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Abstract: Since the US reported its first COVID-19 case on January 21, 2020, the science 
community has been applying various techniques to forecast incident cases and deaths. To date, 
providing an accurate and robust forecast at a high spatial resolution has proved challenging, even 
in the short term. Here we present a novel multi-stage deep learning model to forecast the number 
of COVID-19 cases and deaths for each US state at a weekly level for a forecast horizon of 1 to 4 
weeks. The model is heavily data driven, and relies on epidemiological, mobility, survey, climate, 
and demographic. We further present results from a case study that incorporates SARS-CoV-2 
genomic data (i.e. variant cases) to demonstrate the value of incorporating variant cases data into 
model forecast tools. We implement a rigorous and robust evaluation of our model – specifically 
we report on weekly performance over a one-year period based on multiple error metrics, and 
explicitly assess how our model performance varies over space, chronological time, and different 
outbreak phases. The proposed model is shown to consistently outperform the CDC ensemble 
model for all evaluation metrics in multiple spatiotemporal settings, especially for the longer-term 
(3 and 4 weeks ahead) forecast horizon. Our case study also highlights the potential value of virus 
genomic data for use in short-term forecasting to identify forthcoming surges driven by new 
variants. Based on our findings, the proposed forecasting framework improves upon the available 
forecasting tools currently used to support public health decision making with respect to COVID-
19 risk. 
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Research in context 
 
Evidence before this study 
A systematic review of the COVID-19 forecasting and the EPIFORGE 2020 guidelines reveal the 
lack of consistency, reproducibility, comparability, and quality in the current COVID-19 
forecasting literature. To provide an updated survey of the literature, we carried out our literature 
search on Google Scholar, PubMed, and medRxi, using the terms “Covid-19,” “SARS-CoV-2,” 
“coronavirus,” “short-term,” “forecasting,” and “genomic surveillance.” Although the literature 
includes a significant number of papers, it remains lacking with respect to rigorous model 
evaluation, interpretability and translation. Furthermore, while SARS-CoV-2 genomic 
surveillance is emerging as a vital necessity to fight COVID-19 (i.e. wastewater sampling and 
airport screening), to our knowledge, no published forecasting model has illustrated the value of 
virus genomic data for informing future outbreaks. 
 
Added value of this study 
We propose a multi-stage deep learning model to forecast COVID-19 cases and deaths with a 
horizon window of four weeks. The data driven model relies on a comprehensive set of input 
features, including epidemiological, mobility, behavioral survey, climate, and demographic. We 
present a robust evaluation framework to systematically assess the model performance over a one-
year time span, and using multiple error metrics. This rigorous evaluation framework reveals how 
the predictive accuracy varies over chronological time, space, and outbreak phase. Further, a 
comparative analysis against the CDC ensemble, the best performing model in the COVID-19 
ForecastHub, shows the model to consistently outperform the CDC ensemble for all evaluation 
metrics in multiple spatiotemporal settings, especially for the longer forecasting windows. We also 
conduct a feature analysis, and show that the role of explanatory features changes over time. 
Specifically, we note a changing role of climate variables on model performance in the latter half 
of the study period. Lastly, we present a case study that reveals how incorporating SARS-CoV-2 
genomic surveillance data may improve forecasting accuracy compared to a model without variant 
cases data. 
 
Implications of all the available evidence 
Results from the robust evaluation analysis highlight extreme model performance variability over 
time and space, and suggest that forecasting models should be accompanied with specifications on 
the conditions under which they perform best (and worst), in order to maximize their value and 
utility in aiding public health decision making. The feature analysis reveals the complex and 
changing role of factors contributing to COVID-19 transmission over time, and suggests a possible 
seasonality effect of climate on COVID-19 spread, but only after August 2021. Finally, the case 
study highlights the added value of using genomic surveillance data in short-term epidemiological 
forecasting models, especially during the early stage of new variant introductions. 
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Introduction 
By January 31st, 2022, over 55 million cases and 850 thousand deaths have been attributed to 
SARS-CoV-2 virus in the US.1,2 Since the start of the pandemic, and in response to the need to 
allocate (often limited) resources and help guide policy making, the scientific community has 
sought to predict the spread of COVID-19.3–6 Various prospective modeling efforts exist to 
forecast short-term (i.e., weeks) epidemiological outcomes (cases, deaths, and hospitalizations), as 
well as conduct longer term (i.e., months) scenario analysis. 
The approaches applied by researchers to generate short-term COVID-19 forecasts can broadly be 
categorized into three approaches: mechanistic, statistical, and hybrid modeling. Multiple 
mechanistic modeling approached have been applied to COVID-19 forecasting, which explicitly 
represent transmission dynamics in a population through the use of compartment models such as 
Susceptible-Infected-Recovered (SIR) and extensions.7–10 An alternative to the mechanistic 
approach is statistical modeling, which estimates the mathematical representation of observed 
behavior directly from available data. These methods typically rely upon machine learning 
techniques for forecasting, which most commonly include time series,11,12 decision tree,13 and deep 
learning approaches.14,15 The long short-term memory network (LSTM) occupies an important 
position among all deep learning methods due to its advantages in processing time series data. 
Researchers have applied various frameworks of LSTM to forecast COVID-19 epidemiological 
outcomes for the U.S. at different spatial resolutions.16–19 The third modeling approach merges 
mechanistic and statistical methodologies, here referred to as hybrid models, which take advantage 
of the strengths of each method to improve model performance.20 For example, the DeepGLEAM 
model  combines a stochastic compartmental simulation model with deep learning for COVID-19 
forecasting.21 All approaches utilized to date have their own strengths and weaknesses. 
Mechanistic models are good at providing epidemiological explanations for observed behavior, 
and are capable of explicitly analyzing different policies such as mask mandate and other social 
distancing measures through model parameterization; however, these modeling frameworks are 
limited in their ability to capture rapid changes in disease spreading behavior or consider potential 
risk factors other than those represented within the compartmental framework.16 In contrast, 
statistical models, while flexible enough to include any potential variable of interest, heavily rely 
on the quality and availability of the required input data, and critically, the outputs are not 
constrained to adhere to feasible viral dynamics. One approach to mitigate the method-specific 
weaknesses is to use ensemble models, such as the CDC COVID-19 Forecast Hub model, which 
compile multiple models of various approaches within a single prediction framework.22 This 
approach has consistently proven to be the most robust, and best performing approach for short 
term COVID-19 forecasting efforts, and thus why we evaluate our model against it. 
Whatever the method, a recognized shortcoming in the existing COVID-19 modeling literature is 
the lack of rigorous and robust evaluation, which is critical to assess and compare model 
performance.23 On October 19th 2021, the CDC COVID-19 Forecast Hub published the 
EPIFORGE guidelines to attempt to improve the quality of models, highlighting the importance 
of consistency, interpretability, reproducibility, and comparability of models.24 However, most 
model evaluation presented in the published literature remains incomprehensive.23 Many models 
are evaluated for a single forecasting period, according to a single error metric, and sometimes not 
evaluated retrospectively at all.23 Furthermore, many of the existing studies do not account for 
critical factors, such as human behavior, which are available through mobility data and/or real-
time survey data. Additionally, there is a substantial gap between model development and model 
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implementation for real-time forecasting, and many of the models mentioned above lack guidance 
on when and where each model would be most suitable, let alone information on if, when and 
where they were applied.  
In this study we address these existing gaps in the literature and provide a more reliable source of 
COVID-19 forecasts for policymakers and the public. We proposed a deep learning model to 
forecast the US COVID-19 cases and deaths at the state level for 1- to 4-week forecasting windows. 
The model incorporates epidemiological (cases, deaths, hospitalizations, vaccinations), mobility, 
survey, climate, demographic, and virus genomic data. We assess the model performance based 
on multiple error metrics, as well as for varying time periods, regions, and as a function of different 
outbreak phases, namely periods of intense growth, decline and stability. Lastly, we implement a 
retrospective case study incorporating SARS-CoV-2 genomic surveillance data to demonstrate the 
value of implementing new variant introductions into forecasting tools.   
 
