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Abstract

Prostate cancer is often a slowly progressive indolent disease. Unneces-
sary treatments from overdiagnosis are a significant concern, particularly
low-grade disease. Active surveillance has being considered as a risk
management strategy to avoid potential side effects by unnecessary rad-
ical treatment. In 2016, American Society of Clinical Oncology (ASCO)
endorsed the Cancer Care Ontario (CCO) Clinical Practice Guideline
on active surveillance for the management of localized prostate can-
cer. Based on this guideline, we developed a deep learning model to
classify prostate adenocarcinoma into indolent (applicable for active
surveillance) and aggressive (necessary for definitive therapy) on core
needle biopsy whole slide images (WSIs). In this study, we trained deep
learning models using a combination of transfer, weakly supervised,
and fully supervised learning approaches using a dataset of core needle
biopsy WSIs (n=1300). We evaluated the models on a test set (n=645),
achieving ROC-AUCs 0.846 (indolent) and 0.980 (aggressive). The
results demonstrate the promising potential of deployment in a practical
prostate adenocarcinoma histopathological diagnostic workflow system.
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1 Introduction

According to the Global Cancer Statistics 2020, prostate cancer is the second
most frequent cancer and the fifth leading cause of cancer death among men
in 2020 Sung et al (2021). Prostate cancer is the most frequently diagnosed
cancer in men in over one half (112 of 185) of the countries of the world Sung
et al (2021). Therefore, it is necessary to define optimum therapeutic strate-
gies for detection, treatment, and follow-up for prostate cancer patients Chen
et al (2016). In recent year, pathologists perform the histopathological diag-
nosis of prostate cancer based on Gleason pattern quantities, tumor growth
patterns, and clinical practice advancements (e.g., multiparametric magnetic
resonance imaging (mpMRI) targeted biopsy and fusion ultrasound/magnetic
resonance imaging biopsy) Van Leenders et al (2020). Standard active treat-
ments for prostate cancer include hormone therapy, radiotherapy, and radical
prostatectomy. However, to avoid the unnecessary side effects associated with
overdiagnosis and over treatment, active surveillance is an important option
for low-grade prostate cancer patients with reduced mortality risk Chen et al
(2016); Morash et al (2015). As for the active surveillance, it consists in per-
forming regular follow-ups of patients so as to be able to provide appropriate
radical treatment for high-risk groups if necessary Morash et al (2015). The cri-
teria for active surveillance are highly controversial Chen et al (2016); Morash
et al (2015); Van Leenders et al (2020); Cyll et al (2022); Russell and Siddiqui
(2022). According to the Cancer Care Ontario (CCO) Guideline and Amer-
ican Society of Clinical Oncology (ASCO) Clinical Practice Guideline, it is
generally accepted that active surveillance is applied when a prostate cancer
is determined by biopsy and Gleason pattern 4 components account for less
than 10% of the total cancer volume Chen et al (2016). However, unfortu-
nately, the inter-observer agreement for the Gleason score is not always high,
and the inter-observer reproducibility (variability) of Gleason grading by gen-
eral pathologists is often a problem Allsbrook Jr et al (2001); Oyama et al
(2005); Ozkan et al (2016); Bulten et al (2022). Although International Soci-
ety of Urological Pathology (ISUP) is making efforts to improve inter-observer
agreement and equalize diagnostic quality for general pathologists by publish-
ing consensus reviewing cases (https://isupweb.org/pib/), there are still cases
that are not in agreement among pathologists in routine clinical practice.

In computational pathology, deep learning models have been widely applied
in histopathological cancer classification on WSIs, cancer cell detection and
segmentation, and the stratification of patient outcomes Yu et al (2016); Hou
et al (2016); Madabhushi and Lee (2016); Litjens et al (2016); Kraus et al
(2016); Korbar et al (2017); Luo et al (2017); Coudray et al (2018); Wei et al

https://isupweb.org/pib/


3

(2019); Gertych et al (2019); Bejnordi et al (2017); Saltz et al (2018); Cam-
panella et al (2019); Iizuka et al (2020); Tsuneki et al (2022). Recently, it has
been reported that an artificial intelligence (AI)-powered platform used as a
clinical decision support tool was able to detect, grade, and quantify prostate
cancer with high accuracy and efficiency and was associated with significant
reductions in inter-observer variability Huang et al (2021); Bulten et al (2021).
As for the global AI competition, the Prostate cANcer graDe Assessment
(PANDA) challenge, a group of AI Gleason grading algorithms developed dur-
ing a global competition generalized well to intercontinental and multinational
cohorts with pathologist-level performance Bulten et al (2022). Other works
Singhal et al (2022); Li et al (2021); Melo et al (2021); Otálora et al (2021);
Silva-Rodŕıguez et al (2021); Marginean et al (2021); Nagpal et al (2019); Cam-
panella et al (2019) have also looked into developing deep learning algorithms
to classify prostate cancer Gleason scores based on histopathological images.

In this study, we investigated deep learning models to classify prostate ade-
nocarcinoma in two classes based on the clinical responses: indolent (applicable
for active surveillance) and aggressive (necessary for definitive therapy). To
define the criteria of indolent and aggressive, we refered to CCO and ASCO
guidelines Chen et al (2016) and set the cut-off value of 20% identified Gleason
score 4 & 5 components in total prostate adenocarcinoma (Fig. 1) to reduce the
possibility of inter-observer variability Sadimin et al (2016) as compared to the
10% cut-off value proposed by CCO and ASCO Chen et al (2016). To the best
of our knowledge, this is the first study to establish a deep learning model to
make an inference of the necessity for active surveillance on prostate core nee-
dle biopsy histopathology whole slide images (WSIs). We trained deep learning
models using a combination of transfer learning, weakly, and fully supervised
learning approaches and evaluated the trained models on core needle biopsy
test set, achieving ROC-AUCs 0.846 (indolent) and 0.980 (aggressive). These
findings suggest that it would be possible to not only detect adenocarcinoma
on biopsy WSIs, but also to predict patients’ optimum clinical interventions
(active surveillance or definitive therapy).

