
Appendix

A Causal Assumptions

We follow the standard causal assumptions [5] to help guarantee that the treatment effects are identifiable from
the observational data.

Assumption 1 (Consistency) The potential outcome under the treatment a equals to the observed outcome if
the actual treatments is a.

Assumption 2 (Positivity) Given the observational data of the history, if the the probability P (a = 1|x) ̸= 0,
then the probability of receiving treatment 0 or 1 is positive, i.e., 0 < P (A = a|X = x) < 1, for all a ∈ A
and x ∈ X .

Assumption 3 (Strong Ignorability) Given the observational data of the history, the treatment assignment is
independent of the potential outcome, i.e., Y (A = a) ⊥⊥ A|X = x, for all a ∈ A.

Assumption 1 is fundamental to the potential outcome framework used to define counterfactuals and infer
treatment effects. Essentially, this assumption requires that the treatment specified in the study must be precise
enough that any variation within the treatment specification will not lead to a different outcome. Assumption 2
implies that all patients may receive the treatment whatever their observed covariates. Otherwise, it is impossible
to derive the counterfactuals for patients who do not have any chance of being in the other treatment group.
Assumption 3 states that the potential outcomes are independent of treatment assignment given the set of
observed covariates. This assumption guarantees that the treatment effects are identifiable given the treatment,
outcome and observed covariates as: E[Y (A = 1)− Y (A = 0)] = Ex∈X [E[Y |A = 1,x]− E[Y |A = 0,x]].

B Transformer Architecture

For each single Transformer encoder block, it consists of a multi-head self-attention layer followed by a fully-
connected feed-forward layer [6]. The multi-head attention is the most crucial part which can be calculated
as,

MultiHead(h) = Concat(head1, . . . , headh)W
O;

headi = Attention(hWQ
i ,hWK

i ,hWV
i )

Attention(Q,K, V ) = Softmax(
QKT

√
d

)V

(1)

where h ∈ Rd×dmodel denotes the hidden representations and d is the input sequence length. WQ
i ∈ Rdmodel×d ,

WK
i ∈ Rdmodel×d , WV

i ∈ Rdmodel×d, WO ∈ Rnd×dintermediate are learnable parameter matrices. d = dmodel/n and
n is the number of attention heads. We show the detailed model configuration in Fig. A1.

Figure A1: Model configuration.
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C Additional Details on Experimental Setups

Pre-training data. The pre-training data are obtained from MarketScan Commercial Database [4], which
consists of medical and drug data from employers and health plans for over 215 million individuals. In this
study, we focus on CAD as the studied disease and stroke as the outcome. The definitions of CAD and stroke are
shown in Table A1 and Table A2 respectively.

Table A1: The definition of coronary artery disease (CAD) from observational health data.

Reference (PMID) 16159046, 26524702, 28008010

Criteria
A history of coronary revascularization in the EHR
Or, history of acute coronary syndrome, ischemic heart disease, or exertional angina

Diagnostic codes

ICD-9 codes:
410* to 414*
ICD-10 codes:
The best approximation are the following codes:
I20* Angina pectoris
I21* Acute myocardial infarction
I22* Subsequent ST elevation (STEMI) and non-ST elevation (NSTEMI) myocardial
infarction
I23* Certain current complications following ST elevation (STEMI) and non-ST
elevation (NSTEMI) myocardial infarction (within the 28 day period)
I24* Other acute ischemic heart diseases
I25* Chronic ischemic heart disease

Table A2: The definition of stroke from observational health data

Reference (PMID) 29202795

Diagnostic codes

ICD-9 codes:
V12.54,
438.0–438.9
ICD 10 codes:
Z86.73
I60-I69
subarachnoid hemorrhage (I60);
intracerebral hemorrhage (I61);
cerebral infarction (I63);
and other transient cerebral ischemic attacks and related syndromes and
transient cerebral ischemic attack (unspecified) (G458 and G459)
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Downstream tasks. We demonstrate the flowchart for RCT extraction in Fig. A2. All RCTs are extracted
from https://clinicaltrials.gov/. We start from 1,593 CAD-related RCTs with stroke as the outcome
and end up with 4 RCTs that satisfy all the above criteria. We have included all those 4 RCTs for downstream
task construction.

