1	Wastewater based epidemiology beyond SARS-
2	CoV-2: Spanish wastewater reveals the current
3	spread of Monkeypox virus
4 5 6	Inés Girón-Guzmán ¹ , Azahara Díaz-Reolid ¹ , Pilar Truchado ² , Albert Carcereny ³ , David Garcia-Pedemonte ³ , Bruno Hernaez ⁴ , Albert Bosch ³ , Rosa María Pintó ³ , Susana Guix ³ , Ana Allende ² , Antonio Alcamí ⁴ , Alba Pérez-Cataluña ^{1*} , Gloria Sánchez ^{1*} .
7 8 9	¹ VISAFELab, Department of Preservation and Food Safety Technologies, Institute of Agrochemistry and Food Technology, IATA-CSIC, Av. Agustín Escardino 7, Paterna, Valencia 46980, Spain.
10 11 12	² Department of Food Science and Technology, CEBAS-CSIC, Research Group on Quality and Safety of Fruits and Vegetables, Campus Universitario de Espinardo, 25, Murcia 30100, Spain.
13 14 15	³ Enteric Virus Laboratory, Department of Genetics, Microbiology, and Statistics, Section of Microbiology, Virology, and Biotechnology, School of Biology, University of Barcelona, Barcelona, Spain
16 17	⁴ Molecular Biology Center Severo Ochoa, CSIC-UAM, Campus de Cantoblanco, Nicolás Cabrera 1, 28049 Madrid, Spain.
18	
19 20	*Co-Correspondence: Alba Pérez-Cataluña (<u>alba.perez@iata.csic.es</u>), Gloria Sánchez (gloriasanchez@iata.csic.es)
21	Avda. Catedrático Agustin Escardino 7, Paterna (46980), Spain
22	
23	
24	
25	
26	
27	
28	Keywords: monkeypox; wastewater; epidemiology; WBE
29	
30	

31 Summary

Besides nasopharyngeal swabs, monkeypox virus (MPXV) DNA has been detected in a variety of samples such as saliva, semen, urine and fecal samples. Using the environmental surveillance network previously developed in Spain for the routine wastewater surveillance of SARS-CoV-2 (VATar COVID-19), we have analyzed the presence of MPXV DNA in wastewater from different areas of Spain. Samples (n=312) from 24 different wastewater treatment plants were obtained between May 9 (week 22_19) and August 4 (week 22_31), 2022. Following concentration of viral particles by flocculation, a qPCR procedure allowed us to detect MPXV DNA in 63 wastewater samples collected from May 16 to August 4, 2022, with values ranging between 2.2 \times 10^3 to 8.7×10^4 genome copies (gc)/L. This study shows that MPXV DNA can be reproducibly detected by qPCR in longitudinal samples collected from different Spanish wastewater treatment plants. According to data from the National Epidemiological Surveillance Network (RENAVE) in Spain a total of 6,119 cases have been confirmed as of August 19, 2022. However, and based on the wastewater data, the reported clinical cases seem to be underestimated and asymptomatic infections may be more frequent than expected.

59 1. Introduction

In early May 2022, a multi-country outbreak of Monkeypox virus (MPXV) started in non-endemic regions, and on 23 July WHO declared a Public Health emergency of international concern (WHO, 2022). In Europe, a total of 13,911 cases of MPX have been reported up to 19 August 2022, with Spain accounting for 6,119 cases, the second highest number of monkeypox (MPX) cases worldwide, being present in most regions of the country (Spanish Ministry of Health, 2022).