2 Materials and methods

2.1 Clinical cases and pathological records

This is the retrospective study. A total of 2,285 H&E (hematoxylin & eosin)
stained histopathological core needle biopsy specimen slides of human prostate
adenocarcinoma and benign (non-neoplastic) lesions – 1,321 of adenocarci-
noma and 964 of benign – were collected from the surgical pathology files of
Kamachi Group Hospitals (Shinyukuhashi, Wajiro, and Shinkuki Hospitals)
(Fukuoka, Japan) and Sapporo-Kosei General Hospital (Sapporo, Japan), after
histopathological review of all specimens by surgical pathologists in each hospi-
tal. In Kamachi Group Hospitals, the histopathological specimens were selected
randomly to reflect a real clinical settings as much as possible. In Sapporo-
Kosei General Hospital, only adenocarcinoma specimens were provided. Prior
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to the experimental procedures, each WSI diagnosis was observed and verified
by at least two senior pathologists. All WSIs were scanned at a magnification
of x20 using the same Leica Aperio AT2 Digital Whole Slide Scanner (Leica
Biosystems, Tokyo, Japan) and were saved as SVS file format with JPEG2000
compression.

2.2 Dataset

Table 1 shows breakdowns of the distribution of the specimens based on the
following: all specimens, consensus specimens by two senior pathologists, train-
ing set, validation set, and test set of prostate core needle biopsy WSIs from
Kamachi Group Hospitals and Sapporo-Kosei General Hospital. According to
the Cancer Care Ontario Guideline Chen et al (2016) and American Society of
Clinical Oncology (ASCO), patients with both low-volume (accounting for 10%
total tumor) and intermediate-risk (Gleason score 3 + 4 = 7) prostate cancer
may be offered active surveillance. At the same time, because of known inter-
observer variability associated with the identification of minor Gleason pattern
4 components, prospective intradepartmental consultation with other pathol-
ogists should be considered for quality assurance Chen et al (2016). Therefore,
in this study, considering clinical responses, we have set two classes for prostate
adenocarcinoma: indolent and aggressive. Indolent suggests observation (active
surveillance) and aggressive suggests definitive therapy.

In this study, we labelled (classified) prostate adenocarcinoma WSIs as
follows. If the WSI has less than 20% of Gleason pattern 4 and Gleason pattern
5 components in total adenocarcinoma, it should be classified as indolent (Fig.
1). If the WSI has more than 20% of Gleason pattern 4 and Gleason pattern
5 components in total adenocarcinoma, it should be classified as aggressive
(Fig. 1). We set the cut-off at 20% of total prostate adenocarcinoma on a WSI
(Fig. 1) to reduce the possibility of interobserver variability as compared to
10% Chen et al (2016), because it has been widely reported that assessment
of percentage Gleason pattern 4 in minute cancer foci has poor reproducibility
among pathologists, especially for poorly formed glands Van Leenders et al
(2020); McKenney et al (2011); Egevad et al (2011); Sadimin et al (2016);
Zhou et al (2015); Harding-Jackson et al (2016).

In total we use indolent, aggressive, and benign as WSI labels for training
the deep learning models at the WSI level. During the consensus review by
two senior pathologists, 310 adenocarcinoma WSIs were excluded because of
low concordance when classified into indolent or aggressive (Table 1). Training,
validation, and test set were selected randomly from the consensus WSIs (Table
1).

2.3 Annotation

A senior pathologist, who performs routine histopathological diagnoses in gen-
eral hospital, manually annotated 100 adenocarcinoma WSIs from the training
set. The pathologist carried out annotations by free-hand drawing using an
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in-house online tool developed by customizing the open-source (OpenSead-
ragon) tool, which is a web-based viewer for zoomable images. On average,
10-15 lesions were annotated per WSI. The pathologists performed annotations
based on the histopathological characteristics of Gleason pattern 3, 4, and 5.
For example, well-formed glands with intraluminal crystalloids (Gleason pat-
tern 3) (Fig. 2A), large irregular cribriform glands (Gleason pattern 4) (Fig.
2B), crowded fused glands (Gleason pattern 4) (Fig. 2C), poorly formed small-
sized glands with some lumen-formation (Gleason pattern over 4) (Fig. 2D),
ductal adenocarcinoma lined by columnar cells with elongated nuclei (Glea-
son pattern 4) (Fig. 2E), and infiltrating cords and single tumor cells without
lumen formation (Gleason pattern 5) (Fig. 2F) were manually annotated. For
training step, Gleason pattern 3 annotations were grouped as indolent and
Gleason pattern 4 and 5 annotations as aggressive. The pathologist included
cancer stroma which surrounds cancer cells in the annotation area. The average
annotation time per WSI was about five minutes. All annotations performed
by the pathologist were modified (if necessary), confirmed, and verified by a
senior pathologist who performs routine histopathological diagnoses in general
hospital.

2.4 Deep learning models

We trained the models via transfer learning using the partial fine-tuning
approachKanavati and Tsuneki (2021b). This is an efficient fine-tuning
approach that consists of using the weights of an existing pre-trained model
and only fine-tuning the affine parameters of the batch normalization layers
and the final classification layer. For the model architecture, we used Efficient-
NetB1Tan and Le (2019) starting with pre-trained weights on ImageNet. We
used similar training methodology as Kanavati and Tsuneki (2021a); Tsuneki
et al (2022). For clarity, we highlight the main parts below.

We performed tissue detection using Otsu’s thresholding method Otsu
(1979) by excluding the white background. We then extracted tiles only from
the tissue regions. During prediction, we extracted tiles from the entire tissue
regions using a sliding window with a fixed-size stride. During training, we per-
formed random balanced sampling of tiles, whereby we first randomly sampled
three WSIs, one for each label. Then from each corresponding WSI, we ran-
domly sampled an equal amount of tiles. For aggressive or indolent WSIs, we
randomly sampled from the annotated tissue regions; for Benign, we randomly
sampled from all the tissue regions.

After a few epochs, we switched to hard mining of tiles where we alternated
between training and inference. During inference, the CNN was applied in a
sliding window fashion on all of the tissue regions in the WSI, and we then
selected the k tiles with the highest probability for being positive. This step
effectively selects the tiles that are most likely to be false positives when the
WSI is negative. The selected tiles were placed in a training subset, and once
that subset contained N tiles, the training was run. We used k = 8, N = 256,
and a batch size of 32.
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For fully-supervised training, we performed the initial random sampling
from annotated regions followed by the hard mining. We refer to this as
FS+WS. For weakly-supervised training, we only performed the hard mining
as it did not involve any annotations. We refer to this as WS.