Data 
The proposed LSTM model is heavily data driven and trained using multiple disparate categories: 
epidemiological, mobility, survey, climate, demographic, and virus genomic data. The time-
varying data are available at a daily resolution for each US state. We rely on a combination of raw 
and derived metrics as inputs, which are listed in Table 1, and each is described in detail in 
Appendix Section 1. 
 
Methodology 
COVID-19 transmission patterns have proven complex over time. Thus, forecasting even near-
term disease dynamics requires a robust predictive modeling framework and carefully selected 
input data streams. Critically, the framework must account for nonlinear interactions between the 
considered factors affecting the transmission dynamics and uncertainty in their time-dependent 
impact on observed transmission dynamics. We therefore propose a multi-stage deep learning 
framework, which, at each stage, forecasts a chosen target variable for the seven days ahead (e.g., 
one-week ahead forecast). The multi-stage model builds off the initial first stage prediction to 
forecast an additional week out and continues to implement this iterative approach one stage at a 
time, to predict further into the future. In this paper, we will focus on 4-stage forecasting, which 
generates 4-week ahead predictions, consistent with the CDC COVID-19 Forecast Hub.25,26 
However, the framework can be applied to shorter- and longer-term horizons. 
 
Multi-Stage LSTM Network Architecture 

The multi-stage framework consists of two neural network branches, connected in parallel, as 
illustrated in Figure 1. The main branch (main model) predicts the target epidemiological variables 
of interest, while the secondary branch (feature model) predicts independent features to populate 
the data streams used as input in the main model. The target variable for the main model is either 
weekly incident cases or weekly mortality rate; for the features model, target variables are all other 
independent time-varying features that serve as predictors for the main model. An example of a 
model output is shown in Figure 1.C, for New York state, specifically, the forecasted weekly cases 
for each of the four weeks following October 17th, 2020. Additional implementation of the multi-
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stage framework, details of model formulations, and model parameterization are described in detail 
in Appendix Section 2·1 to 2·3.  
 
Model Evaluation 
We conduct a robust evaluation of the model performance, explicitly assessing its performance as 
a function of space, time, and outbreak phase. All assessment is conducted over a long horizon (52 
weeks, spanning all epidemiological weeks from August 2020 to August 2021), and evaluated 
using three different error metrics: a) Absolute Error (AE), b) Percentage Absolute Error (PAE), 
and c) Weighted Interval Scores (WIS).20 The definition of each error metric is described in 
Appendix Section 2·4. The first two metrics measure the accuracy of point predictions, while the 
last metric is intended to evaluate the model predictions as a probability distribution. For all 
experiments, we use JHU CSSE actual weekly reported cases and deaths 1 as the ground truth data 
to compute the error metrics. While this analysis is retrospective, the evaluation is based on data 
that would have been available at the time of prediction, to align with the real-time forecasting 
constraints. For space constraints, the PAE results are presented throughout this section, and the 
WIS and AE results, when relevant, are provided in relevant sections throughout the Appendix. 
We compare our results to the CDC ensemble model,20 which we use as the benchmark because it 
has consistently proven to be the top performing model in the CDC COVID-19 Forecast Hub,22 
among dozens of individually contributed models (ensemble members). 
We also conduct sensitivity analysis to assess the contribution of each variable to the model 
performance, by evaluating different combinations of input features (Appendix Section 2·5). Due 
to time constraints and computational cost, the sensitivity analysis only applies to PAE and AE. 
 
Results 
Results for the LSTM model forecasted cases for 1-, 2-, 3- and 4-week forecasting windows, for 
every state in the US are presented in this section. Equivalent results for deaths forecasts are 
described in Appendix Section 3·8. We present our model performance as a function of time, space 
and different outbreak phases. We then conclude this section with results from a case study that 
supplements the input data streams with variant cases from available SARS-CoV-2 genomic 
surveillance data. The case study is conducted for a subset of states with the highest quality virus 
genomic data, and the 2021 summer period, to align with the delta wave in the US. In Appendix 
Section 2·5 we present results from a sensitivity analysis conducted to assess the contribution of 
each variable in prediction.  
 
Model Performance Across Time  

Figure 2 illustrates the relative performance of the LSTM against the CDC ensemble model for 
each of the 52-week periods evaluated, for 1 to 4 week forecast windows, highlighting the 
performance variability over time. Each pair of bar plots represents PAE distribution for all the 
states at a given week, where the green bar represents the error distribution for the multi-stage 
LSTM model, and the yellow bar represents the error distribution for the CDC ensemble model. 
The red curve represents the weekly reported cases at the national level. The left y-axis represents 
the PAE by different forecasting windows and right y-axis represents national level reported cases.  
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For the time period evaluated the model consistently outperforms the CDC ensemble, especially 
during case surges, and for longer (3 and 4 weeks ahead) forecast windows. The average PAE 
across all states and weeks is 22%, 32%, 44% and 57% for the 1 to 4 week forecast windows, 
respectively. As the forecasting window increases, the variability in performance across states 
further increases, as indicated by the wider bars. Figure 2 also reveals how the model performance 
varies with respect to the different waves of the pandemic. The model performance is relatively 
stable for the first five months of the study period (August 2020 to November 2020), but much 
more variable in performance in January 2021 and May 2021, which both correspond to periods 
when the cases transitioned from decreasing to more stable rates. The results for WIS and AE 
reveal consistent performance patterns, as illustrated in Appendix Section 3·1. 
 
