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Abstract

Background: On March 11, 2020, WHO announced that the COVID-
19 epidemic had passed the pandemic stage, indicating its spread over
several continents. Tunisia’s containment and targeted screening strat-
egy corresponded to the first WHO guidelines. Since then, public health
policy has been more flexible and focused on the management of hospital
beds.

Objective: Our aims are to analyze bed occupancies for public hospi-
tals and time delay reponse from the health care system in regard to the
epidemiological situation.

Methods: We have analyzed the evolution of daily cases in relation
to the different NPI actions undertaken by the Tunisian Government be-
tween March 2019 and February 2022 using the CoMo model. We have
also studied the flexibility of the O2 and ICU public hospital bed oc-
cupancies. We have used three distinct indices to assess this flexibility:
the Ramp Duration Until the Peak (RDUP), which measures the du-
ration of the wave/bed allocation effort. The Ramp Growth Until the
Peak (RGUP), measures the peak height, and Ramp Rate Until the Peak
(RRUP) measures the growth rate of the wave. Also, in order to evaluate
the government response efficacy, we have calculated the time delay at
the start (resp. at peak) of each two waves.

Results:

1. The evolution of the epidemic in Tunisia was divided into two phases,
the first of which corresponded to the initial wave, during which the
pandemic was controlled due to very strong NPI actions. The second
phase was distinguished by a progressive relaxation of measures and
an increase in wave intensity.

2. ICU bed availability has followed the demand for beds, while ICU
bed occupancy has always been higher than 85% with a maximum
of 97%.

3. In terms of bed distribution, the government’s response was slow
(9.4 days for the 02 beds and 18.2 days for the ICU beds). The
same may be said for the reaction in terms of bed reallocation in the
original departments (16 days for ICU beds and 10.6 days for O2
beds)..

Conclusion: We were able to examine the responsiveness of the system
as a whole for all of Tunisia’s public hospitals by measuring the flexibility
and bed margin. With this research, decision makers will be able to assess
their response capabilities in the event of current pandemic, as well as a
future one.

1 Introduction

On 30 January 2020, COVID-19 was retained by the World health orga-
nization (WHO) as a public health emergency of international concern;
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and WHO announced the pandemic threat on March 11, 2020, ((Sohrabi
et al., 2020; WHO, 2020)).

In Tunisia, the first COVID-19 wave appear on March 2, 2020, fol-
lowed by several implemented preventive measures to reduce transmission
levels among the population. These measures included mask use, physi-
cal distancing, school and university closures, sports and cultural events
ban, borders closure, targeted screening, and finally a national lockdown
announced on March 22, 2020, ((Ouchetto et al., 2020)). However, in
July 2020, Non-pharmaceutical interventions (NPI) measures have been
significantly reduced. This resulted in more intense waves beginning in
October 2020, forcing the Tunisian Ministry of Health to respond rapidly
by strengthening its resources, particularly in terms of hospital manage-
ment.

In these conditions, better healthcare administration becomes a cru-
cial concern Didier ((2016)). Flexibility in hospital bed management, in
particular, has become critical in treating patients with severe and/or
serious COVID-19 infections ((Bekker et al., 2017)).

The goal of this study is to describe the COVID-19 situation between
July 2020 and February 2022, by using the data from the Facebook coro-
navirus survey 1, Health Metric Data2 and using newspaper investigation.
We also investigate hospital bed occupancies (beds for patients who re-
quire oxygen / ICU beds) at the national level. On the other hand, a
mathematical index was developed and used to analyze the time delay
between daily cases and mortality, as well as bed occupancy.

In section 2, we go over the databases used in this study, as well as the
methodology and tools used to analyze the data. We present our main
results in section 3 which we discuss in section 4. Finally, in section 5 a
conclusion is presented.

2 Materials and methods

2.1 Data collection method

2.1.1 Bed occupancy data

Bed occupancy was obtained for public Tunisian hospitals based on data
from the COVID-19 SHOC Room (Strategic Health Operations Center
Room) (SR) and the Ministry of Health’s Computer Centre (CIMS). The
goal of the SR was to collect daily data from hospitals, communicate
with them to filter and debug mistakes, and illustrate the results. The
data was collected daily using a spreadsheet from 168 hospitals located
throughout Tunisia’s 24 regions. The CIMS is in charge of running the
administrative management system for admissions and exits in hospitals
with an IT management system. Specifically, the 168 hospitals in the SR
database.