To obtain a single prediction for the WSIs from the the tile predictions,
we took the maximum probability from all of the tiles. We used the Adam
optimizer Kingma and Ba (2014), with the binary cross-entropy as the loss
function, with the following parameters: beta1 = 0.9, beta2 = 0.999, a batch
size of 32, and a learning rate of 0.001 when fine-tuning. We used early stopping
by tracking the performance of the model on a validation set, and training
was stopped automatically when there was no further improvement on the
validation loss for 10 epochs. We chose the model with the lowest validation
loss as the final model.

2.5 Inter- and intra-rater reliability studies

To evaluate human pathologists’ inter-rater and intra-rater reliability, follow-
ing WSIs were randomly selected from the test set: (i) 25 true negative WSIs
(consensus classification by senior pathologists: Benign, deep learning model
(TL-Colon poorly ADC (x20, 512) and FS+WS) WSI classification: Benign),
(ii) 25 true-positive (indolent) WSIs (consensus: indolent, deep learning model:
indolent), (iii) 25 false-positive WSIs (consensus: 13 indolent WSIs and 12
aggressive WSIs, deep learning model: 25 WSIs both indolent & aggressive
double classes), (iv) 25 true-positive (aggressive) WSIs (consensus: aggressive,
deep learning model: aggressive) (Table 4). A total of 100 WSIs were randomly
shuffled and presented to volunteer pathologists using an in-house online tool
developed by customizing the open-source (OpenSeadragon) tool, which is a
web-based viewer for zoomable images. We performed the same intra-rater
reliability study (Table 5) experiment twice with a one-month gap, randomis-
ing the order of WSIs each time. Volunteer pathologists recruited in this study
consisted of 5 pathologists with less than 10 years experiences after becom-
ing board certificated and 5 pathologists with more than 10 years experiences
after becoming board certificated (total 10 pathologists) (Table 4).

2.6 Software and statistical analysis

The deep learning models were implemented and trained using TensorFlow
Abadi et al (2015). AUCs were calculated in python using the scikit-learn
package Pedregosa et al (2011) and plotted using matplotlib Hunter (2007).
The 95% CIs of the AUCs were estimated using the bootstrap method Efron
and Tibshirani (1994) with 1000 iterations.

The true positive rate (TPR) was computed as

TPR =
TP

TP + FN
(1)

and the false positive rate (FPR) was computed as
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FPR =
FP

FP + TN
(2)

Where TP, FP, and TN represent true positive, false positive, and true neg-
ative, respectively. The ROC curve was computed by varying the probability
threshold from 0.0 to 1.0 and computing both the TPR and FPR at the given
threshold.

To assess the histopathological diagnostic concordance of pathologists, we
performed S-score statistics, which is a measure and change-adjusted index for
inter-rater reliability of categorical measurements between two or more raters
Bennett et al (1954). To evaluate the intra-rater reliability for each pathologist,
we performed the weighted kappa statistics Kundel and Polansky (2003); Swan
et al (2022). We calculated the S-scores and kappa values using Microsoft Excel
2016 MSO (16.0.13029.20232) 64 bit. The scale for interpretation is as follows:
≤0.0, poor agreement; 0.01–0.20, slight agreement; 0.21–0.40, fair agreement;
0.41–0.60, moderate agreement; 0.61–0.80, substantial agreement; 0.81–1.00,
almost perfect agreement (Tables 4, 5).

2.7 Availability of data and material

The datasets generated during and/or analysed during the current study are
not publicly available due to specific institutional requirements governing pri-
vacy protection but are available from the corresponding author on reasonable
request. The datasets that support the findings of this study are available from
Kamachi Group Hospitals (Fukuoka, Japan) and Sapporo-Kosei General Hos-
pital (Sapporo, Japan), but restrictions apply to the availability of these data,
which were used under a data use agreement which was made according to the
Ethical Guidelines for Medical and Health Research Involving Human Sub-
jects as set by the Japanese Ministry of Health, Labour and Welfare (Tokyo,
Japan), and so are not publicly available. However, the data are available
from the authors upon reasonable request for private viewing and with per-
mission from the corresponding medical institutions within the terms of the
data use agreement and if compliant with the ethical and legal requirements
as stipulated by the Japanese Ministry of Health, Labour and Welfare.

3 Results

3.1 High AUC performance of prostate core needle
biopsy WSI evaluation of indolent and aggressive
adenocarcinoma histopathology images

We trained deep learning models using two different training approaches: one
was transfer learning (TL) and weakly supervised learning (WS) approach
Kanavati et al (2020); Tsuneki et al (2022) (TL-Colon poorly ADC (x20, 512)
and WS) and the other was TL and fully supervised (FS) pre-training followed
by WS (FS + WS) approach Kanavati et al (2021) (TL-Colon poorly ADC
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(x20, 512) and FS + WS). Both approaches, the models were applied in a slid-
ing window fashion with input tiles of 512x512 pixels, magnification at x20,
and strides of 256. As for transfer learning, colon poorly differentiated adeno-
carcinoma classification model (Colon poorly ADC (x20, 512)) Tsuneki and
Kanavati (2021) was selected as an initial weight due to its highest ROC-AUC
(0.889, CI: 0.861 - 0.914) and lowest log-loss (0.415, CI: 0.378 - 0.457) (Table
2) on test set (Table 1). The other existing deep learning models (Table 2)
we have used to compare ROC-AUC and log-loss performances were described
previously: Stomach ADC, AD (x10, 512) Iizuka et al (2020); Stomach signet
ring cell carcinoma (SRCC) (x10, 224) Kanavati et al (2021); Stomach poorly
ADC (x20, 224) Kanavati and Tsuneki (2021a); Colon ADC, AD (x10, 512)
Iizuka et al (2020); Pancreas EUS-FNA ADC (x10, 224) Naito et al (2021);
Breast IDC, DCIS (x10, 224) Kanavati et al (2022). As for FS pre-training, we
have used manually drawing annotations by pathologists 2.For test set (Table
1), we computed the ROC-AUC, log loss, accuracy, sensitivity, and specificity
and summarized in Table 3 and Fig. 3.

