rs2268894). 16 

Hipp_Right_Eigen1_PC6, the sixth PC of the eigenvalue1 in right hippocampus. (C) In the 17 

10q26.13 region, we observed shared genetic influences (LD 𝑟# ≥ 0.6) between shape 18 

features (e.g., Sub_CA3_Right_RD_Mean, index variant rs10901814) and kidney function 19 

biomarker (eGRF, index variant rs4962691). Sub_CA3_Right_RD_Mean, the mean radial 20 

distance in the CA3 subfield of right hippocampus; eGRF, estimated glomerular filtration 21 

rate. In (D), we illustrate the signed -log10(P-value) of associations between the 22 

rs4962691 variant and vertex-wise data of the hippocampus and lateral ventricles for 4 23 

shape statistics, including radial distance, mTBM1, mTBM2, and mTBM3. It was observed 24 

that the pattern of genetic effects varied by subregion within each structure.  25 

 26 

Fig. 4 Selected genetic correlations with complex traits and diseases.  27 

(A) We illustrate pairwise genetic correlations between shape features (x axis) and other 28 

complex traits and diseases (y axis) estimated by LDSC. The asterisks highlight significant 29 

pairs after controlling the FDR at 5% level. The colors represent the genetic correlation 30 
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estimates. See Table S1 for descriptions of the shape features. (B) We illustrate brain 1 

structures whose shape features are genetically related to brain disorders, such as 2 

schizophrenia, attention-deficit/hyperactivity disorder (ADHD), and anorexia nervosa. (C) 3 

We illustrate brain structures whose shape features are genetically related to cognitive 4 

traits, education, and behavioral traits. (D) We illustrate brain structures whose shape 5 

features are genetically related to cardiovascular diseases, such as coronary artery 6 

disease and hypertension.  7 

 8 

Fig. 5 Mendelian randomization analysis with clinical outcomes.  9 

(A) Significant causal genetic links from brain shape features to clinical endpoints (P < 3.92 10 

× 10-8). (B) Significant causal genetic links from clinical endpoints to brain shape features 11 

(P < 1.12×10-8). In both A and B, the chord plot in the middle display each causal pair. The 12 

first level (out) circle indicates each disease or brain structure. The second level circle 13 

indicates the specific diseases with each disease category, or shape features within each 14 

brain structure. The third level circle on the shape feature side indicates which diseases 15 

the shape feature links to. In addition, the circle plots on the left- and right-hand sides 16 

display the number of significant pairs for each exposure and outcome variable, 17 

respectively. FG, FinnGen; PGC, Psychiatric Genomics Consortium; COPD, chronic 18 

obstructive pulmonary disease; Sub, subfield of hippocampus; HP, hippocampal tail; and 19 

CA, cornu ammonis. See Table S1 for descriptions of the shape features. 20 
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