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Abstract 

Analysis of bone marrow aspirates (BMA) is an essential step in the diagnosis of 
hematological disorders. This analysis is usually performed based on visual examination of 
the samples under a conventional optical microscope, which involves a labor-intensive 
process, limited by clinical experience and subject to high observer variability. In this work, 
we present a comprehensive digital system that enables BMA analysis for cell type counting 
and differentiation in an efficient and objective manner. This system not only provides an 
accessible and simple method to digitize, store and analyze BMA samples remotely, but is 
also supported by an artificial intelligence (AI) pipeline that accelerates the differential cell 
counting (DCC) process and reduces inter-observer variability. It has been designed to 
integrate AI algorithms with the daily clinical routine and can be used in any regular hospital 
workflow. 

 
1. Introduction 

The analysis of Bone Marrow Aspirate (BMA) samples is a common and essential process 
for several hematological diseases (acute leukemias, plasma cell disorders, myelodysplastic 
syndromes, etc.)1,2. Every day, thousands of hematologists around the world perform BMA 
analysis, and despite current technological advances, they still heavily rely on traditional 
optical microscopes and their own clinical expertise.  

As has been stated in several studies, BMA analysis shows a high level of interobserver 
variability (either in zone selection to analyze the sample or when classifying and counting 
hematopoietic stem cell lineages)3–6. Furthermore, the International Council for 
Standardization in Haematology (ICSH) guideline for the standardization of bone marrow 
specimens and reports suggests extending the number of cells to be counted to more than 500, 
or even comparing the results with those of another sample and asking another observer to 
evaluate the sample independently, especially when a disease is suspected7. In short, the 
differential cell count (DCC) in BMA samples has proved to be a time-consuming and error-
prone procedure8 that requires a hematologist highly specialized in cytology to ensure reliable 
results9.  

So far, a quite limited number of tools and devices have been developed and validated to 
assist professionals during the DCC process and to increase their efficiency by leveraging 
artificial intelligence (AI). An extended literature review can be found in supplementary 
Table 1S.  

On the one hand, many authors have proposed the use of commercially available slide 
scanners or digital cameras attached to optical microscopes to obtain the images in order to 
train and validate AI algorithms ready to recognize and classify hematopoietic stem cells. 
Chandradevan et al.10 and Wang et al.11 have independently developed an AI algorithm based 
on whole slide images, reaching recall levels higher than 90%. Matek et al. made a 
commendable effort by digitizing with a digital camera samples from 945 patients to develop 
an AI algorithm that identifies 21 cell classes12. Su et al.13 and Wu et al.14, used as well in 
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their respective investigations a digital camera to digitize BMA samples. Tayebi et al., who 
also analyzed whole slide images, introduced an interesting concept, the so-called Histogram 
of Cell Types (HCT) quantifying bone marrow cell class probability distribution for each 
BMA sample15. Nevertheless, none of the above have considered how these tools are going to 
be implemented in an actual clinical practice that allows the interaction between the 
professional and the suggested results.  

On the other hand, other authors have proposed a specially designed system for digitizing 
BMA samples with an automatic acquisition, scanning and optical focusing of the samples, 
and for automatic analysis of cell differential counts supported by machine learning models16. 
This system has been preliminary validated on 124 samples, and good agreement was 
reported between AI-based automatic cell counting and conventional manual counting of cell 
series proportions17. 

Despite the effort to develop AI algorithms to assist BMA analysis, these previously 
proposed tools have not been widely implemented in real clinical environments due to the 
complexity, clinical workflow disruption, and the high price of the devices that allow the 
digitization of BMA samples, leaving BMA analysis as a manual, in-person, and synchronous 
process that has not been yet hit by the wave of digital transformation that has impacted other 
diagnostic tests.  

Interestingly enough, the above-mentioned problems are to some extent shared with the 
analysis of peripheral blood (PB) samples, but they have been extensively addressed on 
numerous occasions and in commercial products18,19. The main difference that justifies this 
discrepancy in available solutions is due to the difficulty of obtaining high-quality, high-
resolution images of a BMA sample which is thicker than a PB sample, with a more complex 
composition (mostly because of the presence of spikes, particles, and fat). In addition, as it 
requires scanning at 1000x magnification (or at least 400x) with immersion oil, it makes it 
more difficult to use commercial scanners that are usually employed for histology samples 
but are not valid for cytology and thicker samples like BMA smears. 