As for WSI classification, the deep learning model for FS pre-training fol-
lowed by WS approach (TL-Colon poorly ADC (x20, 512) and FS + WS)
slightly improved ROC-AUC, accuracy, and sensitivity and decreased log-loss
as compared to the model for WS approach (TL-Colon poorly ADC (x20, 512)
and WS) in aggressive WSIs but not in indolent WSIs (Fig. 3 and Table 3).
On the other hand, when compared with and without FS learning ([TL-Colon
poorly ADC (x20, 512) and FS + WS] and [TL-Colon poorly ADC (x20, 512)
and WS]) models for indolent and aggressive prediction at tile level in WSIs,
FS pre-training followed by WS (FS + WS) approach robustly predicted indo-
lent (Gleason pattern 3) (Fig. 4A, C, D, F) and aggressive (Gleason pattern
4 and 5) (Fig. 4M, O, P, R) patterns on heatmap images as compared to the
WS approach (TL-Colon poorly ADC (x20, 512) and WS) (Fig. 4A, B, D, E,
M, N, P, Q). Interestingly, the model (TL-Colon poorly ADC (x20, 512) and
FS + WS) predicted indolent pattern (Gleason pattern 3) area precisely where
pathologists did not mark ink-dots when they performed diagnosis (Fig. 4G,
I, J, L), which was not predicted by the WS approach (TL-Colon poorly ADC
(x20, 512) and WS) (Fig. 4G, H, J, K).

Figures 5, 6, 7, 8 show representative WSIs of true-positive, true-negative,
false-positive, and false-negative, respectively from using the model (TL-Colon
poorly ADC (x20, 512) and FS + WS).

3.2 True positive indolent and aggressive prediction of
core needle biopsy WSIs

Our model (TL-Colon poorly ADC (x20, 512) and FS + WS) satisfactorily
predicted indolent (Fig. 5A-D) and aggressive (Fig. 5E-H) patterns in core
needle biopsy WSIs. According to the histopathological report and additional
pathologists’ consensus reviewing, in both #1 and #2 tissue fragments (Fig.
5A), there are adenocarcinoma corresponded with Gleason pattern 3 (Gleason
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score = 3 + 3) (Fig. 5C), indicating indolent adenocarcinoma pattern and indo-
lent WSI classification. The heatmap image (Fig. 5B, D) shows true positive
indolent predictions in #1 and #2 fragments (Fig. 5B), where corresponded
with H&E morphology (Fig. 5C, D). In (Fig. 5E), #1 and #2 fragments were
benign (non-neoplastic) lesions and there are adenocarcinoma corresponded
with Gleason pattern 4 (Gleason score = 4 + 4) (Fig. 5G), indicating aggres-
sive adenocarcinoma pattern and aggressive WSI classification. The heatmap
image (Fig. 5F, H) shows true positive aggressive predictions in #3 and #4
fragments (Fig. 5F), where corresponded with H&E morphology (Fig. 5G, H).
False positive predictions were not observed in other benign tissue fragments
(#1 and #2) (Fig. 5E, F).

3.3 True negative indolent and aggressive prediction of
core needle biopsy WSIs

Our model (TL-Colon poorly ADC (x20, 512) and FS + WS) showed true
negative predictions of indolent (Fig. 6A, C) and aggressive (Fig. 6A, D) pat-
terns in core needle biopsy WSIs. In Fig. 6A, histopathologically, all tissue
fragments (#1-#13) were benign (non-neoplastic) lesions. The heatmap image
showed true positive prediction of benign (Fig. 6B), true negative predictions
of indolent (Fig. 6C) and aggressive (Fig. 6D) patterns.

3.4 False positive indolent and aggressive prediction of
core needle biopsy WSIs

According to the histopathological reports and additional pathologists’ review-
ing, Fig. 7A is a prostatic hyperplasia and Fig. 7E is a chronic prostatitis,
which are benign (non-neoplastic) lesions. Our model (TL-Colon poorly ADC
(x20, 512) and FS + WS) showed false positive predictions of indolent (Fig.
7B) and aggressive (Fig. 7F) patterns, which caused indolent and aggressive
WSI classification. indolent false positive tissue areas showed large and small
dilated atrophic glands (Fig. 7C, D) and aggressive false positive tissue areas
showed severe infiltration of lymphocytes and histiocytes (Fig. 7G, H), which
could be the primary causes of false positives due to its morphological simi-
larity in indolent pattern (Gleason pattern 3) and aggressive pattern (Gleason
pattern 4 and 5).

3.5 False negative indolent and aggressive prediction of
core needle biopsy WSIs

According to the histopathological reports and additional pathologists’ consen-
sus reviewing, in Fig. 8A, infiltrating adenocarcinoma showed indolent pattern
(Gleason pattern 3) in the limited area of fragment #1 (Fig. 8C). Fragment
#2-#10 were benign (non-neoplastic) lesions. The heatmap image (Fig. 8B)
showed a weakly indolent predicted tile (Fig. 8D) which was corresponded with
Gleason pattern 3 histopathology (Fig. 8C). Therefore, the false negative WSI
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classification was provided. In Fig. 8E, a few fragmented adenocarcinoma foci
with cribriform pattern which indicated aggressive pattern (Gleason pattern
4) (Fig. 8G) in a fragment (#2). The heatmap image (Fig. 8F) showed true
positive prediction of a few adenocarcinoma with low probability (Fig. 8H).
Therefore, the false negative WSI classification was provided. Both of these
WSIs (Fig. 8A, E) consist of very low volume of adenocarcinoma, which could
be the primary causes of false negatives.