66 Symptoms developed include the appearance of rash, fever, fatigue, muscle pain, 67 vomiting, diarrhea, chills, sore throat or headache, and the hospitalization rate is around 68 8-13% (European Centre for Disease Prevention and Control (ECDC), 2022.; Thornhill et al., 2022). Sadly, two deaths linked to this outbreak have occurred in Spain due to 69 70 complications associated with encephalitis (Aguilera-Alonso et al., 2022). It is assumed that transmission occurs after close contact with skin lesions of an infected person, as 71 well as through contact with respiratory droplets and fomites, and that infection is 72 73 symptomatic in all patients (McCollum and Damon, 2014). However, antibodies have 74 been found in exposed asymptomatic individuals, which can be linked to subclinical 75 infections (Wilson et al., 2014), and positive MPXV PCR results from anal samples in 76 asymptomatic men who have sex with men (MSM) have also been documented 77 (Baetselier et al., 2022; Ferré et al., 2022). The virus is also excreted in fluids, and its detection in saliva, semen, urine and feces has been reported (Peiró-Mestres et al., 78 79 2022). This implies that routine wastewater surveillance can be applied as a tool for early detection of the disease expansion as very recently reported according a model-80 81 based theoretical evaluation (Chen and Bibby, 2022). According with this model, wastewater-based epidemiology (WBE) can detect on average 7 MPX cases out of 82 83 100,000 people. Currently, various studies detected MPXV DNA in wastewater 84 worldwide (de Jonge et al., 2022; la Rosa et al., 2022; Wolfe et al., 2022), highlighting 85 again wastewater analysis as a non-invasive tool for monitoring the status and trend an 86 emerging infection. The aim of the present study was to trace the community circulation of the MPXV from potentially symptomatic, asymptomatic, or presymptomatic 87 individuals using the previous established Spanish National SARS-CoV-2 Wastewater 88 89 Surveillance Network (VATar COVID-19).

90

92 2. Material and methods

93 **2.1. Sample concentration and DNA extraction**

94 Grab sewage samples were collected from 24 Spanish wastewater treatment plants 95 (WWTPs) (Fig. 1C) between May 9 (week 22 19) and August 4 (week 22 31) and kept at 4°C until analysis. Concentration of viral fraction was performed with a previously 96 97 validated method for SARS-CoV-2 using an aluminum-based adsorption precipitation procedure (Pérez-Cataluña et al., 2021). Nucleic acids extraction of the concentrated 98 samples was performed with the Maxwell® RSC Instrument (Promega) using the 99 100 Maxwell RSC Pure Food GMO and authentication kit (Promega) and the "Maxwell 101 RSC Viral total Nucleic Acid" program.

102 2.2. MPXV real -time PCR assays

103 The MPXV West Africa (G2R_WA) assay (Li et al., 2010) was used to quantify MPXV 104 DNA using the qPCR Premix Ex TaqTM kit (Takara Bio Inc). Additionally, a subset of samples (Table S1) was tested for MPXV DNA using the MPXV generic (G2R_G) 105 assay (Li et al., 2010). Undiluted and ten-fold diluted DNA was tested in duplicated. 106 Positive control consisted in the nucleic acid material extracted from a cell culture 107 108 infected with a clinical MPXV specimen obtained from a patient pustule. For each 109 qPCR, serial dilutions of standard curves were run in quintuplicates and the numbers of 110 estimated genome copies were calculated (Table S2). Each run included negative controls (nuclease-free water and negative extraction controls). Depending on the 111 laboratory, reactions were carried out in the QuantStudio[™] 3 and QuantStudio[™] 5 112 Real-Time PCR Systems (ThermoFisher Sci.) 113

114 **3. Results**

3.1 Estimated levels of monkeypox virus DNA in wastewater samples

Here, we report the first detection of MPXV DNA in wastewater samples from different regions of Spain. 63 out of 312 samples showed positive results for MPXV DNA, corresponding to samples collected from week 22_20 to week 22_31. Cycle threshold values ranged between 44.3 and 34.5, corresponding to values from 2.2×10^3 to 8.7×10^4 estimated genome copies (gc) per liter (Fig. 1A). First detection of MPXV DNA in wastewater samples occurred in WWTP13 from the city of Madrid in week 22_20 (Fig.

122 1A and Fig. 2), with positive detection using two different assays (Table S1). On that 123 week, Madrid reported the first suspected cases of MPX which represented the first 124 cases of MPX in Spain accounting for one of the largest outbreaks reported outside 125 Africa (Iñigo Martínez et al., 2022). Later on, several cases were reported in Madrid 126 before the outbreak declaration on 17 May, most of them attending the same sauna in 127 the city of Madrid or with travel history to Maspalomas Gay Pride festival that took 128 place on 5-15 May in Gran Canaria.