Model Performance Across States 

Figure 3 illustrates the average performance over all 52 weeks, for each state, highlighting the 
performance variability across space. The color scales represent the magnitude of the error metric; 
the scales of PAE are fixed in 10–90 range. The deeper color corresponds to larger error. 
Equivalent evaluations for AE and WIS are included in Appendix Section 3·2. While there are no 
clear spatial patterns of model performance for 1-week ahead forecast, a spatial pattern becomes 
evident as the forecast window increases. For the 2 to 4-week forecast windows, the PAE is 
relatively larger for midwestern states and smaller for southeastern states. Reasons for this are 
addressed in the discussion section.  
 
Model Performance by Outbreak Phase 

In addition to examining performance variability over fixed space and time, we also evaluate the 
model performance as a function of the outbreak phase. To do this, we generate five outbreak 
phases based on the weekly average incidence growth rates and assign each state-week pair 
accordingly. We apply 5-quantiles clustering according to the relative magnitude of growth rate, 
the five groups are classified as:  1) fast increasing (growth rate above 0·017); 2) slightly increasing 
(growth rate between 0·005 and 0·017); 3) flat (growth rate between -0·004 and 0·004); 4) slightly 
decreasing (growth rate between -0·016 and -0·004); and 5) fast decreasing (growth rate below -
0·016). The assignment of the weeks to categories is presented in Appendix Figure 15. After the 
phase category assignment, we evaluate the performance for all state-week pairs in each of the five 
phase groups independently.  
Figure 4 shows the model performance of the multi-stage LSTM model by different outbreak 
phases, the colors represent different outbreak phases, and each bar represents the distribution of 
PAE in corresponding outbreak phases. This result reveals that the model performs best in the 
stable period and has the highest variability when cases change rapidly, consistent with the same 
evaluation for the CDC Ensemble model (Appendix Figure 16). Equivalent evaluation based on 
WIS are shown in Appendix Figure 17 and 18.  In addition to evaluating the LSTM and CDC 
Ensemble model separately, we also compare both models under each outbreak phase (see 
Appendix Section 3·6). As shown in Appendix Figure 19 and 20, when growth is classified as fast 
increasing, the multi-stage LSTM model outperform the CDC ensemble model over 60% of the 
time for all forecast windows. For the slightly increasing and fast decreasing periods, our model 
slightly outperforms the CDC ensemble. However, the performance of the model is lower than the 
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CDC ensemble during periods of outbreak stability and slight declines (e.g., December 2020 and 
May 2021).  
 

 

Case Study with SARS-CoV-2 Genomic Surveillance Data 

The US has experienced multiple waves of incident cases, often driven by new variants. In this 
case study, we conduct a retrospective analysis to explore the value of including variant cases from 
available SARS-CoV-2 genomic surveillance data in improving COVID-19 outbreak prediction 
using our proposed modeling framework, based on the hypothesis that genomic data may act as a 
signal for forthcoming changes in transmission patterns and therefore help improve prediction 
accuracy.27 Here we focus on forecasting state-level confirmed cases in the US between June 1 
and August 31, 2021, capturing the wave caused by the Delta variant. We implement the analysis 
for the 39 selected states that sequenced at least 5% of reported cases from May 1 to August 31, 
2021. We generate new variant-specific case time series (as the product of the daily proportion 
and total daily cases reported), which are used as inputs in the model. Details of the virus genomic 
data preprocessing are documented in Appendix Section 1·6. We select the top three variants with 
the highest proportion during June and September 2021 as new variant-specific time series, i.e., 
Delta, Gamma, and Alpha. In addition, we also create a fourth time series (“other”) representing 
the sum of all other circulating SARS-CoV-2 lineages. The inclusion of “other” category enables 
us to capture the introduction of new variants, in addition to other known circulating variants. 
When applying the model, the selection of the variant-specific time series can be adjusted 
dynamically, based on the most recent data. 
Figure 5 illustrates the results for three different models: (a) Multi-stage LSTM model without 
variant cases data, (b) Multi-stage LSTM model with variant cases data and (c) CDC Ensemble 
model. The x-axis is the week that the predictions are made on. Each pair of bar plots represents 
PAE distribution for the selected states at a given week, where the green bar represents the error 
distribution for the multi-stage LSTM model without variant cases data, purple bar represents the 
error distribution for the multi-stage LSTM model with genomic data, and the yellow bar 
represents the error distribution for the CDC ensemble model. Results from the case study suggests 
that the inclusion of variant cases data have varying levels of impact, dependent on the time period. 
Specific trends are noted in the discussion section. The results based on AE and WIS are shown in 
Appendix Section 3·7. 
Notably, this study is retrospective, and therefore is not subject to the real-time reporting 
limitations of SARS-CoV-2 genomic data from sequences COVID-19 cases. Specifically, the 
average time lag in genomic data reporting is 26 days,28 whereas we assume data is available with 
a seven day lag. While not feasible at present, this study highlights the potential value of timely 
and open virus genomic surveillance as a pandemic forecasting tool. 
 
Model Selection 

We conduct sensitivity analysis to assess the importance and contribution of various input features 
and training periods to identify the best performing model. We assign features into four categories 
(epidemiological, mobility, survey, and climate data). The complete set of features considered, and 
category assignment are listed in Table 1. Four models are constructed which include different 
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combinations of available features, namely 1) a simple basis model with only epidemiological data, 
2) a model with epidemiological and mobility data, 3) a model with epidemiological, mobility and 
survey data, and 4) a model with all features. We further conduct the equivalent model comparison 
for two discrete time periods aligning with pre and post available vaccines, specifically divided on 
February 1, 2021, approximately when vaccination roll out began in the US. The results comparing 
the performance of these four models for the entire period and two discrete periods are shown in 
Appendix Figures 7, and 8, respectively. The results reveal that the model with epidemiological, 
mobility, and survey data has the best overall performance. However, the contribution of each 
input feature can vary across time; this is expanded upon in the discussion section. Finally, the 
analysis performed for COVID-19 deaths as a response variable is presented in Appendix Figure 
26, where model 3) and 4) have similar performance. Additional sensitivity analysis on model’s 
input parameters is included in the Appendix Section 2·5. 
 
