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Supplementary Figures 

 

Figure S1. Minor allele frequency and variance explained for gout-associated 

genome-wide significant SNPs in 1KG.  

We showed A) The Minor allele frequency distribution and B) variance explained for gout-
associated GWS SNPs. The genome-wide significant SNPs were identified using P+T 
(see STAR Methods). The dashed line denotes y = x. The labeled SNPs have top 10 
ranked SNP effects. Abbreviations: Europeans (EUR), South Asians (SAS), East Asians 
(EAS) and Africans (AFR). 
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Figure S2. The impact of tuning cohorts on the prediction performance of P+T.  

We evaluated the accuracy in the non-EUR populations of UKBB using different tuning 
cohorts. Tuning cohort labeled as “EUR” indicated that 10,000 EUR from UKBB was used 
as tuning cohort whilst the label “Target Ancestry” suggested we randomly split the target 
cohort into two equally distributed datasets, with one used as the tuning cohort (see 
details in STAR Methods). The phenotypes in columns were ranked based on the SNP-
based heritability estimates using all ancestries (see Figure 2). Abbreviations: UK 
Biobank (UKBB), Biobank Japan (BBJ), Europeans (EUR), East Asians (EAS), chronic 
obstructive pulmonary disease (COPD), heart failure (HF), acute appendicitis (AcApp), 
venous thromboembolism (VTE), primary open-angle glaucoma (POAG), uterine cancer 
(UtC), abdominal aortic aneurysm (AAA), idiopathic pulmonary fibrosis (IPF), thyroid 
cancer (ThC). 
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Figure S3. The prediction performance of P+T using different p-value thresholds. 

We evaluated the accuracies in both UKBB-EUR and BBJ-EAS in the tuning cohort to 
select the optimal p-value thresholds. The asterisks indicate the optimal p-value threshold 
in each endpoint. The phenotypes in columns were ranked based on the polygenicity 
estimates using all ancestries (see Figure 2). Abbreviations: UK Biobank (UKBB), 
Boibank Japan (BBJ), Europeans (EUR), East Asians (EAS), chronic obstructive 
pulmonary disease (COPD), heart failure (HF), acute appendicitis (AcApp), venous 
thromboembolism (VTE), primary open-angle glaucoma (POAG), uterine cancer (UtC), 
abdominal aortic aneurysm (AAA), idiopathic pulmonary fibrosis (IPF), thyroid cancer 
(ThC). 
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Figure S4. Prediction performance of P+T in the UKBB using different optimization.  

We ran P+T with different combinations of p-value thresholds ( 5× 10-8, 5× 10-7, 1× 10-6, 
5× 10-6, 5× 10-5, 5× 10-4, 5× 10-3, 0.01, 0.05, 0.1, 0.2, 0.5 and 1), LD r2 thresholds (r2=0.01, 
0.02, 0.05, 0.1, 0.2, and 0.5) and LD windows (LDwin=250, 500, 1000, and 2000Kb) for 13 
endpoints in the UKBB (see STAR Methods). Both HapMap3 variants (HM3) and a denser 
genome-wide variant set (All) were analyzed.1KG-EUR was used as the LD reference 
panel in all analyses. The results using fixed LD parameters (LDwin=250, LD r2=0.1) but 
optimizing p-value thresholds were reported as “Fix”, while the results of “Optimal” were 
based on all parameters optimization. We randomly split the target cohort into two equally 
distributed datasets, with one used as the tuning cohort to fine-tune hyper-parameters 
and the other used as test cohort to estimate prediction accuracy. Abbreviations: 
Europeans (EUR), Admixed Americans (AMR), Middle Eastern (MID), Central and South 
Asians (CSA), East Asians (EAS), Africans (AFR), chronic obstructive pulmonary disease 
(COPD), heart failure (HF), acute appendicitis (AcApp), venous thromboembolism (VTE), 
primary open-angle glaucoma (POAG), uterine cancer (UtC), abdominal aortic aneurysm 
(AAA), idiopathic pulmonary fibrosis (IPF), thyroid cancer (ThC). 
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Figure S5. The impact of LD reference panels’ sample sizes on P+T prediction 

performance.  