3.6 Both indolent and aggressive prediction outputs of
core needle biopsy WSIs

There were 114 out of 645 WSIs in the test set (Table 1) which were predicted
as both indolent and aggressive by our model (TL-Colon poorly ADC (x20,
512) and FS + WS). After looking over these WSIs carefully, we found tenden-
cies in these WSIs which consisted of mixture of Gleason pattern 3 and Gleason
pattern 4 adenocarcinoma in degree of the borderline (cut-off 20%) between
indolent and aggressive evaluation (Fig. 1). For example, histopathologically,
small, indistinct, or fused glands (equivalent to Gleason pattern 4) adenocar-
cinoma was predominant (Fig. 9A, D, E). However, at the same time, Gleason
pattern 3 adenocarcinoma was mixed in various degrees (Fig. 9A, D, E) in
the area of Gleason pattern 4 adenocarcinoma infiltration. Importantly, in all
114 WSIs predicted as both indolent and aggressive predicted, the boundary
between Gleason pattern 3 and Gleason pattern 4 adenocarcinoma was unclear
and traditional which was confirmed retrospectively by senior pathologists.
The heatmap images of indolent (Fig. 9B) and aggressive (Fig. 9C) revealed
that to some extent, indolent (Gleason pattern 3) (Fig. 9F, H) and aggressive
(Gleason pattern 4 and 5) (Fig. 9G, I) prediction outputs were overlapped.
Therefore, the WSI prediction outputs (indolent or aggressive) were approxi-
mate values. In these WSIs, the WSI classification was selected larger value of
indolent or aggressive. If we compute ROC-AUC and log-loss based on the cri-
teria for acceptance of double label WSI classification outputs (meaning both
indolent and aggressive prediction outputs), the scores are as follows: indolent
ROC-AUC 0.956 [CI: 0.940-0.970], log-loss 0.969 [CI: 0.835-1.109]; aggressive
ROC-AUC 0.980 [CI: 0.969-0.990], log-loss 0.213 [CI: 0.167-0.264].

3.7 Inter and intra rater reliability study

To assess the inter-rater reliability of benign, indolent adenocarcinoma, and
aggressive adenocarcinoma classification on WSIs, we have selected WSI based
on our deep learning model (TL-Colon poorly ADC (x20, 512) and FS + WS)
WSI prediction outputs and consensus classification by senior pathologists.
As for true-negative cohort (25 WSIs; consensus: benign, AI predicted label:
benign), S-scores in the range of 0.90-0.95, indicating ”almost perfect agree-
ment” (Table 4). As for the true-positive indolent cohort (25 WSIs; consensus:
indolent, AI predicted label: indolent), S-scores in the range of 0.56-0.72,
indicating ”moderate to substantial agreement” (Table 4). As for the both



11

indolent and aggressive predicted cohort (25 WSIs; consensus: 13 indolent and
12 aggressive, AI predicted label: indolent & aggressive), S-scores in the range
of 0.10-0.28, indicating ”slight to fair agreement” (Table 4). As for the true-
positive aggressive cohort (25 WSIs; consensus: aggressive, AI predicted label:
aggressive),S-scores in the range of 0.48-0.81, indicating ”moderate to almost
perfect agreement” (Table 4). The inter-rater reliability study was performed
two times by randomizing a total 100 of identical WSIs with a one-month
interval between 1st and 2nd studies. The S-scores in the 2nd study were
slightly higher than 1st study and interpretations in the 2nd study were mod-
estly improved than 1st study (Table 4). As for the aggressive classification,
the S-scores in the pathologists more than 10 years experiences were higher
than pathologists less than 10 years experiences (Table 4). Overall, WSIs
which were predicted as both indolent & aggressive labels by our deep learn-
ing model (TL-Colon poorly ADC (x20, 512) and FS + WS) resulted very low
S-scores in the range of 0.10-0.28, meaning poor inter-rater reliability (agree-
ment) (Table 4) by pathologists regardless of experiences. As for the intra-rater
reliability, all 10 pathologists achieved robust weighted kappa values in the
range of 0.93-0.97, indicating ”almost perfect agreement” (Table 5. Figure 10
shows a representative example WSI of poor evaluation (diagnostic) concor-
dance among pathologists. As for the inter-rater reliability study, 5 pathologists
evaluated as indolent and 5 pathologist as aggressive in this WSI (Fig. 10A).
In Fig. 10A, there are wide variety of adenocarcinoma histopathologies. The
heatmap images show both indolent (Fig. 10B) and aggressive (Fig. 10C) pre-
dictions by our deep learning model (TL-Colon poorly ADC (x20, 512) and FS
+ WS). In Fig. 10D, Gleason pattern 3 (indicating indolent) adenocarcinoma
was predominant, which was predicted as indolent (Fig. 10E) not aggressive
(Fig. 10F). In Fig. 10G and J, Gleason pattern 3 (indicating indolent) and
Gleason pattern 4 (indicating aggressive) adenocarcinoma were mixed and it
was hard to evaluate between two labels (indolent and aggressive), which were
predicted as both indolent (Fig. 10H and K) and aggressive (Fig. 10I and L).

4 Discussion

In this study, we trained deep learning models for the classification of indolent
and aggressive prostate adenocarcinoma in core needle biopsy WSIs to make
an inference for patients’ optimum clinical interventions (active surveillance or
definitive therapy). We trained deep learning models using a combination of
transfer learning Kanavati and Tsuneki (2021b); Tsuneki and Kanavati (2021);
Tsuneki et al (2022), weakly supervised Kanavati et al (2020), and fully super-
vised Iizuka et al (2020); Kanavati et al (2021); Kanavati and Tsuneki (2021a)
learning approaches. The evaluation results on the WSI level showed no sig-
nificant differences between transfer learning and weakly supervised learning
model (TL-Colon poorly ADC (x20, 512) and WS) and transfer learning,
fully and weakly supervised learning model (TL-Colon poorly ADC (x20, 512)
and FS+WS) (Table 3). However, the results at the tile level (visualised via
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Fig. 1: The schematic diagram of classification labels for prostate adenocar-
cinoma according to clinical treatment. If the whole slide image (WSI) with
Gleason pattern 4 and 5 greater than or equal to 20% in the total area of
prostate adenocarcinoma observed by pathologists, the WSI was classified as
aggressive. On the other hand, the WSIs with Gleason pattern 4 and 5 less
than 20% in the total area of prostate adenocarcinoma were classified as indo-
lent.