Discussion 
Spatiotemporal Variability of Model Performance  

Our analysis reveals a high variability in model performance as a function of the forecast window, 
chronological time and space. The performance over the 52 weeks evaluated is closely tied to the 
observed outbreak dynamics, and figure 2 highlights the impact of rapidly changing dynamics on 
the model performance. The model performs worse around the inflection period (especially when 
cases’ trend changes from decreasing to stable), and gradually improves as case (and death) rates 
stabilize. In terms of spatial patterns, for the time period evaluated model is more accurate in 
eastern and southeastern states, compared with midwestern states. This pattern is further confirmed 
by comparing the model performance with the CDC ensemble model. This spatial pattern can be 
partially explained by the difference in case trends across these regions. Specifically, during 
October 2020 to December 2020, midwestern states experienced the fall COVID-19 wave ahead 
of most of the country. Specifically, midwestern states started to show a decreasing trend while 
cases were increasing elsewhere (see Appendix Section 3·3). Because the model is trained using 
the data for all states for each prediction period, the predictions will be guided by the most 
dominant trend, and the model may underperform for any states not experiencing the same patterns.  
As an extension of this work, one could develop group-specific models through a cluster-based 
training setup or a more deliberate design of loss function, and as such, generate forecasts for each 
sub-group. Additionally, as expected, the model performance decreases as the forecasting window 
increases. This outcome is partially an artifact of the multi-stage nature of the modeling framework, 
which is sensitive to accumulative uncertainty in the input data and error propagation in the model 
outputs; e.g., predictions generated for each week are used as inputs for the following week’s 
prediction. Therefore, in periods of high instability, the one-week ahead predictions can be more 
erroneous, thus the error will be larger for longer forecast windows relative to the same forecast 
window in more stable periods. Overall, the observed spatial and temporal variability in model 
performance highlights the importance of identifying and communicating the optimal performance 
conditions for a given model before it is shared publicly or relied upon by decision makers. 
Model Performance Varies by Outbreak Phase 

In Figure 2, the LSTM model is shown to perform consistently better than the CDC ensemble 
model in the periods of rapid outbreak growth (e.g., October 2020 to November 2020, July 2021) 
and decline (e.g., January 2021). To further explore model applicability, we evaluated model 
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performance as a function of the outbreak phase, namely periods of growth, decline or stability, 
which were designated by five discrete categories. For the nine most populated states, most of the 
weeks in fall 2020 and summer 2021 are assigned to either fast or slightly increasing phase 
categories (Appendix Figure 18). The results highlighted in Figure 4 reveal the LSTM model to 
perform best in stable periods, and poorest in periods of extreme growth and decline. However, 
critically, the comparison of our LSTM model against the CDC Ensemble as a function of the 
outbreak phase, presented Appendix Figure 19 and 20, reveals that the multi-stage LSTM model 
performs relative better during the most critical phases of fast growth and fast decreases.  This 
variation in forecasting accuracy during the rapidly changing outbreak phases is consistent with 
COVID-19 forecasting literature.22  Future work should consider relaxing continuous forecasting 
outputs, and focusing on categorical predictions, which may be able to be generated more 
accurately and reliably.  Our analysis also highlights that model selection should consider model 
performance relative to the phase of the outbreak, in addition to the fixed time and location the 
model is applied to.  
 
Model Evaluation Is Sensitive to Performance Metric Chosen 

A major focus of this analysis is to explore the how model performance relates to the metrics 
chosen for evaluation. As illustrated in the Appendix Section 3·1, the performance of the LSTM 
and CDC ensemble model can vary significantly, dependent on the error metric selected. This 
occurs due to the way the metrics are mathematically defined (Appendix Section 2·4), in particular, 
whether they are normalized to account for potentially large variations in the magnitude of the 
predictor variable or not, as well as how they account for uncertainty bounds. For example, AE 
has a positive correlation with confirmed case counts, therefore the states and outbreak periods 
with the highest reported case values will have higher AE scores; this is the case for California, 
New York, and Florida (Appendix Figure 12). In contrast, PAE is normalized by case levels, and 
is therefore more likely to have a higher relative value when case rates are low because small 
variabilities in the estimated versus observed incidence rate will be amplified. This behavior is 
illustrated during summer 2021 in states with lower populations like Maine, New Hampshire, and 
Vermont, when the weekly confirmed cases are below 50 (Figure 3). For all forecasting windows, 
the results are shown to be sensitive to the error metric chosen, and critically, the selection of the 
best performing model for a given state is dependent on the metric chosen for evaluation. However, 
as the forecasting window increases, the LSTM model appears to consistently outperform the CDC 
ensemble model for the southeastern states (i.e., Virginia, North Carolina, South Carolina) 
according to all metrics. This analysis highlights the need to consider multiple metrics in 
evaluating models, in order to improve model selection and robustly assess model performance.  
 
Model Sensitivity to Input Data Streams  

Results from the sensitivity analysis to assess the importance and contribution of various input 
features revealed the best performing model included all the features except climate data. Our 
analysis reveals that a model solely reliant on epidemiological data performed worst, while adding 
mobility and survey data reliably improved model performance, especially for longer forecasting 
windows. These results support the inclusion of preprocessed mobility variables and real-time 
survey variables in learning model frameworks such as the proposed LSTM model. While the 
epidemiologic, survey and mobility variables revealed similar roles across the entire study period, 
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and each of the separate periods evaluated, the role of climate variables is less clear. The inclusion 
of climate variables did not initially appear to improve predictive capability (when considered 
across the entire study period), however, when we divided the study period into two discrete 
periods, the role of the climate data changed. For the period between August 2020 and February 
2021, the inclusion of climate data did not improve the model performance, however during the 
second phase of the study period, between February and August 2021, the inclusion of climate 
variables increased the model performance (Appendix Figure 8). These results suggest a differing 
role of climate on COVID-19 transmission in the first and second year of the pandemic, which 
aligns with other literature.29 We hypothesize in the first year of the pandemic factors other than 
climate, such as behavior and underlying population immunity, dominated the role of climate, 
and/or the role of climate is being captured indirectly through other predictors (e.g., higher 
temperatures lead to behavioral changes which can be captured through the survey and mobility 
data sets). While this preliminary analysis sheds some light on the possible role of climate and 
seasonality of COVID-19, this is an area in need of further research. 
 
Inclusion of SARS-CoV-2 Genomic Surveillance Data Improves Model Performance  

The case study, designed to capture new variant introductions and variant growth rates, highlights 
the value of using SARS-CoV-2 genomic surveillance in short-term epidemiological forecasting, 
specifically with regards to early identification of inflection points. The inclusion of genomic data 
consistently improved the model performance within two weeks after the average proportion of 
Delta variant above 15% for most of the 39 states included in the cases study. Specifically, for 
predictions between epidemiological weeks June 20, and July 25, 2021, the LSTM model with 
variant cases data performed better than both the reference LSTM model (without the variant cases 
data) and the CDC ensemble model, especially for the longer three- and four-week forecasting 
windows. This is approximately the period when there is a switching of dominated variant between 
Delta variant and Alpha variant (Appendix Figure 6). However, this performance ranking changed 
immediately after the Delta variant proportion reached 100%. A possible explanation for this is 
that when the Delta variant proportion reached 100%, the proportion of Gamma, Alpha, and other 
variant specific cases suddenly dropped to zero, and our LSTM model requires a learning period 
to adapt to this change in the input data stream. As evidence for this hypothesis, the performance 
of the two LSTM models (with and without variant cases data) converges a few weeks after the 
Delta variant reaches 100% (Figure 5).   
 