With these previous considerations in mind, as a novelty compared to previous research in 
this field, we aimed to develop and evaluate an integrated digital system to cover the entire 
process, from BMA sample digitization to DCC facilitated by human-AI interaction, using a 
conventional optical microscope, a 3D printed device, a smartphone, a mobile application, 
and a web-based telemedicine platform which integrates the analysis from AI algorithms. By 
taking advantage of this holistic digital system, it could be possible to implement the solution 
in any hematology department in the world without incorporating specific and complex 
medical electronic devices into the clinical workflow. 

2. Materials and Methods 

2.1. System 

The workflow of the AI-assisted digital DCC system is presented in Figure 1. The pipeline is 
as follows: first, the user digitizes a BMA sample using a 3D-printed microscopy arm that 
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allows attaching a smartphone with a conventional optical microscope. The user uses a 
specific mobile app and digitizes at least 20 different fields of the sample using a 100x 
objective. The acquired images are automatically uploaded through the mobile app to a web 
telemedicine platform, where are subsequently processed by an AI algorithm that 
automatically detects and differentiates all nucleated cells in the sample into six possible cell 
lineages. The user can review AI predictions and confirm or edit them in case they disagree 
with the AI model. Lastly, cell series proportions are calculated generating the DCC. 

 

 

Figure 1.      Workflow of the system, composed of three main components. (1) 
digitization, (2) AI algorithms and (3) cloud visualization platform. 

2.1.1. Digitization 

To digitize BMA samples, the system includes a 3D-printed device that allows coupling and 
aligning a smartphone’s camera with a conventional optical microscope’s eyepiece lens20. In 
this way, this device converts any optical microscope into a digital one and can be used to 
obtain digital images of BMA samples. The smartphone uses a mobile app developed to 
acquire patient metadata and which was previously customized specifically for fast, 
standardized, and easy digitization of BMA microscopy images (see Figure 2). 

Users employed this digitization system to acquire photographs of 20 microscope fields for 
each BMA sample, ensuring that more than 500 cells were digitized. All acquired images 
were uploaded from the mobile app to a web-based telemedicine platform that allowed a 
remote visualization and analysis of BMA images. Patient data such as age and previous 
diagnosis were also collected through the mobile app and transferred to the telemedicine 
platform. 

BMA samples used for training the AI algorithm were digitized using a BQ Aquaris X2 
smartphone model, while samples used for the evaluation of the entire AI-assisted digital 
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DCC system were digitized using two different smartphone models (BQ Aquaris X2 and 
Xiaomi Redmi Note 8T), to increase the variability in terms of mobile models, and reduce the 
possible bias of this variable. All images were acquired at an image resolution of 12Mpx. The 
smartphones were attached with the 3D-printed device to the ocular of a light microscope 
(Leica DM 2000 LED) and using a 100x objective (1000x total magnification). 

 

Figure 2. Sample digitization system. A: 3D-printed microscopy adapter arm that allows 
coupling a smartphone with any conventional microscope. B and C: Screenshots of the 
mobile app for standardized BMA image acquisition. The app allows collecting metadata 
associated to each BMA sample.  

2.1.2. AI algorithm 

The AI algorithm was developed for the automatic identification and differentiation of 
nucleated cells in BMA images into seven different classes: myeloid, erythroid, monocytic, 
lymphoid, blasts, plasma cells, and artifacts (cells without optimal cytologic characteristics). 
The algorithm consisted of a two-stage cell detection and lineage classification deep learning-
based model. First, it detects all nucleated cells without regard to the cell lineage. The 
detected cells are subsequently introduced into the classification model, which can 
distinguish between different cell lineage classes. 

Once an entire image representing a microscope field of view is processed by the AI 
algorithm, cell series proportions are calculated automatically for all the six lineage classes 
under study. The proportion of “artifact” class was not reported, as it has no clinical 
relevance. 

2.1.3. AI-assisted web telemedicine platform 

All acquired images with the mobile app are transferred to the cloud telemedicine platform, 
where images can be visualized in an easy-to-use dashboard, allowing scrolling, and zooming 
the images. This platform also allows image labeling, which can be used by experts to 
digitally analyze BMA samples. In addition, these manually generated labels can be used for 
training the algorithms. 
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On the other hand, the developed AI algorithm is embedded into the platform so that all 
uploaded images are processed by the model, and AI-annotations are visualized. The platform 
includes a review terminal, which is designed for experts to review results produced by the 
AI and confirm or edit AI suggestions in case they disagree with them by either re-classifying 
mis-differentiated cells in the image or by labelling new undetected cells. Comparison 
between AI predictions and reviewed classification can be performed to assess AI model 
performance and usability of the system. This process is designed to speed up the diagnosis 
process as the user only must review and modify those cells with which they disagree, rather 
than manually differentiating and counting the required 500 cells per sample. 