All WSIs Kamachi Group Hospitals Sapporo-Kosei General Hospital total
Adenocarcinoma 718 603 1321
Benign 964 0 964
total 1682 603 2285

Consensus Kamachi Group Hospitals Sapporo-Kosei General Hospital total
Aggressive 418 372 790
Indolent 81 140 221
Benign 964 0 964
total 1463 512 1975

Training set Kamachi Group Hospitals Sapporo-Kosei General Hospital total
Aggressive 236 249 485
Indolent 24 87 111
Benign 704 0 704
total 964 336 1300

Validation set Kamachi Group Hospitals Sapporo-Kosei General Hospital total
Aggressive 5 5 10
Indolent 5 5 10
Benign 10 0 10
total 20 10 30

Test set Kamachi Group Hospitals Sapporo-Kosei General Hospital total
Aggressive 177 118 295
Indolent 52 48 100
Benign 250 0 250
total 479 166 645

Table 1: Distribution of cases in the different sets broken down by hospital
and classification.
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Fig. 2: Representative images with manually-drawn annotations for Gleason
pattern 3, 4, and 5 of adenocarcinoma. We performed annotations for well-
formed glands with intraluminal crystalloids (Gleason pattern 3) (A), large
irregular cribriform glands (Gleason pattern 4) (B), crowded fused glands
(Gleason pattern 4) (C), poorly formed small-sized glands with some lumen-
formation (Gleason pattern over 4) (D), ductal adenocarcinoma lined by
columnar cells with elongated nuclei (Gleason pattern 4) (E), and infiltrating
cords and single tumor cells without lumen formation (Gleason pattern 5) (F).
We did not annotate areas where it was difficult to determine cytologically
that the lesions were cancerous.
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Fig. 3: ROC curves with AUCs from two trained deep learning models on
the test set. (A) transfer learning (TL) model from existing colon poorly dif-
ferentiated adenocarcinoma (ADC) classification model with tile size 512 px
and magnification at x20, following weakly supervised learning using training
set with whole slide image (WSI) labeling. (B) TL model from existing colon
ADC classification model with tile size 512 px and magnification at x20, fol-
lowing fully and weakly supervised learning using training set with annotation
and WSI labeling.

Existing deep learning models ROC-AUC Log loss
Stomach ADC, AD (x10, 512) 0.768 [0.734 - 0.808] 1.443 [1.286 - 1.563]
Stomach SRCC (x10, 224) 0.787 [0.747 - 0.823] 0.858 [0.768 - 0.949]
Stomach poorly ADC (x20, 224) 0.806 [0.771 - 0.840] 0.542 [0.516 - 0.568]
Colon ADC, AD (x10, 512) 0.568 [0.518 - 0.606] 1.499 [1.371 - 1.665]
Colon poorly ADC (x20, 512) 0.889 [0.861 - 0.914] 0.415 [0.378 - 0.457]
Pancreas EUS-FNA ADC (x10, 224) 0.739 [0.703 - 0.782] 0.639 [0.596 - 0.677]
Breast IDC, DCIS (x10, 224) 0.748 [0.705 - 0.784] 1.450 [1.333 - 1.569]

Table 2: ROC-AUC and log loss results for aggressive classification on the
core needle biopsy test set using existing adenocarcinoma classification models

heatmap images), the model (TL-Colon poorly ADC (x20, 512) and FS+WS)
predicted both indolent (Gleason pattern 3) and aggressive (Gleason pattern
4 and 5) areas more precisely than weakly supervised learning model (TL-
Colon poorly ADC (x20, 512) and WS) (Fig. 4. Therefore, we have selected
the model (TL-Colon poorly ADC (x20, 512) and FS+WS) as the best model,
which achieved ROC-AUCs at 0.846 (CI: 0.813 - 0.879) (indolent) and 0.980
(CI: 0.969 - 0.990) (aggressive) (Table 3). To the best of our knowledge, this
is the first study to demonstrate the deep learning model to predict patients’
clinical interventions (active surveillance or definitive therapy) based on the
histopathological WSIs. A previously reported deep learning model achieved
ROC-AUC in the range of 0.855 (external test set) - 0.974 (internal test set)
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Fig. 4: Comparison of indolent and aggressive prediction in core needle biopsy
whole slide images (WSIs) of two trained deep learning models with and with-
out fully supervised learning ([TL-Colon poorly ADC (x20, 512) and WS] and
[TL-Colon poorly ADC (x20, 512) and FS+WS]). In (A), Gleason pattern 3
adenocarcinoma (D) was observed in all fragments. The heatmap images show
indolent prediction outputs (B, C, E, F). As compared to the weakly supervised
(WS) model (B, E), fully supervised (FS) and WS model predicted indolent
morphology (Gleason pattern 3) more precisely (F) and indolent predicted
area was almost same as pathologist’s marking with blue ink-dots. In (G), the
pathologist had missed identifying Gleason pattern 3 adenocarcinoma in (J).
WS model did not predict the presence of adenocarcinoma in the same area
(K). FS+WS model predicted precisely indolent (Gleason pattern 3) area (L).
In (M), infiltrating single cell adenocarcinoma (Gleason pattern 5) (P) was
predicted correctly as aggressive (Q) by WS model. FS+WS model predicted
infiltrating adenocarcinoma as aggressive more precisely (R). The heatmap
uses the jet color map where blue indicates low probability and red indicates
high probability.
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Fig. 5: Two representative examples of indolent and aggressive true positive
prediction outputs on whole slide images (WSIs) from core needle biopsy test
set using the model (TL-Colon poorly ADC (x20, 512) and FS+WS). In the
WSI of core needle biopsy specimen (A), histopathologically, adenocarcinoma
corresponded with Gleason score 3+3 (C) infiltrated in both #1 and #2 frag-
ments. The heatmap image (B) shows true positive indolent predictions (B,
D) which correspond respectively to H&E histopathology (C, D). Histopatho-
logically, in (E), #1 and #2 fragments were benign (non-neoplastic) lesions.
Prostate adenocarcinoma which form small fused glands (G) corresponded
with Gleason score 4+4 infiltrated in #3 and #4 fragments. The heatmap
image (F) shows true positive aggressive predictions (F, H) which correspond
respectively to H&E histopathology (E, G). The heatmap uses the jet color
map where blue indicates low probability and red indicates high probability.