Limitations 

There are several limitations to this study, primarily resulting from data issues, and imposed 
methodological constraints. Most critically, there are challenges posed by the quality and 
availability of the data relied upon, for both the health outcomes data sets used to represent ground 
truth, as well as the input data streams. Given the intended real time use of this framework, the 
best available data at the time of generating the forecast were used to both train and evaluate the 
model, and as such, unresolved anomalies, biases and inaccuracies in the data directly affect 
performance. Further data quality issues such as spatiotemporal biases, sample size and data gaps 
also posed challenges, and were more prevalent in the data sets used to capture human behavior, 
e.g., survey data. In addition to quality of the data used, certain critical features are excluded from 
the model, such as government policies and policy compliance rates, as well as other behavioral 
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data. Future work should explore the inclusion of these additional data sources to further enhance 
model performance. In addition to data issues, the LSTM model is fully empirical, i.e., it does not 
have a mechanistic component, therefore the actual infection dynamics are not constrained by 
feasible outbreak scenarios, which can result in unrealistic predictions. The empirical nature of the 
model also constrains the forecasts to previously observed transmission patterns (within the 
training time window); thus, the model will perform poorly when the transmission dynamics 
dramatically differ (exceed) from prior behavior. 
 
Conclusion 
We introduced a flexible deep learning framework that utilizes a broad set of data types 
(epidemiological, mobility, survey, climate, demographic, and virus genomic) to forecast COVID-
19 cases and deaths in real time. The novel multi-stage forecasting routine uses an iterative 
approach, building on one stage's outputs to generate the next stage’s predictions. We applied our 
framework for the United States at a weekly temporal resolution and state-level spatial resolution, 
for a four-week planning horizon.  We evaluated our model at each epidemiological week over the 
52-week period between August 2020 to August 2021, and quantified performance using three 
different error metrics. We further break down the performance as a function of outbreak phases, 
location, time, and forecasting window. While the model is shown to perform well in multiple 
settings, the results from this analysis illustrate a variable performance of the model across the 
considered dimensions. This variability is driven by the complex, uncertain and evolving role of 
the critical contributing factors that drive COVID-19 transmission dynamics. This includes, for 
example, changes behavior, immunity, climate, the environment, and viral dynamics. Based on 
these findings, forecasting models should be accompanied with specifications on the conditions 
under which models performs best (and worst), in order to maximize their value and utility in 
aiding public health decision making. Extensions of this work include applying it at higher spatial 
resolutions (e.g., at the county level), and for predicting other response variables (e.g., 
hospitalization rates). Further, we selected a simple LSTM as the model’s building block since it 
is a state-of-art framework for processing time dependent data, however, rigorous inter-
comparisons with other deep learning techniques should be conducted. 
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Table 1: Summary of input data 
State-Level Data Data Processing Data Smoothing Sources 

Epidemiological data    

COVID-19 cases/deaths Raw 7-day moving average 1 

Growth rate of cases/deaths Derived 7-day moving average 1 

Vaccination coverage Raw 7-day moving average 15,17 

Hospitalization data Raw 7-day moving average 30,31  

Mobility data    

Importation risk Derived 7-day moving average 1,32 

Mobility ratio Derived 7-day moving average 32 

Visits ratio for 21 different 
destinations 

Derived Principal component analysis 32 

Survey data    

COVID-like symptoms in 
community 

Raw 
Raw data has already been 
smoothed 

31 

Climate data    

Temperature (°C) Raw 7-day moving average 33 

Precipitation (mm/day) Raw 7-day moving average 33 

Demographic data    

Population Raw - 34 

Proportion of people over 65 Raw - 34 

Virus Genomic data    

Variant cases Derived 7-day moving average  35 
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Figure. 1.  A) Network architecture of the multi-stage LSTM model. B) Prediction structure of the 
multi-stage LSTM model. At the initial stage, the model uses the most recent data as input, then at 
the later stage, the model adapts previous prediction as input to make further predictions. The 
transparent colors represent the model’s output, and solid colors represents the model’s inputs. C) 
An example forecasting of the multi-stage LSTM model.  
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Figure. 2. Comparison of model performance between the multi-stage LSTM Model and the CDC 
ensemble model based on PAE. Each pair of bar plots represents PAE distribution for all the states 
at a given week, where the green bar represents the error distribution for the multi-stage LSTM 
model, and the yellow bar represents the error distribution for the CDC ensemble model. The red 
curve represents the weekly reported cases at the national level. The left y-axis represents the PAE 
by different forecasting windows and right y-axis represents national level reported cases.  
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Figure. 3. State-specific average model performance based on PAE (over all epidemiological 
weeks) for varying prediction windows of one- to four-week out predictions. The color scales 
represent the magnitude of the error metric; the scales of PAE are fixed in 10–90 range. The deeper 
color corresponds to larger error. 
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Figure. 4. Evaluation of the multi-stage LSTM model by outbreak phases based on PAE. The 
colors represent different outbreak phases, and each bar represents the distribution of PAE in 
corresponding outbreak phases. 
 

 
Figure. 5. Model performance based on PAE for three different models: (a) Multi-stage LSTM 
model without variant cases data, (b) Multi-stage LSTM model with variant cases data and (c) 
CDC Ensemble model. The x-axis is the week that the predictions are made on. Each pair of bar 
plots represents PAE distribution for the selected states at a given week, where the green bar 
represents the error distribution for the multi-stage LSTM model without genomic data, purple bar 
represents the error distribution for the multi-stage LSTM model with genomic data, and the 
yellow bar represents the error distribution for the CDC ensemble model. 
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1. Data and Preprocessing 
The proposed LSTM model is trained using multiple disparate categories of data including epidemiological, mobility, 
survey, climate, vaccine coverage, demographic, and genomic data. The time-varying data are all available at a daily 
resolution, and state spatial resolution. We use a mixture of preexisting and generated metrics as input; all the variables 
and their corresponding categories are summarized in the table 1 in the main manuscript, and described in detail below: 

 

1.1 Epidemiological data 
Previous COVID-19 modeling studies have relied upon a wide range of data types, with epidemiological data being 
the most central to the efforts. Potential epidemiological variables include reported cases and deaths, unreported or 
undetected infections and fatality, incidence rate, mortality rate, case-fatality ratio, growth rates, testing data, 
vaccination coverage, and hospitalization data. 1–3  

 

1.1.1 Cases and Deaths 
Our study utilizes the county-level, daily reported COVID-19 case, death and vaccination data ranging from April 1, 
2020 to August 31, 2021 as its primary epidemiological inputs. The data is sourced from the Center for Systems 
Science and Engineering (CSSE) at Johns Hopkins University. 4 This dataset serves as the gold standard for reliable 
and official reported state- and county-levels cases and deaths for the US. The start date of May 1, 2020 was chosen 
to minimize the possible effect of underreporting at the early stages of the pandemic. The raw case and death data are 
aggregated to the state level. A 7-day moving average is used to address noise due to reporting issues and variable 
day-of-week patterns.  