2.2. Study design and sample collection 

Two different datasets were collected for this study. The first one was collected for the 
development of an AI algorithm for automatic identification and classification of 
hematopoietic stem cells in BMA samples. This dataset consisted of 101 BMA randomly 
selected samples that were retrospectively extracted between 2019 and 2021 at the 
Hematology Service of the University Hospital 12 de Octubre (Madrid, Spain). The age of 
included patients ranged from 1 to 87 (mean 57.5 years old). 

Secondly, we validated the entire AI-based digital system for assisting hematologists perform 
a DCC. For this purpose, a second dataset was collected which was composed of 16 BMA 
samples that were extracted between December 2021 and February 2022 at the same center, 
with an age range from 2 to 82 years old (mean of 55.5 years). The BMA samples were 
selected considering that different hematological diseases should be represented to validate 
the algorithm. Patient characteristics of both study cohorts are shown in Table 1. 

All BMA samples were prepared according to standard protocols and using May-Grünwald-
Giemsa staining. We assessed sample preparation quality to discard those BMA samples 
without proper quality staining, insufficient lump, or those with a certain level of dysplasia.  

 

Table 1. Patient characteristics of the study cohort. 
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Ethical approval for the study was obtained from the Hospital 12 de Octubre Ethics 
Committee for Research with medicinal products (Num. Ref. 20/430). This study was 
conducted in accordance with the Declaration of Helsinki, all BMA samples used in this 
study were anonymized according to local guidelines and informed consent was obtained 
from all subjects. 

2.3. Development and training of AI algorithms 

The cell labeling process for training the AI algorithms was performed using the web-based 
telemedicine platform, where expert hematologists manually annotated individual cells using 
a point-based annotation tool by placing a label point corresponding to one of the 7 possible 
classes (6 different cell lineages and artifact class) in the center of each cell. These annotated 
images were used for training and validating the classification algorithm. Additionally, and 
for training the cell detection algorithm, cells were annotated without regard to the cell class 
by manually drawing a bounding box around all cells present in a given image (microscope 
field). Figure 3 shows an example of an annotation procedure for both cases (bounding boxes 
for training cell detection algorithm and point-based labels for training cell classification 
algorithm), which were both performed in the web telemedicine platform. 

 

 

Figure 3. Screenshots of the web telemedicine platform for image labeling. A: Manually 
placed bounding boxes around all cells in a given image for training the detection algorithm. 
B: Point-based annotations for training the classification algorithm. 

 

For training the classification algorithm, a total of 61,344 cells were identified and classified 
with one of the classes under study by a panel of 3 different hematologists (randomly selected 
from the 6 who participated in the study) according to 7 different classes: myeloid, erythroid, 
monocytic, lymphoid, blasts, plasma cells and artifact (cells without optimal cytologic 
characteristics). From these labels, and in order to train the algorithm only with those cells 
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with full agreement among observers, we discarded 4,171 cells and thus, we only used 57,173 
labels for training the algorithm, with the following distribution: myeloid (n=13,497), 
erythroid (n=7,164), monocytic (n=1,055), lymphoid (n=2,793), blasts (n=2,444), plasma 
cells (n=1,105) and artifact (n=29,115). From these 57,173 total labels, 80% was used for 
training the classification algorithm, while the remaining 20% was used for preliminary 
assessment of AI performance.  

On the other hand, a total of 13,494 cells annotated in the form of bounding boxes were used 
for training (n=4,358) and validating (n=9,136) the detection algorithm. 

The proposed algorithm for cell detection was based on the Single-Shot Detection (SSD)21 
architecture together with the MobileNet V222 backbone network. Both networks have been 
designed to be lightweight and computationally efficient, so they can be efficiently integrated 
into embedded vision systems, such as smartphones. 

The detection network detected all cells appearing in a given image (microscope field) 
without regard to the cell lineage. The detected cells were subsequently processed by a 
classification algorithm for assigning them to one of the 7 possible classes. 

Small image patches (200x200 pixels, 14.4x14.4 mm2) were extracted around the center of 
the bounding box of each detected cell, which were further classified by a Xception deep 
learning architecture23. Data augmentation including rotation, horizontal and vertical flips 
was included to make the classification algorithm robust and improve accuracy. Additionally, 
brightness, contrast and color modifications were included to mimic possible variations in 
variables such as microscope and smartphone used for sample digitization as well as possible 
variation in the sample staining procedure. No additional preprocessing step was performed 
in images to train the algorithms. 

