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Spectral Dynamic Causal Modelling 

Dynamic causal modelling (DCM) is Bayesian framework that infers the directed (causal) connectivity 

among the neuronal systems – referred to as effective connectivity. We recently proposed a new DCM for 

resting state fMRI – based upon a deterministic model that generates predicted cross spectra – referred to 

as spectral DCM. In order to model resting state activity – in the absence of external stimuli – we will 

have to add a stochastic component, i.e. neural fluctuations, to the classical DCM based on ordinary 

differential equations. Mathematically, we can express the formulation of the stochastic generative model 

using a set of two equations. First is the neuronal state equation, namely 

�̇�(𝑡) = 𝑓(𝑥(𝑡), 𝑢(𝑡), 𝜃) +  𝑣(𝑡),        (S1) 
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and second is the observation equation, which is a static nonlinear mapping from the hidden 

physiological states in (1) to the observed BOLD activity and is written as: 

𝑦(𝑡) = ℎ(𝑥(𝑡), 𝜑) +  𝑒(𝑡),          (S2) 

where �̇�(t) is the rate of change of the neuronal states 𝑥(𝑡), 𝜃 are unknown parameters (i.e. the 

effective connectivity) and 𝑣(𝑡) (resp. 𝑒(𝑡)) is the stochastic process – called the state noise (resp. the 

measurement or observation noise) – modelling the random neuronal fluctuations that drive the resting 

state activity.  In the observation equations, 𝜑 are the unknown parameters of the (haemodynamic) 

observation function and 𝑢(𝑡) represents any exogenous (or experimental) inputs that drive the hidden 

states – that are usually absent in resting state designs (Karl J. Friston, Kahan, Biswal, & Razi, 2014). 

Spectral DCM furnishes a constrained inversion of the stochastic model by parameterising the neuronal 

fluctuations 𝑣(𝑡). Spectral DCM simplifies the generative model by replacing the original timeseries with 

their second-order statistics (i.e., cross spectra). This means, instead of estimating time varying hidden 

states, we are estimating their covariance which is time invariant. Then we simply need to estimate the 

covariance of the random fluctuations; where a scale free (power law) form for the state noise (resp. 

observation noise) is used – motivated from previous work on neuronal activity (Beggs & Plenz, 2003; 

Shin & Kim, 2006; Stam & de Bruin, 2004) – as follows: 

𝑔𝑣(𝜔, 𝜃) = 𝛼𝑣𝜔−𝛽𝑣  

𝑔𝑒(𝜔, 𝜃) = 𝛼𝑒𝜔−𝛽𝑒          (S3) 

Here, {𝛼, 𝛽} ⊂ 𝜃 are the parameters controlling the amplitudes and exponents of the spectral density 

of the neural fluctuations. The parameterisation of endogenous fluctuations means that the states are no 

longer probabilistic; hence the inversion scheme is significantly simpler, requiring estimation of only the 

parameters (and hyperparameters) of the model.  

We used standard Bayesian model inversion to infer the parameters of the model in (1), (2) and (3), 

from the observed signal 𝑦(𝑡). The description of the Bayesian model inversion procedures based on 



variational Laplace can be found elsewhere for the interested readers (K. Friston, Mattout, Trujillo-

Barreto, Ashburner, & Penny, 2007; K. J. Friston, Harrison, & Penny, 2003; Razi & Friston, 2016).   

 

Parametric Empirical Bayes 

Empirical Bayes refers to the Bayesian inversion or fitting of hierarchical models. In hierarchical 

models, constraints on the posterior density over model parameters at any given level are provided by the 

level above. These constraints are called empirical priors because they are informed by empirical data. 

We recently introduced a second-level or between-subjects model over parameters, which represents how 

individual (within-subject) connections derive from the subjects’ group membership (K. J. Friston et al., 

2016) – based on parametric empirical Bayes (PEB). This approach calls on Bayesian Model Reduction 

(BMR) to finesse the inversion of multiple models of a single dataset or a single (hierarchical) model of 

multiple datasets. BMR allows one to compute posterior densities over model parameters, under new 

prior densities, without explicitly inverting the model again. For example, one can invert a DCM for each 

subject in a group and then evaluate the posterior density over group effects, using the posterior densities 

over parameters from the single subject inversion. This may improve subject-specific parameter 

estimates, by using group-level estimates to rescue individual DCM from local optima. Mathematically, 

for DCM studies with N subjects and M parameters per DCM, we have a hierarchical model, where the 

responses of the i-th subject and the distribution of the parameters over subjects can be modeled as: 