129 In week 22_21, MPXV DNA was detected in the closest WWTPs of Madrid city 130 (WWTP12 and WWTP13) and in WWTP20 of Gran Canaria (Canary Islands) (Fig. 1, 131 Table S1). Interestingly, we consistently detected MPXV DNA in samples collected from week 22_23 in WWTP12 and WWTP13 from Madrid, when only 275 cumulative 132 cases were declared in the entire Region (Iñigo Martínez et al., 2022). Our data also 133 showed percentages of WWTPs with MPXV DNA detection increased progressively, 134 135 up to 15% by week 22 23 and 45% by week 22 26 (Fig. 1A and Fig. 2). In Barcelona, 136 the second largest Spanish city, first detection occurred in week 22_23 in WWTP18 with the first peak observed in week 22 26 when 130 cumulative cases were detected in 137 Catalonia (Fig. 2). Intermittent detection (negative results after previous qPCR 138 detection) was reported from some WWTPs where the number of confirmed clinical 139 140 cases was low (Fig. 1 and Fig. 2). Furthermore, all weekly samples collected from Valencia (WWTP21), Extremadura (WWTP23 and WWTP24), and Navarra 141 (WWTP22) tested negative for the presence of MPXV DNA (Fig. 2), with a total 142 number of clinical cases of 331, 21 and 13 as August 9, respectively (Spanish Ministry 143 144 of Health, 2022).

145 4. Discussion

The COVID-19 pandemic has demonstrated that WBE is a cost-effective tool to 146 anticipate the circulation of SARS-CoV-2 in a community and to closely track its 147 148 incidence, evolution and geographic spread (Bivins et al., 2020). WBE has been implemented worldwide and most of the countries are ready to perform this monitoring 149 150 as a routing basis for other emerging pathogens likely to be found in wastewater, due to their presence in feces and/or urine. In Spain, the National WBE Network, VATar 151 COVID-19, has been successfully used to determine the extent of the COVID-19 152 disease along the country (Carcereny et al., 2021). 153

The increasing number of MPXV cases around the world continue to pose challenges to 154 155 control its transmission with a total number of 41,358 cases as of 19 Aug 2022 (CDC, 156 2022). This underscores the urgent needs for simple and cost-effective tools to facilitate early detection, evolution and spatial distribution of cases. DNA of MPXV has been 157 158 detected in urine and feces from symptomatic individuals (Antinori et al., 2022; Peiró-159 Mestres et al., 2022), and although limited data are available, viral shedding has been observed in stool in 63 % of patients (Cts values from 17.8 to 31.4) and in urine in 56% 160 (Cts values from 19.1 to 40.0) (Peiró-Mestres et al., 2022). It is not known whether 161 162 MPXV present in stool and urine is infectious. Altogether, these findings warned the interest of assessing the presence of MPXV DNA in sewage samples (Chen and Bibby, 163 164 2022). In the current study, a qPCR assay designed for the West African clade (Li et al., 2010) was applied on wastewater samples collected from week 22 19 to week 22 31, 165 showing that MPXV DNA can be reproducibly detected by qPCR in longitudinal 166 samples collected from several Spanish WWTPs. First detection of MPXV DNA was 167 retrieved in a single sample from WWTP13 collected on May 17 (Week 22 20) using 168 169 the specific qPCR assay and confirmed by the MPXV generic assay, providing the 170 earliest piece of evidence that the virus was circulating in the community of Madrid. Interestingly, we consistently detected MPXV DNA in samples collected in WWTP18 171 172 (Barcelona) since week 22_23, when only 39 cumulative cases were declared in the entire Autonomous Community of Catalonia. In line, MPXV DNA was also detected in 173 174 week 22_21 on wastewater samples collected from Schiphol Airport and in different 175 Dutch WWTPs from week 22_22 onwards (de Jonge et al., 2022).