2.4. Evaluation of the system 

For comparative purposes and to evaluate the entire AI-assisted digital DCC system, all 16 
BMA samples were analyzed in the telemedicine platform by 4 different expert 
hematologists. For each sample preparation, one hematologist performed the digital analysis 
of the sample in a blinded fashion without the assistance of the AI (i.e., labeling and 
performing the DCC from scratch), while the other three hematologists analyzed the same 
sample assisted by the AI algorithm. All hematologists were asked to analyze and count at 
least 500 nucleated cells on each aspirate smear, following international recommendations on 
the diagnosis of hematology disorders7,9. 

Hematologists who were assisted by the AI were presented with the predictions made by the 
algorithm and were asked to review each of the classified cells and re-label those incorrectly 
classified or undetected. Those hematologists who did not have the assistance of AI manually 
labeled from scratch at least 500 cells from each preparation. 

The selection of the hematologists who were assisted by the AI and those who performed the 
blinded analysis was done on a rotating basis. 
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The relative percentages of each cell series for all preparations were calculated and compared 
for both methods (digital DCC and AI-assisted DCC). 

The time needed to complete the analysis of a BMA sample when AI assistance was used, 
and when the analysis was performed in a blinded fashion was measured. Analysis times 
were compared to assess whether the AI-assisted system could reduce DCC diagnosis time. 
Additionally, as each of the BMA samples was analyzed by 4 experienced hematologists, we 
also quantified the inter-observer variability by measuring the agreement in the cell 
classification among different experts.  

Lastly, we also assessed the performance of the AI algorithm on these 16 BMA independent 
samples by comparing the AI predictions against a consensus labeling defined as the majority 
among the 4 experts for each cell. 

3. Results 

From the 61,344 cells manually identified and classified along the 101 BMA samples 
collected for algorithm development, a total of 5,144 cells were separated for preliminary 
performance evaluation (20% of the available images). Cells annotated as artifact were not 
included in this analysis. 

On the other hand, each of the 16 BMA samples for evaluating the entire system were 
analyzed by 4 different experienced hematologists. Each expert identified and classified at 
least 500 cells for each sample. Experts placed 7,840, 7,922, 7,908 and 8,375 labels 
respectively along the 16 BMA samples. From these labels, only 4,401 corresponded to the 
same cell, so that each of these cells was classified by the 4 experts, in addition to the AI 
algorithm. 

3.1. Performance of the AI algorithm 

The detection algorithm achieved a high overall accuracy for detecting BM nucleated cells in 
microscopy images, with sensitivity of 91.6% (95%CI 90.6%-92.7), and precision of 91.3% 
(95% CI 90.2%, 92.3%). 

Two data sets were used to evaluate the performance of the classification model. First, the 
performance was evaluated on the validation set (20% of the training set) which included the 
above-mentioned 5,144 cells. The algorithm was also evaluated on an independent test set 
obtained from the 16 BMA samples used for evaluating the entire system comprising 4,401 
cells classified by 4 different experts, where the ground-truth was established using the 
majority voting rule (consensus) among the 4 experts. The total validation set consisted of 
9,545 cells. Table 2 shows the average performance of the model in the total validation set as 
well as detailed performance for each cell lineage class for both validation sets 
independently. The confusion matrix for the total validation set (9,545 cells) is shown in 
Figure 4. The overall accuracy was 92.97%, although it is worth noting the decrease in 
performance in those classes with fewer training images, such as monocytic and plasma cells. 
However, this fact is easily remedied by increasing the number of training images for these 
classes. 
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Table 2. Performance of the AI algorithm for detecting and classifying cells in BMA 
samples. N: number of cells used for evaluating the performance.  

 

 

Figure 4. Performance evaluation of the AI algorithm. Confusion matrix comparing 
ground truth and AI predictions. 

3.2. Evaluation of the system 

3.2.1. Interobserver variability 

BMA analysis presents a high level of interobserver variability when differentiating 
hematopoietic stem cell lineages. Cohen’s kappa score was used to evaluate interobserver 
agreement in the classification of cell lineages. The agreement was performed on the 4,401 
BM cells annotated by 4 experts. Table 3 presents the kappa results for all pairs of the 
observers as well as for the agreement between each observer and the AI predictions. Mean 
interobserver agreement was 0.895. Similar agreement was found when comparing experts 
and AI predictions, with a mean kappa score of 0.871. 
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Table 3. Cohen’s kappa score representing interobserver agreement and agreement between 
observers and AI predictions. 