Collected data ranked hospital beds ( i.e. beds that had all the equip-
ment and personnel necessary for their function) according to two large

1https://dataforgood.facebook.com/
2https://www.healthdata.org/covid/

4

 . CC-BY-NC-ND 4.0 International licenseIt is made available under a 
 is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity. (which was not certified by peer review)

The copyright holder for this preprint this version posted August 25, 2022. ; https://doi.org/10.1101/2022.08.23.22279122doi: medRxiv preprint 

https://doi.org/10.1101/2022.08.23.22279122
http://creativecommons.org/licenses/by-nc-nd/4.0/


(a) Bed distribution (b) Boxplot for occupied beds

Figure 1: Distribution of hospital beds by bed type: O2/ICU beds dedi-
cated/occupied

groups, ICU beds, and non-ICU beds called here O2 beds; ICU beds
are used in intensive care units (ICUs) to treat patients with serious or
life-threatening illnesses and traumas. ICUs differ from ordinary hospital
wards in that they have a higher staff-to-patient ratio and have access
to advanced medical resources and equipment not commonly found else-
where. The beds assigned to each group were further subdivided into
available beds, occupied beds (beds that were occupied by inpatients),
and unoccupied beds ( i.e. , available beds that were not occupied).

For our analysis, we collected the following daily reported data stream:
(i) The SR database contains data on O2 dedicated beds, O2 occupied
beds, O2 available beds, ICU dedicated beds, ICU occupied beds and ICU
available beds. (ii) The CIMS database that contains data on admissions
and exits date for each COVID-19 patient, the hospital unit of entrance
and exit, and its status at existing ( i.e. death or not). Both SR and
CIMS databases cover the period from September 2020 to the end of
February 2022. The data have been cured and aggregated at the national
level. Database is included in the appendix B and available at github :
https://github.com/slimane66/bedOccupancyTunisia.git.

During this period the mean occupied 02 bed was 972 and the mean
occupied ICU bed was 240 (see figures 1 and table 1).

Table 1: Average, min and max Bed occupancy

O2 ICU
average min max average min max

Occupancy 42% 2% 90% 66% 10% 97%
Date 18/11/2021 07/07/2021 11/11/2021 26/07/2021
Dedicated 2175 2410 2602 359 361 544
Occupaied 972 61 2367 240 37 528

In the remainder of the document, we will use the term bed curves or
bad waves for curves and waves relating to data on allocated or occupied
beds ICU or O2.
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Since both the epidemiological and bed occupancy data are noisy, we
smoothed them using a linear convolution one dimension kernel, Box1DKernel(N)
with N = 7 days from astropy.convolution((Robitaille et al., 2013)) library
on Python 3 ((Van Rossum and Drake, 2009)).

2.2 Data analysis methodology

2.2.1 Bed occupancy and flexibility

According to Green and V. ((2002)), the ideas of bed occupancy and flex-
ibility were utilized to study the reaction of bed demand. Bed occupancy
is defined as the ratio of occupied beds to the total number of allocated
COVID-19 beds.

To analyze bed occupancy during the epidemy, we suggest three dis-
tinct indices to assess its flexibility: the Ramp Duration Until the Peak
(RDUP), which measures the duration of the wave/bed allocation ef-
fort. The Ramp Growth Until the Peak (RGUP), which measures the
peak height, and Ramp Rate Until the Peak (RRUP) which measures the
growth rate of the wave ( i.e. RRUP = RGUP

RDUP
) (see figure 8 in supple-

mentary material). In the case of bed allocation curves, RRUP measure
the intensity of the bed allocation effort.

The RDUP can be easily computed from the difference between the
time where the peak is reached tp and the starting time of the increase of
the wave ( i.e. the start of the wave), t0. RDUP corresponds to the time
to reach the curve peak. In the same way, the RGUP can be obtained
from the difference between the number of available beds at the peak np

and at the starting time of the increase in the demand n0.
To match different waves, we also calculate the time delay at the start

(resp. at peak) of each two wave (see figure 9 in supplementary material).

Estimation the wave start and the peak The classical definition
of the start of an epidemiological wave involves the evaluation of the effec-
tive reproduction number, Rt, defined as the average number of secondary
cases per infectious case in a population made up of both susceptible and
non-susceptible hosts ((Lash et al., 2020)).