 

1.1.2 Case and Death Growth Rate  
The smoothed timeseries are also used to derive additional epidemiologic parameters used as latent variables in our 
modeling framework, namely growth rates and incidence rates. The growth rates (GR) for cases and deaths are 
calculated as follows: 

𝐺𝑅𝑖𝑡 = log(𝐶𝑖𝑡) − log⁡(𝐶𝑖𝑡−1) 

Where 𝐶𝑖𝑡  represents the smoothed cases or deaths for state 𝑖  on day 𝑡 . The case and death incidence rates are 
computed by normalizing the data by population, to generate daily cases and deaths per 100,000 persons, for each 
state.  

 

1.1.3 Vaccination data 
Vaccine induced immunity is considered to be an essential strategy for reducing COVID-19 harm. In our model we 
utilize state-level vaccination data from Johns Hopkins CRC,5 which is collected from the US CDC Vaccine Tracker 
6 and local health agencies. We adopt its daily state-level complete vaccination data normalized by population as one 
of the inputs. 

 

1.1.4 Hospitalizations data 
The U.S. Department of Health & Human Service (HHS) publishes datasets “COVID-19 Reported Patient Impact and 
Hospital Capacity by State” via healthdata.gov. 7 The original dataset contains multiple columns that break the patient 
and hospital resources into several categories. We use cleaned COVID-19 hospitalization provided by the Delphi 
group at Carnegie Mellon University API. 8 We used 7-day moving average smoothed “inpatient_bed_used_covid” 
time series for our death’s prediction model.  

 

1.2 Mobility derived metrics 
Previous studies have shown that aggregate human mobility patterns can be used to evaluate the impact of certain 
non-pharmaceutical interventions on the spread of COVID-19. 9–12 However, the role of such aggregate mobility data 
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in predicting COVID-19 transmission patterns is complex, highly variable over time and space, and notably 
diminishing since Spring 2020. 13,14 Therefore, we conduct extensive data analysis and modeling, to generate novel 
mobility related variables that explicitly consider trip purpose in addition to broader mobility patterns and incorporate 
these new mobility-derived metrics into our modeling framework.  

For the purposes of this study we obtained aggregated and anonymized mobility data from Safegraph,15 a company 
that provides location data from mobile applications. We generate multiple mobility metrics from the provided weekly 
patterns and places datasets 16,17 as described below.  

 
1.2.1 Mobility Ratio (MR)  
We compute a mobility ratio (MR) as a proxy for aggregate mobility movement at population level.9 To generate MR, 
we utilize the following raw point of interest (POI) variables: 

𝑣𝑖𝑡: the number of visits to POI 𝑖 on day 𝑡. 

𝑣𝑖𝑤: the number of visits to POI 𝑖 during week 𝑤. 

𝑟𝑖𝑤: the number of visitors to POI 𝑖 during week 𝑤. 

𝑟𝑗𝑖𝑤: the number of visitors to POI 𝑖 with home location in census block (CBG) 𝑗 during week 𝑤. 

𝐷𝑖
𝑤: the number of devices residing in given CBG 𝑖 during week 𝑤. 

where 𝑡 to represent daily resolution and 𝑤 to represent weekly resolution. The raw data include the number of visits 
to each POI at daily resolution. However, there is a gap in that the origins of those visits are missing. Hence, additional 
data preprocessing is needed to estimate origin-destination metrics. For each POI, we first compute the number of 
visits per visitor 𝑣̅𝑖𝑤 as 𝑣𝑖𝑤 divided by 𝑟𝑖𝑤, and we assume that 𝑣̅𝑖𝑤 is a constant for all visitors to POI 𝑖 during week 𝑤. 
Then we aggregate the visitor’s home location to state-level, and normalize the counts by the state population (𝑝𝑜𝑝𝑐) 
as: 

𝑟̂𝑐𝑖𝑤 = (∑𝑟𝑗𝑖𝑤
𝑗⁡∈𝑐

) ×
𝑝𝑜𝑝𝑐

∑ 𝐷𝑗𝑤𝑗⁡∈𝑐
 

Here 𝑟̂𝑐𝑖𝑤 indicates the normalized number of visits from state 𝑐  to POI 𝑖 during week 𝑤. The probability 𝑝𝑖𝑡  that a visit 
during week 𝑤 happens during day 𝑡 is calculated as 𝑣𝑖𝑡 divided by 𝑣𝑖𝑤, and we assume this distribution holds for 
visitors from any state. The daily mobility metric 𝑟̂𝑐𝑠𝑡  from state c to state s can be estimated as: 

𝑣𝑐𝑠𝑡 =∑(𝑟̂𝑐𝑖𝑤 ⁡× 𝑣̅𝑖𝑤 ⁡× 𝑝𝑖𝑡)
𝑖⁡∈𝑠

 

Note that SafeGraph’s data is collected based on device’s home location, so more rigorously, 𝑣𝑐𝑠𝑡  should be interpreted 
as number of visits with visitors’ home location in state 𝑐 to state 𝑠 on day 𝑡. 

The MR is then defined as: 

𝑀𝑅𝑐𝑡 =
∑ 𝑣𝑐𝑠𝑡𝑐≠𝑠 + ∑ 𝑣𝑠𝑐𝑡𝑐≠𝑠 + 𝑣𝑐𝑐𝑡

∑ 𝑣𝑐𝑠
𝑡0

𝑐≠𝑠 + ∑ 𝑣𝑠𝑐
𝑡0

𝑐≠𝑠 + 𝑣𝑐𝑐
𝑡0⁡ 

Where 𝑣𝑐𝑠𝑡  represents the number of trips from location state 𝑐 to state 𝑠 on day 𝑡. 𝑡0 represents the baseline time 
period, which is chosen as the average day of week (e.g., Monday) over the month of February 2020, and 𝑣𝑐𝑠

𝑡0 
represents the baseline trip rate between locations 𝑐 and 𝑠.  

 
1.2.2 Importation risk (IR) 
In addition to the general mobility trend variable (MR), we generate an importation risk (IR) variable to capture the 
potential risk of infected visitors arriving at a given destination. This variable combines the real time mobility data 
and regional case incidence rates at the origin of travel to generate an incidence-weighted travel risk posed to the 
destination location. The formulation is defined as follow: 
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𝐼𝑅𝑠𝑡 = ⁡∑𝐼𝑐𝑡
𝑐

𝑣𝑐𝑠𝑡 ,⁡⁡⁡⁡𝑖 ≠ 𝑗 

𝐼𝑠𝑡 represents the 7-day moving average of reported case incidence rate in trip origin state 𝑖 on day 𝑡, and 𝑣𝑐𝑠𝑡  is the 
same as described above.  