176 The viral concentration method used in this study has been validated for SARS-CoV-2 177 detection and quantification (Pérez-Cataluña et al., 2021) and it seems promising for MPXV monitoring in wastewater, too. However, in contrast to what has been reported 178 179 for SARS-CoV-2 (Bivins et al., 2020; Medema et al., 2020; Randazzo et al., 2020), anticipation has not been observed for MPXV, for which the first wastewater detection 180 occurred at the same time that MPXV cases were declared (Fig. 2). This could be due to 181 several factors, including differences in shedding levels and kinetics, proportion of 182 183 asymptomatic cases, diagnosis of the disease and fast identification of cases, 184 environmental factors affecting virus stability, low performance of the method to concentrate MPXV, and also a much larger scale of transmission of SARS-CoV-2 in the 185 community. Therefore, further assessment of the performance characteristics of the 186

methodology needs to be carried out. However, it is important to highlight that 187 188 wastewater positive samples have been found in areas with very low reported disease 189 prevalence. For instance, in Castilla la Mancha, a region located at the middle-south of 190 Spain, MPXV was detected in sewage with only 42 clinical cases being reported, indicating that probably, a higher number of people may be affected. As previously 191 discussed by other authors, stigma and discrimination may be limiting the awareness or 192 193 willingness of at-risk people to have their symptoms evaluated. In these situations, 194 WBE may be even more useful, because the anonymous pooled samples can evidence 195 the contributions of a community without divulging individual identities (Nelson, 196 2022).

197

198 **5.** Conclusions

199 Using an environmental surveillance tool previously developed for SARS-CoV-2, we 200 have been able to consistently detect MPXV DNA in wastewater samples from different regions of Spain when communicated clinical cases in that region were only incipient. 201 202 We also found that the wastewater viral DNA detection increased rapidly and 203 anticipated the subsequent ascent in the number of declared cases showing, once again, 204 that WBE is a sensitive and cost-effective strategy for the surveillance emerging viral 205 threats. In those cases where stigma and blame might undermine the capacity to 206 effectively respond during outbreaks, i.e., driving people away from health services, the 207 implementation of WBE may represent a most valuable tool.

208 Acknowledgements

209 This research was supported by the European Commission NextGenerationEU fund, through CSIC's Global Health Platform (PTI Salud Global) and samples were obtained 210 211 from the COVID-19 wastewater surveillance project (VATar COVID-19) funded by the Spanish Ministry for the Ecological Transition and the Demographic Challenge and the 212 Spanish Ministry of Health. IGG is recipient of a predoctoral contract from the 213 214 Generalitat Valenciana (ACIF/2021/181) and AP-C was supported by a postdoctoral 215 fellowship (APOSTD/2021/292). PT is holding a Ramón y Cajal contract from the Ministerio de Ciencia e Innovación and AC is recipient of a predoctoral contract FI-216 217 SDUR from the Generalitat de Catalunya.