𝑦𝑖 = Γ𝑖
(1)

(𝜃(1)) +  𝜀𝑖
(1)

                        (S4) 

𝜃(1) = Γ(2)(𝜃(2)) +  𝜀(2)  

𝜃(2) = 𝜂 +  𝜀(3)  

where, 𝑦𝑖 is the BOLD time series from i-th subject and Γ𝑖
(1)

 is a nonlinear mapping from the 

parameters of a model to the predicted response 𝑦 for e.g. as shown in Eq. S1 above. 𝜀𝑖
(1)

 is independent 

and identically distributed (i.i.d.) observation noise (equivalent to 𝑒(𝑡) in Eq. S2).  In this hierarchical 

form, empirical priors encoding second (between-subject) level effects place constraints on subject-



specific parameters. The second level would be a linear model where the random effects are 

parameterised in terms of their precision: 

Γ(2)(𝜃(2)) = (𝑋⨂𝑊)𝛽  

where, 𝛽 ⊂ 𝜃 are group means or effects encoded by a design matrix with between 𝑋 and within-

subject 𝑊parts. The between-subject part encodes differences among subjects or covariates such as age, 

while the within-subject part specifies mixtures of parameters that show random effects. We assume that 

the first column of the design matrix is a constant term, modelling group means and subsequent columns 

encode group differences or covariates such as age. 

 

Self-connections in DCM 

Please note that in DCM, the self-connections are always modelled as inhibitory (to preclude any 

run-away excitation), but these parameters in the model are log-scaled for the sake of numerical stability 

of the model fitting procedures. This (log) scaling means that these self-connections can take both 

positive (red) and negative values (blue). A positive self-connection means a relative increased inhibition, 

whereas a negative self-connection means a relative decreased inhibition (i.e., disinhibition). Inhibitory 

self-connections control the regions’ gain or sensitivity to inputs. Only the self-connections are log-scaled 

in DCM. 

 

Subjective Effects (5D-ASC) 

Elemental imagery and complex imagery were measured on the retrospective 5D-ASC 70 minutes 

after the administration of psilocybin and scored between 1-4. Under 0.2mg/kg psilocybin group level 

elementary imagery averaged = 2.45/4; SD = 1.07; range = 1–4 and complex imagery averaged = 2.80/4; 

SD = 0.98; range = 1.33–4. Under placebo group level elementary imagery averaged 1.31/4; SD = 0.52; 

range = 1–3 and complex imagery averaged = 1.60/4; SD = 0.82; range = 1–4.  



A long version of the 5D-ASC was also completed by the participants 360 min after drug treatment 

and scored between 0-100. Elementary imagery averaged = 54.96/100; SD = 31.31; range = 0–97.67 and 

complex imagery averaged = 51.62/100; SD = 34.71; range = 1–100. Under placebo group level 

elementary imagery averaged 3.65/100; SD = 7.01; range = 0/00-24.33 and complex imagery averaged = 

4.10/100; SD = 6.71; range = 0–26.67. 

 

Participants  

All participants were deemed healthy after screening for medical history, physical examination, blood 

analysis, and electrocardiography. The Mini-International Neuropsychiatric Interview (MINI-SCID) 

(Sheehan et al., 1998), the DSM-IV fourth edition self-rating questionnaire for Axis-II personality disorders 

(SCID-II) (Fydrich, Renneberg, Schmitz, & Wittchen, 1997), and the Hopkins Symptom Checklist (SCL-

90-R) (Franke, 2002) were used to exclude subjects with present or previous psychiatric disorders or a 

history of major psychiatric disorders in first-degree relatives. Participants were asked to abstain from 

prescription and illicit drug use two weeks prior to first testing and throughout the duration of the study and 

abstain from alcohol use 24 hours prior to testing days. Urine tests and self-report questionnaires were used 

to verify the absence of drug and alcohol use. Urine tests were also used to exclude pregnancy. Further 

exclusion criteria included left-handedness, poor knowledge of the German language, cardiovascular 

disease, history of head injury or neurological disorder, history of alcohol or illicit drug dependence, MRI 

exclusion criteria, including claustrophobia, and previous significant adverse reactions to a hallucinogenic 

drug. All participants provided written informed consent statements in accordance with the declaration of 

Helsinki before participation in the study. Subjects received written and oral descriptions of the study 

procedures, as well as details regarding the effects and possible risks of drug treatment. 