RCTs of CAD as disease and
Stroke as outcome


(n=1,593)

RCTs not in Phase 2 


or Phase 3

(n=1,301)

RCTs are completed 

with results

(n=71)


RCTs are not completed or
without results


(n=221)

RCTs in Phase 2 or Phase 3

(n=292)


The studied drugs are valid and
available in observational data


(n=4)


The studied drugs are neither
valid nor available


(n=67)

Figure A2: The data flow for RCT extraction. The downstream tasks constructed based on the
extracted RCTs.

Table A3: The statistics of the downstream dataset.

Target v.s. Compared Rivaroxaban v.s. Aspirin Valsartan v.s. Ramipril Ticagrelor v.s. Aspirin Apixaban v.s. Warfarin

# of patients (Target; Compared) 26340 (9569; 16771) 12850 (7306; 5544) 29248 (12477; 16771) 18187 (6701; 11486)
Female (%) 30.4 32.4 27.1 31.8
Age (group) on index date 55-64 55-64 55-64 55-64
Patients with stroke (%) 13.7 11.9 18.9 16.7
Average # of visits per patient 83.4 74.0 70.7 97.1
Average # of codes per patient 182.3 157.2 152.0 215.9

Pre-training and fine-tuning data preparation. The pre-training is based on large-scale unlabeled
patient data, and the fine-tuning is based on small-scale labeled patient data, which are not used for pre-training.
We first construct 4 datasets for downstream tasks according to the study design of related randomized clinical
trial (RCT). The patients who satisfy the eligibility criteria of the RCT are included in each dataset respectively
(see more details of the study design in Fig. 2). Then we construct the unlabeled pre-training data based on all
the remaining patients who are not included in any of the 4 downstream datasets. Therefore, the same patients
do not appear simultaneously in both the pre-training stage and the fine-tuning stage.

Evaluation metrics. As the true treatment effects are not available in real-world data, we use the influence
function-based precision of estimating heterogeneous effects (IF-PEHE) [1] for model evaluation. Following the
same experimental setup, we calculate IF-PEHE as,

• Step 1: Train two XGBoost [2] classifiers for potential outcome prediction denoted by µ0 and µ1,
where µa = P (ya = 1|X = x) using the training set Ztrain. Then calculate the plug-in estimation
T̃ = µ1−µ0 Train a XGBoost [2] classifier propensity score function (i.e., the probability of receiving
treatment) π̃ = P (a = 1|X = x).

• Step 2: Given the estimated treatment effect T̂ (xi) on the test set Ztest, calculate the IF-PEHE with
the influence function l̂ as,

IF-PEHE =
∑

xi∈Ztest

[(T̂ (xi)− T̃ (xi))
2 + l̂(xi)]

l̂(x) = (1−B)T̃ 2(x) +By(T̃ (x)− T̂ (x))−W (T̃ (x)− T̂ (x))2 + T̂ 2(x)

(2)

where W = (a− π̃(x)), B = 2a(a− π̃(x))C−1, C = π̃(x)(1− π̃(x)).
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Implementation details. The pre-training model architecture follows the BERTbase [3] and most hyper-
parameters remain the same as default setting. The detailed hyperparameters setup is shown in Table A4 for
pre-training , and Table A5 for fine-tuning. With 3 NVIDIA GeForce RTX 2080 Ti 11GB GPUs, the pre-training
takes about 20 hours with current setup. We have provided all code in supplemental material.

Table A4: Hyperparameters used in pre-training.

Parameters CURE
Maximum Steps 100K
Initial Learning Rate 1e-4
Batch Size 96
Warm-Up Steps 10K
Sequence Length 256
Dropout 0.1

Table A5: Hyperparameters search space and optimal parameters used for fine-tuning.

Parameters Search Space Optimal Value

Maximum Epochs {1,2,3,4,5} 2
Initial Learning Rate {1e-5, 3e-5, 5e-5} 5e-5
Batch Size {16, 32, 64} 32
Sequence Length 256 256
Fixed Window Length 30 30
Baseline Window {90, 180, 360, 720} 360
Dropout 0.1 0.1

Table A6: The parameter size of the proposed method and baselines.