218	
219	
220	References
221	
222 223	Aguilera-Alonso, D., Alonso-Cadenas, J.A., Roguera-Sopena, M., Lorusso, N., Miguel, L.G.S., Calvo, C., 2022. Monkeypox virus infections in children in Spain during the first months of
224 225	the 2022 outbreak. Lancet Child Adolesc Health. https://doi.org/10.1016/S2352- 4642(22)00250-4
226	Antinori, A., Mazzotta, V., Vita, S., Carletti, F., Tacconi, D., Lapini, L.E., D'Abramo, A., Cicalini, S.,
227	Lapa, D., Pittalis, S., Puro, V., Rivano Capparuccia, M., Giombini, E., Gruber, C.E.M.,
228	Garbuglia, A.R., Marani, A., Vairo, F., Girardi, E., Vaia, F., Nicastri, E., 2022.
229 230	Epidemiological, clinical and virological characteristics of four cases of monkeypox support transmission through sexual contact, Italy, May 2022. Eurosurveillance 27,
231	2200421. https://doi.org/10.2807/1560-7917.ES.2022.27.22.2200421/CITE/PLAINTEXT
232	Baetselier, I. de, Dijck, C. van, Kenyon, C., Coppens, J., Bossche, D. van den, Smet, H.,
233	Liesenborghs, L., Vanroye, F., Block, T. de, Rezende, A., Florence, E., Vercauteren, K.,
234	Esbroeck, M. van, group, the M. study, 2022. Asymptomatic monkeypox virus infections
235 236	among male sexual health clinic attendees in Belgium. medRxiv 2022.07.04.22277226. https://doi.org/10.1101/2022.07.04.22277226
237	Bivins, A., North, D., Ahmad, A., Ahmed, W., Alm, E., Been, F., Bhattacharya, P., Bijlsma, L.,
238	Boehm, A.B., Brown, J., Buttiglieri, G., Calabro, V., Carducci, A., Castiglioni, S., Cetecioglu
239	Gurol, Z., Chakraborty, S., Costa, F., Curcio, S., de Los Reyes, F.L., Delgado Vela, J., Farkas,
240	K., Fernandez-Casi, X., Gerba, C., Gerrity, D., Girones, R., Gonzalez, R., Haramoto, E.,
241	Harris, A., Holden, P.A., Islam, M.T., Jones, D.L., Kasprzyk-Hordern, B., Kitajima, M.,
242	Kotlarz, N., Kumar, M., Kuroda, K., la Rosa, G., Malpei, F., Mautus, M., McLellan, S.L.,
243	Medema, G., Meschke, J.S., Mueller, J., Newton, R.J., Nilsson, D., Noble, R.T., van Nuijs,
244 245	A., Peccia, J., Perkins, T.A., Pickering, A.J., Rose, J., Sanchez, G., Smith, A., Stadler, L., Stauber, C., Thomas, K., van der Voorn, T., Wigginton, K., Zhu, K., Bibby, K., 2020.
245	Wastewater-Based Epidemiology: Global Collaborative to Maximize Contributions in the
247	Fight against COVID-19. Environ Sci Technol. https://doi.org/10.1021/acs.est.0c02388
248	Carcereny, A., Martínez-Velázquez, A., Bosch, A., Allende, A., Truchado, P., Cascales, J.,
249	Romalde, J.L., Lois, M., Polo, D., Sánchez, G., Pérez-Cataluña, A., Díaz-Reolid, A., Antón,
250	A., Gregori, J., Garcia-Cehic, D., Quer, J., Palau, M., Ruano, C.G., Pintó, R.M., Guix, S.,
251	2021. Monitoring Emergence of the SARS-CoV-2 B.1.1.7 Variant through the Spanish
252	National SARS-CoV-2 Wastewater Surveillance System (VATar COVID-19). Environ Sci
253	Technol 55, 11756–11766. <u>https://doi.org/10.1021/ACS.EST.1C03589</u>