for the classification of benign and Gleason grade group 1-2 vs. Gleason grade
group greater than or equal to 3 Bulten et al (2020). Our model (TL-Colon
poorly ADC (x20, 512) and FS+WS) achieved better ROC-AUC performance
in aggressive (0.980 (CI: 0.969 - 0.990)) (Table 3). These results suggest
that the approach to predict patients’ clinical interventions could potentially
achieve better deep learning model performance than the conventional Glea-
son score (grade) predicting approach. Our model (TL-Colon poorly ADC
(x20, 512) and FS+WS) predicted indolent (Gleason pattern 3) and aggressive
(Gleason pattern 4 and 5) lesions well after inspection of WSI heatmaps (Fig.
4, 5, 6). The model still had a few cases of false positive and false negative pre-
dictions (Fig. 7, 8). Our model (TL-Colon poorly ADC (x20, 512) and FS+WS)
tends to show false positive predictions of indolent lesions where the tissues
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Fig. 6: Representative true negative indolent and aggressive prediction out-
puts on a whole slide image (WSI) from core needle biopsy test set using the
model (TL-Colon poorly ADC (x20, 512) and FS+WS). Histopathologically, in
(A), all tissue fragments (#1-#13) were benign (non-neoplastic) lesions with-
out any evidence of malignancy. The heatmap image (B) shows true positive
predictions of benign and heatmap images, while (C) and (D) show true neg-
ative predictions of indolent and aggressive, respectively. The heatmap uses
the jet color map where blue indicates low probability and red indicates high
probability.

consist of atrophic glands and aggressive lesions where the tissues consist of
severe inflammatory cell infiltration (Fig. 7). Our model tends to show false
negative predictions of indolent and aggressive lesions where adenocarcinoma
tissues were limited volumes (Fig. 8).

However, a major limitation (issue) in this study is that there was wide
variability in inter-rater (observer) concordance among pathologists regard-
less of their years of experiences after becoming board certificated pathologists
(Table 4), especially on the WSIs with both indolent (Gleason pattern 3) and
aggressive (Gleason pattern 4 and 5) components mixed in various propor-
tions (Table 4 and Fig. 10) Meliti et al (2017). On such WSIs which consisted
of mixture of Gleason pattern 3 and Gleason pattern 4 adenocarcinoma in
degree of the borderline (cut-off 20%) between indolent and aggressive evalua-
tion (Fig. 1), our deep learning model (TL-Colon poorly ADC (x20, 512) and
FS+WS) tends to predict both indolent and aggressive WSI outputs (17.7%
of total WSIs in the test set) as well as pathologists (Fig. 9, 10). Indeed, there
were a certain number of WSIs with Gleason pattern 4 or Gleason pattern 5
component around 20% of total adenocarcinoma in the test set, which were
the major cause of poor concordance among pathologists and deep learning
model WSI prediction outputs with both indolent and aggressive (Fig. 10).
It has been reported that with less than 10% involvement of the core, it was
more difficult to assess in smaller foci, with only moderate agreement Sadimin
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Fig. 7: Two representative examples of indolent and aggressive false positive
prediction outputs on whole slide image (WSIs) from core needle biopsy test set
using the model (TL-Colon poorly ADC (x20, 512) and FS+WS). Histopatho-
logically, (A, C) is a prostatic hyperplasia and (E, G) is a chronic prostatitis,
both of which are benign (non-neoplastic) lesions. The heatmap image (B, D)
exhibits false positive predictions of indolent (D) where the tissue consists of
large and small dilated atrophic glands (C). The heatmap images (F, H) show
false positive predictions of aggressive (H) where the tissue consists of severe
infiltration of lymphocytes and histiocytes (G). The heatmap uses the jet color
map where blue indicates low probability and red indicates high probability.

et al (2016). Given that in a small focus only a few glands of a given pat-
tern can markedly affect the percent Gleason pattern 4, consideration should
be given to not recording percent Gleason pattern 4 in small foci of Glea-
son score 7 tumors on core needle biopsy Sadimin et al (2016). This issue
is inevitable when classifying WSIs based on percentages of adenocarcinoma
components (Gleason pattern 3, 4, 5). Moreover, there were a certain num-
ber of WSIs in which there was a marked discrepancy among pathologists as
to whether the prostate adenocarcinoma was classified as Gleason pattern 3
or Gleason pattern 4 (Fig. 10). Practically, the histopathological segregation
of Gleason pattern 3 and Gleason pattern 4 is often problematic Egevad et al
(2011); Meliti et al (2017). Currently, according to the diagnostic criteria of
Gleason pattern 4 adenocarcinoma on core needle biopsy, poorly formed glands
immediately adjacent to other well-formed glands regardless of their number
and small foci of less than or equal to 5 poorly formed glands regardless of
their location should be graded as Gleason pattern 3 Zhou et al (2015), which
would be one of the primary cause of both indolent and aggressive prediction
outputs. Moreover, in this study, instead of assigning an indolent or aggres-
sive label to each core needle biopsy specimen, we considered all specimens
on a WSI together as a single specimen Therefore, it was possible to be poor
inter-observer concordance among pathologists if total histopathological area
was too large (e.g., six or eight core specimens in a single WSI) to evaluate.
However, it can be possible to resolve the issue by specimen preparation with
one core needle biopsy specimen per glass slide (WSI) for biopsy specimens
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Fig. 8: Two representative examples of indolent and aggressive false nega-
tive prediction output on whole slide images (WSIs) from core needle biopsy
test set using the model (TL-Colon poorly ADC (x20, 512) and FS+WS).
Histopathologically, in (A), infiltration of adenocarcinoma which exhibited
Gleason pattern 3 was observed only in a limited area (C) of the #1 fragment
where pathologist marked a red ink-dot on the glass slide. There was no evi-
dence of malignancy in #2-#10 fragments (A). The heatmap image (B) show
a true positive prediction of indolent on the Gleason pattern 3 adenocarcinoma
(C) with very low probability (D). The prediction output at WSI level was
benign (B). Histopathologically, in (E), there were a few fragmented adeno-
carcinoma foci with cribriform pattern which exhibited Gleason pattern 4 (G)
in the #2 fragment. The heatmap image (F) show a true positive prediction
of aggressive on a few adenocarcinoma (G) with very low probability (H). The
prediction output at WSI level was benign (F). The heatmap uses the jet color
map where blue indicates low probability and red indicates high probability.