Regardless of the classical definition of the effective reproduction num-
ber, Rt, its utility stems from the fact that it reveals the curve’s exponen-
tial growth. To be more specific, if Rt > 1, the curve grows exponentially,
whereas if Rt < 1, the curve shrinks to zero. As a result, the wave’s
beginning and peak correspond to the time when Rt = 1. ((Diekmann
et al., 1990)).

Thus, we estimate the start of a wave as the time, t0, when Rt0 = 1
while increasing in a neighborhood of t0. Similarly the peak corresponds
to the time, tp, for which Rtp = 1 while decreasing in a neighborhood of
tp.

When applied to bed occupancy data, similarly to an epidemiological
curve, Rt evaluates the exponential growth of the bed occupancy data
curve. To avoid any misunderstanding, we’ll refer to it as a ’gradient
like index,’ or Gt. Therefore, we define the wave period using Rt or Gt
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depending on the data type, daily cases or bed occupancy. We computed
Rt and Gt using ((Cori et al., 2013)).

2.3 Mathematical modelling

2.3.1 Model description

We adapted the CoMo model ((Aguas et al., 2020)) to simulate the spread
of SARS-CoV2 in the context of NPIs measures and vaccination strategies.
The CoMo model is a dynamic SEIRS (Susceptible-Exposed-Infected-
Recovered-Susceptible) model. It is an age-structured SEIRS model with
infected compartments stratified by symptoms, severity, treatment-seeking,
and hospital access (see figure 10).

The description of the variables used and a list with all parameters
included in the full model are given in the supplementary material.

2.3.2 Model calibration

The CoMo model was adapted to the Tunisian context using daily cases
and mortality data, demographic data from the National Agency for
Statistics of Tunisia3, information on the different types of NPI inter-
vention measures carried out ( e.g. school closer, social distance, interna-
tional travel ban, mask-wearing, . . . ) and parameters on hospitalizations
and vaccination in Tunisia (see supplementary material).

Non-pharmaceutical interventions (NPI) measures were collected from
Facebook coronavirus survey, Health Metric Data, and using newspaper
investigation.

For further exploration of NPI effectiveness, we compared the time-
line of NPI implementation with an external data source, the Oxford
COVID-19 Government Response Stringency index Hale et al. ((2020)),
a quantitative measure of the strictness of government policies regulating
population behavior.

Daily cases and deaths were collected from the Official COVID-19
report from WHO database4.

The model was calibrated using the epidemic data in Tunisia between
September 15, 2020, and February 15, 2022, and tested through June
2022. Parameters that could not be evaluated were estimated by the
optimal model fit to epidemiological data.

3 Results

3.1 Reconstruction of the epidemy history in Tunisia

From March 2020 to February 2022, Tunisia had six pandemic waves. The
first one was held from March to June 2020, the second from September to
October 2020, and the third from December to January 2021. The histor-
ical variant was the most common virus during the first three waves. The

3http://www.ins.tn/
4https://covid19.who.int/
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alpha variant caused the fourth wave, which occurred between March and
May. The delta variant generated the fifth wave, which occurred between
July and August. The Omicron variant produced the last wave, which
lasted from December 2021 to January 2022 (see figure 2 and supplemen-
tary database) 5. These six waves were becoming increasingly large.

By march, 28th, 2022, a total of 1, 033, 731 confirmed cases and 28, 165
deaths due to COVID- 19 were recorded.

The Oxford Stringency Index showed the first phase of growth from
March to June 2020, followed by a second phase from October 2020 (see
figures 3). Since then, the Oxford Stringency Index has been rather sta-
ble, ranging between 60 and 100 % during school holidays. Furthermore,
except for the first and second waves, no variation in the stringency index
occurs before the epidemic’s peak. For example, during the second wave, a
12-hour curfew was imposed at the peak. The decline of this second wave
appears to have been caused by regional NPI efforts between September
and October 2020, as well as an increase in mask-wearing (see figure 3).

To understand the response to the NPI actions, we plotted IHME
mobility composite between October 2020 and February 2022 (see figure
3). We observe that after a decrease in the mobility index between March
and September 2020, the mobility index began to increase and turn to
be positive from May 2021. From that date on, people’s mobility was
higher than in previous years. Therefore, NPI decisions undertaken by
the government to limit movement had a limited effect, and even from
May 2021, these decisions had almost no effect.

During the second wave, between August and October 2020, the mask-
wearing curve shows a significant increase. It was followed by a period
of little change in the values (< 20%) until September 2021. During
the start of the wave, we observe an increase in both mask use and the
number of responses to the inquiry. It’s worth noting that the number
of participants in the questionnaire has decreased significantly since the
fourth wave, which could skew the results starting in July 2021.