 

1.2.3 Purpose-specific visits (VR) 
For each POI, SafeGraph also provides a NAICS (North American industrial classification system) code, which 
clusters the POIs into different categories based on their primary activity. Previous study11 has listed top 50 categories 
accounting for the largest fraction of visits, we select top 21 as our target destinations, where each type of POI consists 
at least 1% of overall visits.  We generate 𝑉𝑅𝑐𝑝𝑡  for 21 types of POI (𝑝 = 21), each one of them is a time series on a 
daily basis.  

For each selected type of POIs (𝑝), we estimate the mobility metric 𝑣𝑐𝑝𝑡  from state c to POI type p as: 

𝑣𝑐𝑝𝑡 =∑(𝑟̂𝑐𝑖𝑤 ⁡× 𝑣̅𝑖𝑤 ⁡× 𝑝𝑖𝑡)
𝑖⁡∈𝑝

 

All the selected POI categories are listed below: 

Supplementary Table 1: The 21 selected POI categories and their NAICS code.  
POI categories NAICS code 

Full-Service Restaurants  722511 

Limited-Service Restaurants  722513 

Elementary and Secondary School 611110 

Other General Merchandise Store 452319 

Gas Station 4471 

Fitness and Recreational Sports Center 713940 

Grocery Store 4451 

Cafes & Snack Bars 722514, 722515 

Hotels and Motels 721110 

Religious Organizations  813110 

Nature Parks and Other Similar Institutions  712190 

Hardware Store 444130 

Department Store 452210 

Child Day Care Service 624410 

Offices of Physician 6211 

Pharmacies and Drug Store 446110 

Sporting Goods Store 451110 

Automotive Repair and Maintenance 8111 

Used Merchandise Stores 453310 

Colleges, Universities, and Professional Schools 6113 

Convenience Store 445120 

 

An example visualization of all purpose-specific visits metrics for New York State is shown below: 
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 5 

 
Supplementary Figure 1: GAM smoothed timeseries of 𝑉𝑅𝑐𝑝𝑡  for New York State from May 2020 to September 2021. 

Similar to the definition of MR, we define a visit ratio (VR) for each pair of locations (states or counties) and select 
types of points of interest (POIs). This variable is designed to disaggregate the mobility data by trip purpose, and 
explicitly considered different travel purposes (work, school, restaurant visits, etc.) within the modeling framework: 

𝑉𝑅𝑐𝑝𝑡 =
𝑣𝑐𝑝𝑡

𝑣𝑐𝑝
𝑡0⁡ 

Here, 𝑣𝑐𝑝𝑡  are the estimated daily visits from location (a state or county) 𝑐 to selected POI 𝑝. Again, 𝑡0 represents the 
baseline time period. ⁡𝑉𝑅𝑐𝑝𝑡  indicates how frequent people visit certain types of destinations relative to the baseline. 
𝑉𝑅𝑐𝑝𝑡   for New York State are shown in Appendix Figure 1, where 𝑉𝑅𝑐𝑝𝑡   are smoothed with Generalized Additive 
Model (GAM). The SafeGraph’s data was updated daily during 2020; however, in 2021, the data is updating once a 
week on every Wednesday.  

 
1.2.4 Principal component analysis of purpose-specific visits metrics 
To avoid the highly correlated features and increase computational efficiency, we applied the principal component 
analysis (PCA)18 to all VR variables and select the first five principal components as inputs for the model. By doing 
this, we could first avoid using similar features that are highly correlated; second, the computational cost is reduced. 
Here we presented one example of this data preprocessing routine for the first week of September 2021. The average 
correlations between all the visits metrics across 50 states are show in the Appendix Figure 2 below: 
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Supplementary Figure 2: The average correlations between all the visits metrics across 50 states. The color scales 
represent the magnitude of correlation coefficient, the deeper the color, the higher the correlation coefficient.   

All the Pearson correlation coefficients are greater than 0, since all types of visits are more or less affected by lockdown 
and reopen policy. In addition, there are a few pairs of visits with a correlation above 0·8, which indicates that a feature 
selection step is necessary.  

PCA is a technique to map a higher dimensional data to a lower dimension, and the variance in the lower dimension 
should explain most of the variations for the full data space. The principal component (PC) is a linear combination of 
all the features 𝑋, which can be expressed as: 

PC = 𝒂𝑇𝑿 

And the covariance matrix 𝚺 of PC is: 

𝑉𝑎𝑟(𝒂𝑇𝑿) = ⁡𝒂𝑇𝚺𝒂⁡ 

The goal of PCA is to preserve the original variance as much as possible, hence 𝑉𝑎𝑟(𝒂𝑇𝑿) should be maximized 
under the condition that 𝒂𝑇𝒂 = 𝟏. Using the Lagrange’s multiplier, we could generate each PC as follow: 

ℒ = ⁡𝒂𝑇𝚺𝒂 − ⁡𝜆(𝒂𝑇𝒂− 1) 
𝜕ℒ
𝜕𝑎 = ⁡2𝚺𝒂 − ⁡𝟐𝜆𝒂 = 0 

𝚺𝒂⁡ = ⁡𝜆𝒂 
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Hence 𝝀 and 𝒂 are the eigenvalues and eigenvectors of covariance matrix 𝚺. Therefore, consider a dataset with 𝑝 
variables, the 𝑖th principal component and its variance are: 

PC𝑖 = 𝒂𝑖𝑇𝑿 = ⁡𝒂1𝑖𝒙1 +⁡𝒂2𝑖𝒙2 +⋯+⁡𝒂𝑝𝑖𝒙𝑝 

𝑉𝑎𝑟(PC𝑖) = ⁡𝜆𝑖 

Here 𝒂𝑖 are the desired weights assign to each feature. The total amount of variance explained by first 𝑖 components 
is: 

𝜆1 +⁡𝜆2 +⋯+⁡𝜆𝑖⁡
𝜆1 +⁡𝜆2 + ⋯+⁡𝜆𝑝

 

The variance explained by the first five PCs are each state is shown in Appendix Figure 3 below, where x-axis is the 
percentage of variance explained and the red dashed line represents 80%.  

 
Supplementary Figure 3: Percentage variance explained by the first 5 PCs for all the states. The red dot vertical line 
represents 80% variance explained. 