Method Model parameters

TARNet [9] 2M
DragonNet [8] 2M
DR-CFR [12] 3M
TNet [10] 4M
SNet [10] 3M
FlexTENet [11] 3M
TransTEE [13] 7M

CURE 93M

Table A7: The influence of weight (α) associated with the discriminator in DragonNet to the model
performance on the Valsartan v.s. Ramipril dataset (random seed =42).

α AUC AUPR IF-PEHE

0.2 0.677 0.304 0.768
0.4 0.679 0.308 0.689
0.6 0.680 0.310 0.660
0.8 0.682 0.312 0.644
1.0 0.683 0.314 0.643
1.2 0.679 0.315 0.593
1.4 0.681 0.317 0.584
1.6 0.682 0.318 0.589
1.8 0.683 0.319 0.586
2.0 0.685 0.321 0.595

CURE 0.805 0.428 0.161
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D Additional Experimental Results

Visualization. The self-attention mechanism of the Transformer enables the exploration of interaction among
input covariates. As an example, we show the attention weights of a patient from Apixaban treatment group of
Apixaban v.s. Warfarin study in Fig. A3. Different colors denote the attention heads and there are 12 heads in
total. The medications and diagnosis codes highlighted in the figure are the most related features to the outcome
prediction and treatment effect estimation. For example, Amiodarone is an antiarrhythmic medication used to
treat and prevent a number of types of cardiac dysrhythmias including atrial fibrillation 1. A study [7] shows that
apixaban is superior to warfarin in preventing stroke in patients with atrial fibrillation. Those attention weights
could be used to analyze the treatment effects in some subgroups that characterized by the attended feature set.

Figure A3: The visualization of Top 10 attention weights associated with the special token [CLS] of
a patient from Apixaban treatment group.

Ablation studies. We show the results of two ablation studies (Sec. 4 Ablation studies.) in terms of AUPR
scores in Fig. A4 and Fig. A5, respectively. For the effect of low resource in fine-tuning, our model can
achieve comparable performance as measured by AUPR to the Base Model with only around 5%~10% labeled
downstream data. For the effect of pre-trainign data size, the model gradually yields better performance when
the pre-train data size increases.
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Figure A4: The effect of low resource in fine-tuning datasets on four downstream tasks with different
fractions of labeled training set (x-axes). The results are the average of 20 runs.
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Figure A5: The effect of pre-training data volume on four downstream tasks (average of 20 runs).

1https://www.drugs.com/monograph/amiodarone.html
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Evaluation on non-random assignment. We show the t-SNE visualization of learned patient represen-
tations of treatment and control group respectively (see Fig. A6). The visualization of our model (CURE)
demonstrates that the distribution variance between two groups is marginal and the non-random assignment
issue is alleviated.

We further adapt the design in DragonNet [8] in our model’s fine-tuning stage. Specifically, we add an additional
prediction head for propensity score estimation and modify the loss function to incorporate both outcome
prediction and propensity prediction. We compare the new model (CURE+propensity) with the proposed CURE
model on 4 downstream tasks respectively. As shown in Table A8, the performance of these two models is
comparable in terms of both factual prediction and treatment effect estimation.

Figure A6: The t-SNE visualization of learned patient representations on Valsartan v.s. Ramipril
dataset.

Table A8: Comparison of the proposed model (CURE) and a new model based on CURE but adapting
propensity module in DragonNet [8] (CURE + propensity) on 4 downstream tasks (random seed=42).

Rivaroxaban v.s. Aspirin Valsartan v.s. Ramipril
Method AUC AUPR IF-PEHE AUC AUPR IF-PEHE

CURE 0.786 0.419 0.186 0.805 0.428 0.161
CURE+propensity 0.789 0.427 0.178 0.804 0.428 0.156

Ticagrelor v.s. Aspirin Apixaban v.s. Warfarin
Method AUC AUPR IF-PEHE AUC AUPR IF-PEHE

CURE 0.807 0.502 0.211 0.838 0.597 0.182
CURE+propensity 0.806 0.505 0.239 0.844 0.602 0.253
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Additional evaluation with RCT conclusion. We evaluate the treatment effects estimated by all the
baselines and conduct the same hypothesis testing. As shown in Table A9 below, our method correctly generates
3 (out of 4) RCT conclusions that match the ground truth RCT conclusions while the best baselines only identify
2 (out of 4) RCT conclusions.