To better understand the effect of the actions taken, we simulated
the NPI actions using the CoMo model. We then evaluated the outcome
of the NPI measures by minimizing the model output with the observed
epidemiological data ( e.g. daily cases and daily deaths). The simulation
of the daily cases and daily deaths showed that the model accurately
depicts the observed data (see figure 10).

We then calculated the Oxford Stringency Index on the NPI action
used to calibrate the model (figure 3).

3.2 Bed occupancy analysis

From March 2020 to February 2022, the average occupancy for the ICU
beds was 75% (273 occupied beds) and the average occupancy for the O2
bed was 50% (1134 occupied beds) (see table 1). The maximum occupancy
occur on July 26, 2021, with 97% occupancy of ICU beds and 90% for O2
beds on July 7, 2021.

5https://nextstrain.org/ncov/
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(a) Daily cases

(b) Daily deaths

(c) Variant by time

Figure 2: Daily cases, daily deaths with their corresponding Rt and variant
proportion from Mars 2019 to February 2022. The grey areas correspond to the
different waves. We observe, that the waves have been more and more intens.
Variant figure taken from nextstrain.org/sars-cov-2((Hadfield et al., 2018))
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Figure 3: Evolution of COVID19 in Tunisia. From the top to buttom: (1)
Daily confirmed case incidence across Tunisia. (2) Facebook coronavirus mask
wearing survey. (3) The mobility index. (4) The Oxford NPI stringency index
and stringency index calculate with NPI values used in the CoMo model. We
observe, that the NPI measures have been less and less followed despite strong
NPI decisions.
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Similarly to the epidemiological curves, six waves were seen for O2
and ICU beds of various intensities (see figures 4a and 4b). Note that, for
dedicated beds, the third and fourth waves were nearly identical. More-
over, until August, the number of dedicated beds continued to increase
and did not change as much as the occupied bed curves. These two events
highlight the government’s continued attempts to distribute beds.

The occupancy of ICU beds shows little change and stays near to 80%
except for the third and fourth waves, when it exceeds 90%, indicating
that ICU services remained under pressure during the four first waves
(see figures 4d), even though it has been able to adapt to the increasing
severity of the epidemic.

In contrast to the ICU bed, the O2 bed occupancy curve oscillates and
ranged around 50%, except for the third and notably the fourth waves,
where it reached a maximum of 90% on July 7, 2020 (see figures 4c ).

We observe that occupancy at the start of the occupied bed wave was
less than at the start of the dedicated bed for O2 beds. It was, however,
roughly equal for ICU beds (see figure 4d). This discrepancy may be
explained by the fact that ICU bed distribution during waves is based on
demand with a quick response.

This observation is also supported by an evaluation of the time lag
between the start of the waves of occupied and dedicated beds. Indeed,
we find that the average time delay for ICU beds is 11.4 days (standard
deviation = 15.7), with a maximum of 31 days for the wave 5. The reason
for the long time delay is that the rate of bed growth in wave 5 was
slow(see figure 7d). The wave 3-time delay lasted 18 days.

The average time delay between occupied et allocated O2 beds was
22.75 days (standard deviation = 7.5), with a maximum of 33 days for
wave 2.

We also plotted the occupancy at the start of each wave, and for O2
and ICU beds (see figures 4c and 4d). We found that the occupancy at
the start of the allocated bed waves was higher than the occupancy at the
start of the occupied bed waves, especially for O2 beds. This demonstrates
a time delay in bed re-allocation, particularly for O2 beds (see figures 5
and 6a). However, the difference in occupancy at the start of the two ICU
bed waves (allocated and occupied beds) is small, except for the third
wave, where it is 70% versus 90%.

We then analysed the difference in the peak times (see figures 5 and
6b. The order of appearance of the peak waves appears to be as follows:
daily case, daily death (with an average time delay of 14.4 days, std=8),
occupied ICU beds (with an average time delay of 14.6 days, std=6.8),
occupied O2 (with an average time delay of 121.8 days, std=16.3), dedi-
cated ICU bed (with an average time delay of 31.6 days, std=17) It should
be highlighted that the difference between daily death and ICU occupied,
as well as dedicated beds, is extremely small (see figure 6b).