 

 

  



Figure S1. 

 

 
Group-level region effective connectivity.  Left panel shows placebo matrix. Right panel shows 70 min 

post psilocybin administration matrix. Values are posterior expectations measured in Hz. *Denotes 

posterior probability threshold = .50. All other values are posterior probability threshold = .99. These 

results correspond to figures in the main manuscript.  



Figure S2. 

Associations of group-level region effective connectivity to elementary imagery and complex 

imagery. Scores were measured on the 5D-ASC at the end of the scan. Warm colours represent positive 

associations between directed connection and imagery, cold colours represent negative association 

between directed connection and imagery. Positive associations between behavioural measures and 

effective connections are outlined and are the values reported in the manuscript. Left panel shows region 

effective connectivity associations to elemental imagery 70 minutes post psilocybin. Right panel shows 

region effective connectivity associations to complex imagery 70 minutes post psilocybin. *Denotes 

posterior probability threshold = .50. All other values are posterior probability threshold = .99. 

 

 

 

  



Figure S3. 

 
Alternative design matrix. Respective design matrix and effective connectivity posterior expectation 

matrices are demonstrated. (A) Designated the placebo group to serve as the baseline. Regressors in 

change design matrix encode: 1) placebo group 2) the additive effect of being in the second group 

(psilocybin after 70 min) relative to the placebo group. See (B) for results. (C) Regressors in the contrast 

design matrix encode: 1) the group mean and 2) group difference relative to the mean. See (D) for results. 

Values are posterior expectations measured in Hz. *Denotes posterior probability threshold = .50. All 

other values are posterior probability threshold = .99.

 



 
  



Figure S4

 

 

Group-level region effective connectivity with global signal regression. (A) placebo, (B) 70 min and 

post psilocybin administration. Values are posterior expectations measured in Hz. *Denotes posterior 

probability threshold = .50. All other values are posterior probability threshold = .99. 

  



Figure S5.

 

 
Alternative design matrix and group-level region effective connectivity with global signal 

regression. Respective design matrix and effective connectivity posterior expectation matrices are 

demonstrated with global signal regression applied. (A) Designated the placebo group to serve as the 

baseline. Regressors in change design matrix encode: 1) placebo group 2) the additive effect of being in 

the second group (psilocybin after 70 min) relative to the placebo group. See (B) for results. (C) 

Regressors in the contrast design matrix encode: 1) the group mean and 2) group difference relative to the 

mean. See (D) for results. Values are posterior expectations measured in Hz. *Denotes posterior 

probability threshold = .50. All other values are posterior probability threshold = .99. 



       



Table S1. 

Mean region effective connectivity. All results are for posterior probability > 0.99. 

 

  

 Placebo   

 

 

 

Connection 

 

 

 

Valence & Effect Size 

 

 

 

Credible Intervals (low/high) 

EVA → EVA +0.24  0.183/0.303 

FG → EVA +0.34  0.277/0.369 

IFG → EVA -0.24 -0.305/-0.175 

IFG → FG -0.45 -0.526/-0.377 

FG → IPS -0.15 -0.204/-0.090 

IFG → IPS -0.35 -0.402/-0.296 

EVA → IFG 

 

 

 

Connection 

-0.13 

 

Psilocybin 

 

Valence & Effect Size 

 0.084/0.172 

 

 

 

Credible Intervals (low/high) 

EVA → EVA +0.44  0.371/0.507 

FG → EVA +0.29  0.247/0.331 

IPS → EVA -0.13 -0.186/-0.080 

EVA → FG -0.14 -0.196/-0.091 

FG → FG +0.41  0.341/0.482 

IPS → FG -0.21 -0.283/-0.135 

IFG → FG -0.13 -0.190/-0.063 

IPS → IPS +0.18  0.118/0.274 

IFG → IPS -0.18 -0.249/-0.113 

FG → IFG -0.13 -0.188/-0.079 

IFG → IFG +0.36  0.275/0.437 
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