We varied the sample sizes of EUR-based LD reference panels from 500 to 50,000. The 
accuracies were evaluated for asthma in the UKBB. We randomly split the target cohort 
into two equally distributed datasets, with one used as the tuning cohort to fine-tune 
hyper-parameters and the other used as test cohort to estimate prediction accuracy. 
Abbreviations: Europeans (EUR), Admixed Americans (AMR), Middle Eastern (MID), 
Central and South Asians (CSA), East Asians (EAS), Africans (AFR).  
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Figure S6. The impact of LD reference panels’ ancestral composition on P+T 
performance.  

We used different ancestral populations from 1KG as LD reference to run P+T on 
HapMap3 SNPs using fixed LD parameters. We randomly split each target population in 
the UKBB into two equally distributed datasets, with one used as the tuning cohort to fine-
tune hyper-parameters and the other used as test cohort to estimate prediction accuracy. 
We found there was no significant difference of accuracies using different ancestral LD 
reference panels. Abbreviations: Europeans (EUR), Admixed Americans (AMR), Middle 
Eastern (MID), Central and South Asians (CSA), East Asians (EAS), Africans (AFR), 
chronic obstructive pulmonary disease (COPD), heart failure (HF), acute appendicitis 
(AcApp), venous thromboembolism (VTE), primary open-angle glaucoma (POAG), 
uterine cancer (UtC), abdominal aortic aneurysm (AAA), idiopathic pulmonary fibrosis 
(IPF), thyroid cancer (ThC). 
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Figure S7. PRS predictive performance for P+T stratified by sample size 
heterogeneity.  

The R2 of P+T for 13 endpoints for European samples in the UK Biobank (UKBB) (A-C) 
and East Asian samples in Biobank Japan (BBJ) (D-F). Clinical information for VTE, 
AcApp, and Appendectomy was not collected in BBJ. A and D show the R2 of PRS without 
filtering by minor allele frequency (MAF), while the variants with MAF less than 0.1 were 
excluded for PRS calculation in B and E. The HapMap3 variants were used for PRS 
calculation in C and F. The full results showing the effect of per-variant effective sample 
size (Neff) and minor allele frequency (MAF) filtering are shown in Table S4. 
Abbreviations: chronic obstructive pulmonary disease (COPD), heart failure (HF), acute 
appendicitis (AcApp), venous thromboembolism (VTE), primary open-angle glaucoma 
(POAG), uterine cancer (UtC), abdominal aortic aneurysm (AAA), idiopathic pulmonary 
fibrosis (IPF), thyroid cancer (ThC). 
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Figure S8. Prediction performance of different PRS-CS models.  

We ran PRS-CS using both grid model and auto model (see STAR Methods). The 
asterisks indicate the optimized phi parameter with highest prediction accuracy achieved 
by grid model in each target ancestry in the UKBB. The phenotypes were ranked by the 
polygenicity using all ancestries as shown in Figure 2. Note that we removed the 
estimates in AMR and MID due to limited information as a result of small sample sizes. 
Abbreviations: Europeans (EUR), Admixed Americans (AMR), Middle Eastern (MID), 
Central and South Asians (CSA), East Asians (EAS), Africans (AFR), chronic obstructive 
pulmonary disease (COPD), heart failure (HF), acute appendicitis (AcApp), venous 
thromboembolism (VTE), primary open-angle glaucoma (POAG), uterine cancer (UtC), 
abdominal aortic aneurysm (AAA), idiopathic pulmonary fibrosis (IPF), thyroid cancer 
(ThC). 
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Figure S9. The impact of LD reference panels on prediction accuracy using PRS-

CS auto models.  

A) We used LD references from diverse ancestral populations in 1KG for running PRS-CS auto 

models. B) We used EUR LD reference from both 1KG and UKBB with different sample sizes. 

The phenotypes were ranked by the SNP-based heritability using all ancestries as shown in 

Figure 2. Note that we removed the estimates in AMR and MID due to limited information as a 

result of small sample sizes. Abbreviations: Europeans (EUR), Admixed Americans (AMR), 

Middle Eastern (MID), Central and South Asians (CSA), East Asians (EAS), Africans (AFR), 

chronic obstructive pulmonary disease (COPD), heart failure (HF), acute appendicitis (AcApp), 

venous thromboembolism (VTE), primary open-angle glaucoma (POAG), uterine cancer (UtC), 

abdominal aortic aneurysm (AAA), idiopathic pulmonary fibrosis (IPF), thyroid cancer (ThC).  
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Figure S10. The population prevalence and effective sample size of endpoints in 
GBMI for each biobank.  