assuming the deep learning model prediction. Interestingly, when we compute
the model (TL-Colon poorly ADC (x20, 512) and FS+WS) performance based
on the criteria for acceptance of double label WSI classification outputs (both
indolent and aggressive), indolent ROC-AUC were increased (0.956 [CI: 0.940-
0.970]) and log-loss was decreased (0.969 [CI: 0.835-1.109]) as compared to
Table 3. The other limitation in this study is that limited generalization of the
deep learning model (TL-Colon poorly ADC (x20, 512) and FS+WS) because
training and test set were provided by the same supplier hospitals (Kamachi
Group Hospitals and Sapporo-Kosei General Hospital). Therefore, in the next
step, to verify the versatility of the model (TL-Colon poorly ADC (x20, 512)
and FS+WS), we need to perform verification study using enough number of
WSIs from diverse range of hospitals.
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TL-Colon poorly ADC (x20, 512) and WS

aggressive indolent
ROC-AUC 0.970 [0.957 - 0.981] 0.851 [0.819 - 0.885]
Log-Loss 0.410 [0.320 - 0.500] 1.133 [0.959 - 1.298]
Accuracy 0.918 [0.898 - 0.940] 0.758 [0.727 - 0.792]
Sensitivity 0.885 [0.846 - 0.920] 0.870 [0.798 - 0.933]
Specificity 0.946 [0.925 - 0.968] 0.738 [0.705 - 0.777]

TL-Colon poorly ADC (x20, 512) and FS+WS

aggressive indolent
ROC-AUC 0.980 [0.969 - 0.990] 0.846 [0.813 - 0.879]
Log-Loss 0.213 [0.160 - 0.260] 2.273 [2.012 - 2.475]
Accuracy 0.935 [0.918 - 0.957] 0.736 [0.707 - 0.772]
Sensitivity 0.946 [0.919 - 0.973] 0.900 [0.833 - 0.955]
Specificity 0.926 [0.899 - 0.955] 0.706 [0.673 - 0.750]

Table 3: ROC-AUC, log loss, accuracy, sensitivity, and specificity results for
aggressive and indolent classification on the core needle biopsy test set using
transfer learning (TL) and weakly supervised learning (WS) model (TL-Colon
poorly ADC (x20, 512) and WS) and fully and weakly supervised learning
model (TL-Colon poorly ADC (x20, 512) and FS+WS)

The main advantage of our deep learning model (TL-Colon poorly ADC
(x20, 512) and FS+WS) is that the model can predict patients’ optimum clini-
cal interventions (active surveillance: indolent or definitive therapy: aggressive)
on core needle biopsy WSIs. For most patients with low-risk (Gleason score less
than or equal to 6) prostate cancer, active surveillance is the recommended dis-
ease management strategy Chen et al (2016). At the same time, select patients
with low-volume, intermediate-risk prostate cancer (indolent in this study)
can be offered active surveillance Chen et al (2016). In routine histopathologi-
cal diagnosis for prostate cancer in core needle biopsy specimens, pathologists
have to report Gleason scores for each core for risk assessment by using micro-
scope which would be fatigue and laborious works. Moreover, it is revealed
that there are significant inter-rater variability among pathologists in diagno-
sis of prostate cancer Sadimin et al (2016); Ozkan et al (2016); Meliti et al
(2017). By using our deep learning model as an initial screening, pathologists
can check WSIs with heatmap image highlighting indolent (Gleason pattern 3)
and aggressive (Gleason pattern 4 and 5) adenocarcinoma and WSI prediction
outputs (benign, indolent, and aggressive), which would be a great benefit for
general pathologists to make diagnoses.
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weighted kappa
Pathologist-1 (< 10 yrs) 0.97
Pathologist-2 (< 10 yrs) 0.94
Pathologist-3 (< 10 yrs) 0.95
Pathologist-4 (< 10 yrs) 0.93
Pathologist-5 (< 10 yrs) 0.95
Pathologist-6 (≥ 10 yrs) 0.97
Pathologist-7 (≥ 10 yrs) 0.94
Pathologist-8 (≥ 10 yrs) 0.94
Pathologist-9 (≥ 10 yrs) 0.95
Pathologist-10 (≥ 10 yrs) 0.96

Table 5: Weighted kappa intra-rater scores for the 10 pathologists.
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Fig. 9: A representative example of a case that had both indolent and
aggressive prediction outputs on a whole slide image (WSI) from the core nee-
dle biopsy test set using the model (TL-Colon poorly ADC (x20, 512) and
FS+WS). In (A), small, indistinct, or fused glands (Gleason pattern 4) ade-
nocarcinoma was predominant; however, Gleason pattern 3 adenocarcinoma is
mixed in various degrees (D, E). The boundary between Gleason patterns 3
and 4 adenocarcinoma was unclear and transitional (D, E). The heatmap image
(B) shows indolent prediction, and (C) shows aggressive prediction. In both
(D) and (E) areas, indolent (F, H) and aggressive (G, I) prediction outputs
were overlapped. The model (TL-Colon poorly ADC (x20, 512) and FS+WS)
predicted the WSI (A) as both indolent and aggressive. The heatmap uses
the jet color map where blue indicates low probability and red indicates high
probability.
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Fig. 10: A representative example whole slide image (WSI) of poor evalua-
tion (diagnostic) concordance among pathologists. Histopathologically, in (A),
there were wide varieties of adenocarcinoma morphology. The heatmap image
(B) shows indolent prediction and (C) shows aggressive prediction. In (D),
Gleason pattern 3 adenocarcinoma was predominant, which was precisely pre-
dicted as indolent (E) but not as aggressive (F). In (G), Gleason pattern 3 and
4 adenocarcinoma were mixed, which were predicted as both indolent (H) and
aggressive (I). In (J), the majority of adenocarcinoma was mixed Gleason pat-
tern 3 and Gleason pattern 4, which were predicted as both indolent (K) and
aggressive (L). The model (TL-Colon poorly ADC (x20, 512) and FS+WS)
predicted the WSI (A) as both indolent and aggressive. The heatmap uses
the jet color map where blue indicates low probability and red indicates high
probability.
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