Table A9: Comparison of the estimated treatment effects with corresponding ground truth RCT of all
methods.

Rivaroxaban v.s. Aspirin Valsartan v.s. Ramipril
Method Estimated Effect (CI) P value Match RCT Conclusion? Estimated Effect (CI) P value Match RCT Conclusion?

TARNet [9] [0.066, 0.095] 5.678e-10 No [-0.037, -0.003] 0.026 No
DragonNet [8] [0.18, 0.236] 5.979e-12 No [0.03, 0.07] 4.681e-05 No
DR-CFR [12] [0.13, 0.183] 2.783e-10 No [0.002, 0.04] 0.033 No
TNet [10] [0.041, 0.07] 2.509e-07 No [-0.038, -0.001] 0.039 No
SNet [10] [-0.002, 0.008] 0.231 Yes [-0.051, -0.026] 3.168e-06 No
FlexTENet [11] [0.064, 0.108] 1.529e-07 No [-0.079, -0.035] 3.184e-05 No
TransTEE [13] [-0.013, -0.002] 0.018 No [-0.019, 0.034] 0.420 Yes

CURE [-0.009, 0.006] 0.452 Yes [-0.003, 0.014] 0.103 Yes

Ticagrelor v.s. Aspirin Apixaban v.s. Warfarin
Method Estimated Effect (CI) P value Match RCT Conclusion? Estimated Effect (CI) P value Match RCT Conclusion?

TARNet [9] [0.064, 0.101] 2.861e-08 No [-0.006, 0.028] 0.207 No
DragonNet [8] [-0.013, 0.01] 0.821 Yes [0.018, 0.056] 6.284e-04 No
DR-CFR [12] [-0.068, -0.029] 4.915e-05 No [-0.026, -0.002] 0.047 Yes
TNet [10] [0.046, 0.069] 6.474e-09 No [0.009, 0.023] 2.329e-04 No
SNet [10] [0.005, 0.016] 4.398e-04 No [-0.046, -0.017] 2.112e-04 Yes
FlexTENet [11] [0.045, 0.068] 5.243e-09 No [0.012, 0.042] 0.001 No
TransTEE [13] [-0.014, -0.009] 0.0216 No [-0.027, -0.002] 0.027 Yes

CURE [0.022, 0.040] 5.982e-14 No [-0.039, -0.002] 4e-04 Yes

Semi-synthetic experiment. We generate a semi-synthetic dataset based on real patient data obtained
from the MarketScan data. Specifically, we simulate treatment assignment a and potential outcome y using
pre-treatment covariates x (i.e., historical co-medication, co-morbidities and demographics). The treatment
assignment is simulated by a|x ∼ Bernoulli(Sigmoid(sTx + m)), where s ∼ N (0|V|, 0.1 · I), |V| is the
cardinality of medical feature vocabulary, m ∼ N (0, 0.1), x denotes the aggregation of all historical covariates.
The outcome is simulated by y|x, a ∼ Bernoulli(Sigmoid(wTx + βa + n)), where w ∼ N (0|V|, 0.1 · I),
β ∼ N (0, 1), n ∼ N (0, 0.1).

As we have all potential outcomes under both treatment and control arms available in the semi-synthetic data, the
model performance is evaluated with Precision of Estimating Heterogeneous Effects (PEHE), which measures
the root mean square error between the true treatment effect and estimated treatment effect. The comparison
results from the semi-synthetic dataset are shown in Table A10. The proposed model CURE yields the best
performance among all the baselines. We will add the results for the semi-synthetic dataset in revision.

Table A10: Comparison with state-of-the-art methods on semi-synthetic Valsartan v.s. Ramipril
dataset. The results are the average and standard deviation over 20 runs.

Method PEHE

TARNet [9] 0.768± 0.012
DragonNet [8] 0.759± 0.015
DR-CFR [12] 0.714± 0.014
TNet [10] 0.784± 0.017
SNet [10] 0.776± 0.022
FlexTENet [11] 0.791± 0.014
TransTEE [13] 0.689± 0.012

CURE 0.596± 0.010
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