Abbreviations: Europeans (EUR), Admixed Americans (AMR), Middle Eastern (MID), Central 

and South Asians (CSA), East Asians (EAS), Africans (AFR), chronic obstructive pulmonary 

disease (COPD), heart failure (HF), acute appendicitis (AcApp), venous thromboembolism 

(VTE), primary open-angle glaucoma (POAG), uterine cancer (UtC), abdominal aortic aneurysm 

(AAA), idiopathic pulmonary fibrosis (IPF), thyroid cancer (ThC).  
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Figure S11. The distribution of median PRS across biobanks in EUR.  

PRS was splitted into deciles while PRS in controls were normalized with mean of 0 and 
variance of 1. Abbreviations: Europeans (EUR), Admixed Americans (AMR), Middle 
Eastern (MID), Central and South Asians (CSA), East Asians (EAS), Africans (AFR), 
chronic obstructive pulmonary disease (COPD), heart failure (HF), acute appendicitis 
(AcApp), venous thromboembolism (VTE), primary open-angle glaucoma (POAG), 
uterine cancer (UtC), abdominal aortic aneurysm (AAA), idiopathic pulmonary fibrosis 
(IPF), thyroid cancer (ThC).  



14 

 
 

Figure S12. The prediction performance of GBMI versus previously published 

GWAS.  

The phenotypes were ranked by the SNP-based heritability estimates from all ancestries. 
Note that we removed the estimates in AMR and MID due to limited information as a 
result of small sample sizes. The full results are shown in Table S5. Abbreviations: 
Europeans (EUR), Central and South Asians (CSA), East Asians (EAS) and Africans 
(AFR), chronic obstructive pulmonary disease (COPD), heart failure (HF), acute 
appendicitis (AcApp), venous thromboembolism (VTE), primary open-angle glaucoma 
(POAG), uterine cancer (UtC), abdominal aortic aneurysm (AAA), idiopathic pulmonary 
fibrosis (IPF), thyroid cancer (ThC).  
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Figure S13. Flow chart for general lessons and guidelines of best practice using 
multi-ancestry GWAS for PRS analyses.  

We focused on disease traits where the discovery GWAS is meta-analyzed multi-ancestry 
GWAS. We used P+T and PRS-CS as examples to show different aspects related to PRS 
construction. We included three general considerations involved in PRS analyses, 
including discovery GWAS (blue), PRS model fitting (green) and target populations 
(yellow). For each of the three general considerations, we highlighted the extended 
recommendations based on findings in this study in darker color with bold texts. The gray 
boxes are used for decision making. The detailed study design is shown in Figure 1. 
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Table S1. Previously published GWAS used in comparison to GBMI GWAS. 

    Endpoints Abb. Public GWAS Neff Prevalence Ancestry Composition 

Asthma Asthma 1 79722 0.168 
EUR: 89.6%, 19965/107715 cases/controls; EAS: 3.7%, 1239/3976 
cases/controls; AFR: 5.8%, 2149/6055 cases/controls; AMR: 1.0%, 
606/792 cases/controls 

Chronic obstructive pulmonary 
disease 

COPD 2 75457 0.105 EUR: 100%, 21077/179689 cases/controls 

Heart Failure HF 
3 
 

180076 0.048 EUR: 100%, 47309/930014 cases/controls 

Stroke Stroke 
4 
 

233792 0.130 

EUR: 86.3%, 40585/406111 cases/controls; CSA: 1.8%, 2437/6707 
cases/controls; EAS: 8.8%, 17369/28195 cases/controls; AFR: 4.0%, 
541/15154 cases/controls; AMR: 0.3%, 865/692 cases/controls; Mixed 
Asian: 0.1%, 365/333 cases/controls 

Acute appendicitis AcApp     

Venous thromboembolism VTE     

Gout Gout 
5 
 

8202 0.030 EUR: 100%, 2115/67259 cases/controls 

Appendectomy Appendectomy     

Primary open-angle glaucoma POAG 
6 
 

124531 0.089 
EUR: 86.3%, 23963/306942 cases/controls; EAS: 12.1%, 6935/39588 
cases/controls; AFR: 1.6%, 3281/2791 cases/controls 