254	CDC, 2022 Monkeypox Outbreak Global Map Monkeypox Poxvirus CDC [WWW
255	Document], n.d. URL https://www.cdc.gov/poxvirus/monkeypox/response/2022/world-
256	map.html (accessed 8.3.22).
257	
258	Chen, W., Bibby, K., 2022. Model-Based Theoretical Evaluation of the Feasibility of Using
259	Wastewater-Based Epidemiology to Monitor Monkeypox. Environ Sci Technol Lett.
260	https://doi.org/10.1021/ACS.ESTLETT.2C00496
261	de Jonge, E.F., Peterse, C.M., Koelewijn, J.M., van der Drift, AM.R., van der Beek, R.F.H.J.,
262	Nagelkerke, E., Lodder, W.J., 2022. The detection of monkeypox virus DNA in wastewater
263	samples in the Netherlands. Science of The Total Environment 852, 158265.
264	https://doi.org/10.1016/J.SCITOTENV.2022.158265
265	European Centre for Disease Prevention and Control (ECDC), n.d. Factsheet for health
266	professionals on monkeypox [WWW Document]. URL
267	https://www.ecdc.europa.eu/en/all-topics-z/monkeypox/factsheet-health-professionals
268	(accessed 8.3.22).
269	Ferré, V.M., Bachelard, A., Zaidi, M., Armand-Lefevre, L., Descamps, D., Charpentier, C., Ghosn,
270	J., 2022. Detection of Monkeypox Virus in Anorectal Swabs From Asymptomatic Men
271	Who Have Sex With Men in a Sexually Transmitted Infection Screening Program in Paris,
272	France. https://doi.org/10.7326/M22-2183. https://doi.org/10.7326/M22-2183
273	Iñigo Martínez, J., Gil Montalbán, E., Jiménez Bueno, S., Martín Martínez, F., Nieto Juliá, A.,
274	Sánchez Díaz, J., García Marín, N., Córdoba Deorador, E., Nunziata Forte, A., Alonso
275	García, M., Humanes Navarro, A.M., Montero Morales, L., Domínguez Rodríguez, M.J.,
276	Carbajo Ariza, M., Díaz García, L.M., Mata Pariente, N., Rumayor Zarzuelo, M., Velasco
277	Rodríguez, M.J., Aragón Peña, A., Rodríguez Baena, E., Miguel Benito, Á., Pérez Meixeira,
278	A., Ordobás Gavín, M., Lopaz Pérez, M.Á., Arce Arnáez, A., 2022. Monkeypox outbreak
279	predominantly affecting men who have sex with men, Madrid, Spain, 26 April to 16 June
280	2022. Euro Surveill 27, 2200471. https://doi.org/10.2807/1560-
281	7917.ES.2022.27.27.2200471/CITE/PLAINTEXT
282	la Rosa, G., Mancini, P., Veneri, C., Ferraro, G.B., Lucentini, L., Iaconelli, M., Suffredini, E., 2022.
283	Detection of Monkeypox virus DNA in the wastewater of an airport in Rome, Italy:
284	expanding environmental surveillance to emerging threats. medRxiv
285	2022.08.18.22278932. https://doi.org/10.1101/2022.08.18.22278932
286 287 288	Li, Y., Zhao, H., Wilkins, K., Hughes, C., Damon, I.K., 2010. Real-time PCR assays for the specific detection of monkeypox virus West African and Congo Basin strain DNA. J Virol Methods 169, 223–227. https://doi.org/10.1016/J.JVIROMET.2010.07.012
289	McCollum, A.M., Damon, I.K., 2014. Human Monkeypox. Clinical Infectious Diseases 58, 260–
290	267. https://doi.org/10.1093/CID/CIT703

291	Medema, G., Heijnen, L., Elsinga, G., Italiaander, R., Brouwer, A., 2020. Presence of SARS-
292	Coronavirus-2 RNA in Sewage and Correlation with Reported COVID-19 Prevalence in the
293	Early Stage of the Epidemic in The Netherlands. Environ Sci Technol Lett 7, 511–516.
294	https://doi.org/10.1021/acs.estlett.0c00357
295	Nelson, B., 2022. What poo tells us: wastewater surveillance comes of age amid covid,
296	monkeypox, and polio. BMJ 378, o1869. https://doi.org/10.1136/BMJ.O1869
297	 Peiró-Mestres, A., Fuertes, I., Camprubí-Ferrer, D., Marcos, M.Á., Vilella, A., Navarro, M.,
298	Rodriguez-Elena, L., Riera, J., Català, A., Martínez, M.J., Blanco, J.L., Hospital Clinic de
299	Barcelona Monkeypox Study Group, 2022. Frequent detection of monkeypox virus DNA in
300	saliva, semen, and other clinical samples from 12 patients, Barcelona, Spain, May to June
301	2022. Euro Surveill 27, 2200503. https://doi.org/10.2807/1560-
302	7917.ES.2022.27.28.2200503/CITE/PLAINTEXT
303	Pérez-Cataluña, A., Cuevas-Ferrando, E., Randazzo, W., Falcó, I., Allende, A., Sánchez, G., 2021.
304	Comparing analytical methods to detect SARS-CoV-2 in wastewater. Sci Total Environ
305	758. <u>https://doi.org/10.1016/J.SCITOTENV.2020.143870</u>
306	Spanish Ministry of Health, 2022. Alert on monkeypox infection in Spain and other non-
307	endemic countries [WWW Document]. URL
308	https://www.sanidad.gob.es/profesionales/saludPublica/ccayes/alertasActual/alertaMon
309	keypox/home.htm (accessed 8.19.22).
310	Randazzo, W., Truchado, P., Cuevas-Ferrando, E., Simón, P., Allende, A., Sánchez, G., 2020.
311 312	SARS-CoV-2 RNA in wastewater anticipated COVID-19 occurrence in a low prevalence area. Water Res 181, 115942. https://doi.org/10.1016/j.watres.2020.115942
	SARS-CoV-2 RNA in wastewater anticipated COVID-19 occurrence in a low prevalence
 312 313 314 315 316 317 318 319 320 	 SARS-CoV-2 RNA in wastewater anticipated COVID-19 occurrence in a low prevalence area. Water Res 181, 115942. https://doi.org/10.1016/j.watres.2020.115942 Thornhill, J.P., Barkati, S., Walmsley, S., Rockstroh, J., Antinori, A., Harrison, L.B., Palich, R., Nori, A., Reeves, I., Habibi, M.S., Apea, V., Boesecke, C., Vandekerckhove, L., Yakubovsky, M., Sendagorta, E., Blanco, J.L., Florence, E., Moschese, D., Maltez, F.M., Goorhuis, A., Pourcher, V., Migaud, P., Noe, S., Pintado, C., Maggi, F., Hansen, AB.E., Hoffmann, C., Lezama, J.I., Mussini, C., Cattelan, A., Makofane, K., Tan, D., Nozza, S., Nemeth, J., Klein, M.B., Orkin, C.M., SHARE-net Clinical Group, 2022. Monkeypox Virus Infection in Humans across 16 Countries - April-June 2022. N Engl J Med. https://doi.org/10.1056/NEJMOA2207323/SUPPL_FILE/NEJMOA2207323_DATA-