Furthermore, it appears that beds are still being allocated after the
peak of occupancy, which lasts an average of 10.6 days (std=15) for ICU
beds and 17 days (std=18.6) for O2 beds. The maximum time delay for
ICU was observed for wave 3 where the time delay was 36 days at the
pick, For O2 bed, we found that during wave 3, O2 beds continue to be
allocated 43 days after the peak of the occupied bed’s wave (see figure
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Figure 5: Time distribution of the different waves for daily cases, daily deaths
and occupied and dedicated beds

time (in day)

Daily cases
•

1 (8.7)

Daily death
•

2.4 (6.2)

Occ. ICU
•

12.4 (11.1)

Occ. O2
•

20.6 (14.9)

Alloc. ICU
•

21.8 (16.19)

Alloc. O2
•

(a) Time delay at the start

time (in day)

Daily cases
•

14.4 (8.0)

Daily death
•

14.6 (6.8)

Occ. ICU
•

21.8 (16.3)

Occ. O2
•

31.6 (17.6)

Alloc. ICU
•

32.4 (18)

Alloc. O2
•

(b) Time delay at peak

Figure 6: Mean delay and std at the start the peak by waves for for daily death,
allocated and dedicated O2 and ICUbeds. The delay is calculated relatively to
daily cases curves.
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6b).
For all waves, we observe that the peak of deaths occurs before the

peak of ICU bed occupancy. This mismatch might be caused by patient
bed occupancy periods or by a carry-over of deaths from the previous
wave to the beginning of the new wave. However, the mean time spent
in ICU is 7.33 days (ssd=5.88 ) for dead and 6.83 days (ssd=5.45) for
recovery and therefore, cannot explain this discrepancy. An alternative
could be the large values of standard deviation, 5.88 days for death and
5.45 days for recovery. Another explanation could be the high number of
death occurring outside the hospital.

To investigate the duration and strength of each wave, we studied the
evolution of the Ramp Duration Until the Peak (RDUP) and the Ramp
Rate Until the Peak (RRUP).

Except for waves 1 and 3 for O2 beds, the RDUP for beds occupied
was longer than the allocated beds (see figure 7). Furthermore, except for
wave 5, we found the RRUP was higher for occupied beds.

In the example of the occupied O2 bed, we can see that it rapidly
increases during wave 4 (RDUP=58 days and a massive RRUP=29.8).
Furthermore, wave 3 exhibits rapid growth (RRUP= 27.5) during a short
length of time (RDUP=36 days). The dedicated bed, on the other hand,
has developed slowly and gradually.

For ICU beds, occupied has had rapid growth in a short time. Dedi-
cated beds, on the other hand, display slower growth over a longer period
(except for wave 5). The higher increase was done for wave 3 and for where
RRUP= 4.1 (RDUP=47 days) for wave 4 and 3.8 for wave 3(RDUP=36
days).

In a short time, the number of ICU beds occupied has increased
rapidly. Dedicated beds, on the other hand, exhibit slower growth over
a longer length of time (except for wave 5). The larger increase was per-
formed for wave 3 where RRUP= 4.1 (RDUP=47 days) and for wave 4
where RRUP= 3.8 (RDUP=36 days).

4 Discussion

The analysis of COVID-19 healthcare data has revealed an opportunity
to better understand healthcare performance in stressful circumstances.
We were able to assess the overall responsiveness of the Tunisian public
hospital system by assessing flexibility and bed margin. Decision makers
will be able to assess their response capabilities in the case of a current
pandemic thanks to this research.

Decision-makers in public health should respond, especially in emer-
gencies where the system is forced to manage critical and urgent risk
((Didier, 2016)). This is accomplished through the proactive deployment
of NPI measures such as curfews, lockdowns, masking requirements, or
school and administrative closures to avoid or lessen dangers.

These decisions are frequently influenced by financial restrictions. For
example, during the first wave in Tunisia between March and June 2020,
rigorous confinement for three weeks was implemented. As a result of
these steps, the number of instances has decreased. However, these mea-
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(a) radar O2 RDUP (b) radar O2 RRUP

(c) radar ICU RDUP (d) radar ICU RRUP

Figure 7: Ramp Duration Until the Peak (RDUP) and Ramp Rate Until the
Peak (RRUP) for the five waves. On observe que les vague 3 et 4 ont ete les
plus intense pour les lit occupé (see figures 7b and 7d). Par contre les vague des
lits alloué ete plus longue mais moins intenses (see figures 7a and 7c).
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sures resulted in a drop of at least 4.4 percent of GDP and a 21.6 percent
unemployment rate, according to UNDP ((2020)).