Uterine cancer UtC 
7 
 

8073 0.009 EUR: 100%, 2037/219656 cases/controls 

Abdominal aortic aneurysm AAA     

 Idiopathic pulmonary fibrosis IPF 
8 
 

5459 0.003 EUR: 100%, 1369/435866 cases/controls 

Thyroid cancer ThC 
7 
 

3042 0.002 EUR: 100%, 762/410350 cases/controls 

https://paperpile.com/c/wEEOxT/0uApE
https://paperpile.com/c/wEEOxT/082FL
https://paperpile.com/c/wEEOxT/F6392
https://paperpile.com/c/YTxR3Q/wqa7
https://paperpile.com/c/YTxR3Q/wqa7
https://paperpile.com/c/wEEOxT/mJQyy
https://paperpile.com/c/YTxR3Q/Aasa
https://paperpile.com/c/YTxR3Q/Aasa
https://paperpile.com/c/wEEOxT/9av8I
https://paperpile.com/c/YTxR3Q/PvWH
https://paperpile.com/c/YTxR3Q/PvWH
https://paperpile.com/c/wEEOxT/geGHm
https://paperpile.com/c/YTxR3Q/Gz4p
https://paperpile.com/c/YTxR3Q/Gz4p
https://paperpile.com/c/wEEOxT/yNUOc
https://paperpile.com/c/YTxR3Q/UvWm
https://paperpile.com/c/YTxR3Q/UvWm
https://paperpile.com/c/wEEOxT/i1M5N
https://paperpile.com/c/YTxR3Q/t5DX
https://paperpile.com/c/YTxR3Q/t5DX
https://paperpile.com/c/wEEOxT/yNUOc
https://paperpile.com/c/YTxR3Q/UvWm
https://paperpile.com/c/YTxR3Q/UvWm
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Table S5. Summary of extending practical considerations in PRS analyses in this 

study. 

Considerations Details 
Existing Practice  

(single ancestry) 
Extensions (this study) 

Discovery GWAS 

polygenicity (Proportion 

of SNPs with non-zero 

effects) 

No consideration of polygenicity 

regarding PRS model selection 

1) Choose models adaptive to trait genetic 

architecture; 2) if not, then choose hyper-

parameters reflecting polygenicity, such as 

smaller phi values for less polygenic traits in 

PRS-CS grid model and larger values for more 

polygenic traits 

SNP-based heritability Not routinely checked Should confirm it is significantly larger than 0 

Ancestry composition 
Not applicable for single-ancestry 

GWAS 
Informative for the choice of LD reference 

panel as well as benchmarking PRS accuracy 

Per-variant effective 

sample sizes/MAF 
Generally only use MAF filter 

additionally apply per-variant effective sample 

size filter, if such information not available 

then use HapMap3 variants 

PRS model fitting 

 

LD reference panel 

In-sample LD is preferred, if not 

available then use ancestry-

matched LD reference panel 

When using external LD reference: 1) 

ancestry matched with the dominant one in the 

discovery GWAS; 2) when no ancestry is 

dominant, reference panel proportional to 

discovery GWAS is recommended 

Tuning cohort 

Use additional tuning cohort if 

applicable; otherwise using 

pseudo-validation or splitting 

target cohort as two parts 

When the target population include diverse 

ancestries, using target-ancestry matched 

tuning cohort 

Tuning parameters 
Usually p-value threshold for 

P+T; phi parameter for PRS-CS 

grid models 

Additional LD parameter optimization could 

slightly improve performance; PRS-CS auto 

model can be used when discovery GWAS is 

large enough 

Target populations 

Standard QC 
Variant/Individual level; make 

sure the individuals are unrelated 

with discovery GWAS 

Same, but perform QC per ancestry if diverse 

ancestries included in the target population 

Evaluation 

Account for the contribution of 

PRS by regressing out the effects 

covariates; reporting the accuracy 

using different evaluation metrics 

Recommend reporting the PRS distribution to 

benchmark against other predictors; relative 

accuracy is often reported when diverse 

ancestries included 
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