On the other hand, and to assess whether the assistance of the AI can reduce the interobserver 
variability among hematologists when analyzing BMA samples, we have computed 
interobserver agreement on those samples that were analyzed in a blinded fashion, as well as 
on samples where hematologists were assisted by the AI. Table 4 shows the comparison 
between both interobserver agreement values (blinded and AI-assisted analysis) and, as it can 
be seen, interobserver agreement is considerably increased when AI is used, from 0.88 to 
0.93. The difference in interobserver agreement between both methods is statistically 
significant (p-value<0.0001). 

 

Table 4. Interobserver agreement when BMA samples are analyzed in a blinded fashion (left) 
and when hematologists are assisted by AI (right). 

3.2.2. Analysis time 

To assess whether the AI assistance can reduce analysis time, we have measured the time 
needed to complete a BMA analysis when users were assisted by AI and when they had to 
perform the analysis from scratch (i.e., without the assistance of AI). 

Table 5 summarizes the average time needed to analyze a single cell for each of the 4 
involved hematologists, as well as the time needed to complete an entire BMA analysis, 
which usually comprises the identification of at least 500 cells. As derived from the table, it is 
shown that when users used the AI assistance, the analysis time was reduced by a factor of 
18.75%. 
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Table 5. Comparison of the time needed to complete an analysis of a single cell (left) and a 
whole BMA sample (right) when the user used the AI assistance and when the analysis was 
performed in a blinded fashion. Note: mm: minutes; s/ss: seconds. 

3.2.3. Usability assessment  

As part of the objectives of this work, we wanted to evaluate the usability of the proposed AI-
assisted digital DCC system. For this purpose, we designed an anonymized usability survey 
that was completed by the four hematologists who used the proposed system. The participants 
showed a high level of satisfaction in using the system (average score of 4.59 out of 5) and 
considered it a useful tool in their daily work. Additionally, the results derived from the 
usability survey show that the automatic hematopoietic stem cell lineage percentages 
predicted by the AI algorithm were sufficiently reliable, even though some cells were 
misclassified and had to be modified in the review process. 

4. Conclusions and discussion 

We have presented a digital system that allows counting cell types from BMAs. The 
proposed system not only provides an accessible and simple way to digitize, store and label 
BMAs remotely but also is supported by an AI pipeline which speeds up the time required for 
the analysis and reduces the interobserver variability. It proposes therefore a very concrete 
analysis workflow which integrates the AI algorithm with the clinical practice in a regular 
hospital workflow. 

Digitizing BMAs has some direct implications as it is possible to easily examine the samples 
remotely, to share it for second opinions or to analyze samples from the same patient over 
time. Furthermore, it allows precise quantitative analysis and research of cell types and 
morphologies, as well as to test new clinical hypotheses. Some clinical interpretations 
(clinical remissions and response to treatment) rely on an expert analysis of a limited number 
of fields or cells and with the proposed system working in an optimized manner it will be 
possible to analyze a higher number of cells without increasing the time of analysis, hence 
being able to measure with more precision. 

The study presented in this work has required the creation of an extensive database for 
training an algorithm able to classify different cell types. It is worth mentioning that all the 
samples used come from one single hospital, and though the bias depending on sample 
preparation is limited, a further multi-centric validation is suggested to understand the bias 
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introduced by variability of the preparation. It is also worth pointing out that the digitization 
process enabled by mobile phones has standardized acquisition parameters available in any 
android smartphone and results in no difference between smartphones. 

Digitalization based on a smartphone without the requirement of scanners and complex 
equipment lowers barriers to scale all the benefits of digitalization of BMAs including 
accuracy, possibility to share and do remote analysis and reproducibility. 

Once data is digitized and considering real life systems that go beyond AI algorithms that 
work in isolation, we show a system with all the required components: in this case not only a 
two-stage algorithm, but a visualization and interaction tool to integrate human and AI 
support. The current challenge of AI in the medical field has to do with the integration of AI 
systems in the clinical workflows and for this purpose technologists should design systems 
that optimize clinical outcomes, being multidisciplinary projects by nature. 

Future work includes improving accuracy of the AI pipeline, including new cell types, adding 
other biomarkers and the unsupervised discovery of relevant patterns and cell morphologies 
correlated with other types of analysis including genetic data. From a technical perspective, 
we could foresee an algorithm with higher levels of precision—that is just a question of 
enough training data— allowing almost fully automated counting. Further research in ways to 
integrate such knowledge and human-AI feedback loops will be required. From cell counting 
to disease prediction, digitalization can be key to unlock a big potential for hematology. 
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