Economic constraints force developing countries, such as Tunisia, to
choose between two approaches to crisis management: an economically
costly strategy targeted at minimizing deaths or a policy aimed at avoiding
excess deaths owing to health-system saturation.

Tunisia, beginning in July 2020, seems to be characterized by incen-
tives aimed at avoiding hospital overcrowding. Apart from school closure
decisions, we found in our study that required NPI decisions were poorly
implemented and frequently time delayed. During the same period, we
noticed that people were aware of the severity of the epidemic by tak-
ing precautionary measures such as wearing masks. This was most clear
during the second wave, between September and October 2020, when the
decision to implement a nationwide lockdown was made after the epidemi-
ological peak. During this same period, we observed a significant increase
in the use of masks among individuals.

During a health crisis, the decision-maker must determine when, how
much, and where to commit the necessary resources to manage the epidemic-
resources are either human (human resources reallocated from one service
to another) or material (bed allocations to COVID-19). The choice is ad-
ditionally hampered by the lack of knowledge on (i) the current and future
state of the epidemic, and (ii) the health system’s reactivity in terms of
the time delay in executing the remedies decided upon Tabuteau ((2008)).

We found a negative time delay between occupancy and assigned beds
at the start of the waves, as well as a positive time delay at the peak. This
implies that the authorities kept allocating beds long after the peak of the
occupied bed wave had passed. These time delays were most obvious for
O2 beds and during peak times. This sustained effort contributed to
reducing pressure during the second and, especially, fourth waves, when
the rate of increase in O2 beds and ICU was substantially slower than the
rate of increase in daily patients. Furthermore, the overlap in allocated
beds between the third and fourth waves may be explained by the fact
that these two epidemiological waves were close together, with the third
wave’s peak of daily cases on April 19 and the start of the fourth wave on
May 15.

Moreover, we observe that the higher occupancy of ICU beds at the
beginning of each wave has likely resulted in a quicker rate of ICU bed
allocation (mean 4.0 days, std=9.48) compared to O2 beds O2 beds (mean
17.25 days, std=13.72). This discrepancy in time delay might be explained
by the fact that decisions were made primarily based on bed occupancy
rather than a wave start evaluation.

Such time delays could be the result of a precautionary principle based
on a lack of information or trust in data on the evolution of the epidemic.

5 Conclusion

By comparing the NPI activities performed and the response in terms of
daily detection cases, we were able to recreate the history of the evolution
of the epidemic in Tunisia. We discovered that, except for the first wave,
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the NPI activities were poorly implemented, despite the importance of
the decisions made. This failure to follow the constraints, along with the
presence of increasingly contagious variations, allowed for the creation of
larger waves.

The analysis of bed occupancy revealed that there was a delay in the
allocation of new beds at the start of the pandemic, as well as in the
reallocation of beds at the peak. At its peak, this delay was more than 30
days on average for O2 and ICU allotted beds. These delays demonstrate
the health system’s slow response to the epidemic’s progression at the
start of the waves and prudence at the peak.

As a perspective, the information presented here could be useful in
comparing how effective different health care systems are at responding
to pandemics in terms of response time, particularly between developed
and developing countries.
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Figure 8: Flexibility index description: Ramp Duration Until the Peak (RDUP),
Ramp Growth Until the Peak (RGUP) and the Ramp Rate Until the Peak
(RRUP).

Figure 9: Time delay between two waves.

Figure 10: Coceptual view of the CoMo Model.
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Figure 11: Daily cases: data and fitted curve. Data was fitted using a linear
convolution one dimension kernel, Box1DKernel(N) with N = 7 days.
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Figure 14: Linear regression between ICU bed occupancies and daily death
for wave 2,3,4 and 5. The intercept is respectivley 0.56∗∗0.42∗∗, 0.33∗∗, 0.08∗∗

(R2 = 0.34, 0.74, 0.465, 0.387)

23

 . CC-BY-NC-ND 4.0 International licenseIt is made available under a 
 is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity. (which was not certified by peer review)

The copyright holder for this preprint this version posted August 25, 2022. ; https://doi.org/10.1101/2022.08.23.22279122doi: medRxiv preprint 

https://doi.org/10.1101/2022.08.23.22279122
http://creativecommons.org/licenses/by-nc-nd/4.0/