Wolfe, M.K., Duong, D., Hughes, B., Chan-Herur, V., White, B.J., Boehm, A.B., Wolfe, M.K.,

Boehm, A., 2022. Detection of monkeypox viral DNA in a routine wastewater monitoring

331 program. medRxiv 2022.07.25.22278043. https://doi.org/10.1101/2022.07.25.22278043

332

333

334

Figure 1. A) Evolution of MPXV DNA prevalence over time, as measured by qPCR in wastewater samples from 20 wastewater treatment plants with positive detection B) Number of cases of monkeypox per week (Spanish Ministry of Health) C) Geographical localization of wastewater treatment plants, dark blue (Autonomous Community with positive detection in the analyzed wastewater samples) and light blue (no detection in wastewater samples).

341

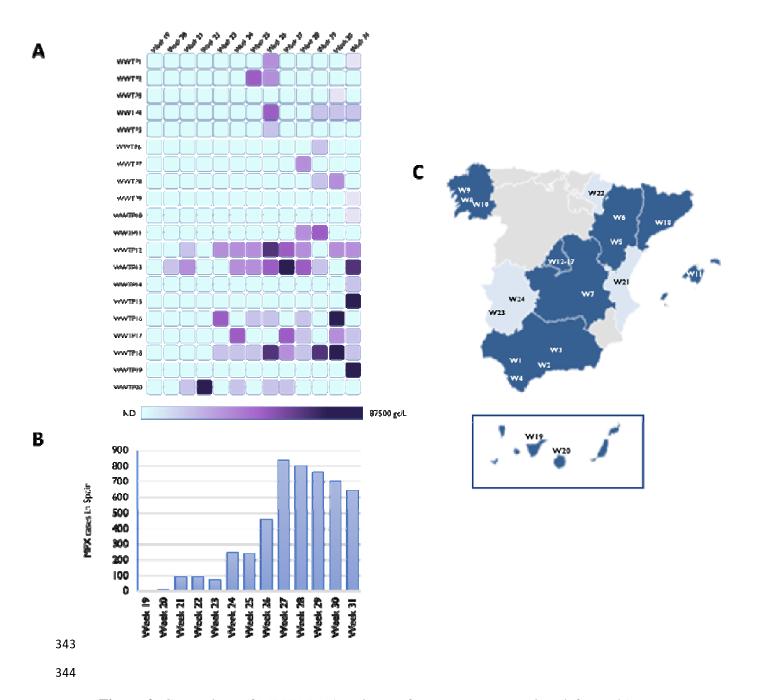



Figure 2. Comparison of MPXV DNA estimates from wastewater testing (left panels)
and confirmed cases of monkeypox by Autonomous community reported by the Health
Ministry authorities (right panels). For wastewater samples, highest level within the
same Autonomous Community are depicted. ND: No detection

349