 
1.3 COVID-19 symptoms survey data 
Human behavior, while evasive to quantify, is thought to play a dominant role in the outbreak patterns observed for 
COVID-19. Various public survey efforts exist to generate behavioral indicators that can be used to better infer 
transmission dynamics, and these have been illustrated to improve predictive accuracy compared to those without 
them.19  In this work we utilize data from the COVID-19 symptoms survey. The survey is conducted through 
Facebook’s platform in collaboration with the Delphi group.20 From this survey we use “the estimated percentage of 
people who know someone in their community having Covid-like symptoms”. The timeseries data is provided at a 
daily resolution and smoothed using a 7-day moving averages to generate our input variable. 
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1.4 Climate data 
Some evidence points to climate and seasonality as potential factors associated with COVID-19 transmission,21,22 
although its role remains unclear.23 To account for the possible impact of climate and seasonality on transmission risk, 
we include daily population-weighted hydrometeorological data, sourced from the JHU COVID-19_Unified-Dataset 
GitHub repository.24 The full set of variables we consider are near-surface air temperature (°C), and the total 
precipitation (mm/day).  

 
1.5 Demographic data 
COVID-19 is known to have a disproportionate impact across demographic groups, specifically age and race.25 For 
this reason, we included total population and population percentage over 65 years of age as two separate static 
variables in our model. The population data were collected from the American Community Survey of the US Census 
Bureau.26 We use the 2019 Single Year of Age and Sex Population Estimates dataset to calculate the percentage of 
the population over 65 years old for each state.  

 
1.6 SARS-CoV-2 Genomic Surveillance data 
Of particular interest in this study is the potential value of SARS-CoV-2 genomic surveillance data in forecasting 
models to predict surges that may be driven by new variants in a more accurate and timely manner, or more generally, 
the impact new variants might have on COVID-19 transmission patterns. To address this research questions, we 
conduct a case study that utilizes COVID-19 genomic data downloaded directly from GISAID.27 From the available 
set of sequences, we calculate the proportion of each variant (theoretically in circulation) each day over the course of 
the pandemic.  

Based on the sample collection date (October 7th, 2021), we select the United States data at the state level between 
April 1, 2021, to end of August 2021. First, we calculated the coverage rate as the total number of genomic samples 
over the number of confirmed cases for each state during the selected period. Then, we filtered out the states with less 
than 5% of coverage. We selected all the State with at least 5% of overall sampling coverage. As shown in Appendix 
Figure 4, all the states with color have sampling coverage higher than 5%, while the states in grey have coverage less 
than 5%.  
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Supplementary Figure 4: Genomic sequence coverage by state between April 1st, 2021 and August 21st, 2021. The 
color scales represent the magnitude of the sequence coverage, the deeper the color, the higher the coverage. 

We generate time series of lineage proportion for the Delta, Gamma, and Alpha variants among all the virus lineages. 
Then, all the rest of the lineages are classified as others. The four proportion time series are smoothed with a 7-day 
moving average. We assume that this proportion of variants samples also apply to the proportion of variant cases 
within the confirmed cases. The genomic features are defined as: 

𝑔𝑖,𝑗𝑡 = ⁡ 𝑙𝑜𝑔(𝑝𝑖,𝑗𝑡 𝑐𝑗𝑡 + 1)⁡, 𝑖⁡ ∈ {𝐷𝑒𝑙𝑡𝑎, 𝐺𝑎𝑚𝑚𝑎,𝐴𝑙𝑝ℎ𝑎⁡𝑎𝑛𝑑⁡𝑂𝑡ℎ𝑒𝑟𝑠} 

Where 𝑔𝑖,𝑗𝑡  is estimated logarithm of confirmed cases for variant group 𝑖 for state 𝑗 at time 𝑡, 𝑝𝑖,𝑗𝑡  is the proportion of 
variant group 𝑖 for state 𝑗 at time 𝑡 and 𝑐𝑗𝑡  is the confirmed cases for state 𝑗 at time 𝑡.  

We calculate the collection to submission time for all collected genomic data by October 7th, 2021. The distribution 
of CST is shown in Appendix Figure 5, with a median CST of 24 days. In our case study, we apply a scenario analysis 
to test the value of the genomic data, we assume all the genomic data will be available with a CST of 7 days. By doing 
this, we want to provide a proof of concept that the timely genomic data (7-days lag) is valuable for short-time COVID-
19 forecasting. 

 
Supplementary Figure 5: Histogram of collection to submission time as October 7th, 2021 

The proportion of selected variant is shown in Supplementary Figure 6. Each dot represents the raw proportion on a 
given day and each solid line represents the trend smoothed by Generalized Additive Model (GAM). The deeper the 
color, the earlier the Delta variant became dominant in that state. The timeseries illustrate the quick rise of the Delta 
variant from May 15 and July 15, at which time it because the dominant lineage across the U.S., soon converging to 
100%. However, by the end of August, the Delta variant was already being replaced by the Omicron variant (which 
occurred outside this study period). 
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Supplementary Figure 6: Time varying proportion of selected variant for 39 states in the U.S. Colors represent data 
for different state. The dots represent the raw genomic data while the plotted lines are smoothed with a GAM.   

 

2. Supplementary method 
2.1 An example implementation of the multi-stage LSTM model 
The multi-stage frame train the framework to predict reported cases/deaths and other time series input for the next 7 
days. At the initial stage, the model uses the most recent data as input, then at the later stage, the model adapts previous 
prediction as input to make further predictions. For example, if we wish to predict the number of new COVID-19 
cases each week for the next 2 weeks using as input three time-varying features from the weeks prior: incident cases, 
cases growth rate, and MR, the model stages are set up as follows: 

Stage 1:  We use observed data from the last three weeks, specifically day (𝑡 − 21) to day 𝑡 as the length of the 
sequence of the input data for both the main and feature model. The outputs from the main model are incident cases 
in the week following, 𝑡 + 1⁡to 𝑡 + 7 (total predicted cases for one-week ahead). The outputs from the feature model 
are the case growth rate and MR for the same one-week ahead window, 𝑡 + 1⁡to 𝑡 + 7. Together, the forecasted values 
from the main and feature model provide the required input for the following stage (stage 2), which aims to predict 
incident cases for two weeks ahead.  

Stage 2: The stage 2 outputs from the main model are incident cases from 𝑡 + 8 to 𝑡 + 14, which are then converted 
to our second week predicted cases, while the outputs from the feature model are cases growth rate and MR from 𝑡 +
8⁡ to 𝑡 + 14 . To generate these 2-week ahead outputs, we require a timeseries from 𝑡 − 14⁡(observed) to 𝑡 + 7 
(unknown at time t), again, as the model requires a three-week length of the sequence of the input data. The stage one 
output enables the extension of each of the time series from the current time t to 𝑡 + 7. We use a combination of the 
observed data (𝑡 − 14⁡to day t) and outputs from stage 1 (time t to 𝑡 + 7)⁡to generate the required timeseries as input 
for stage 2. This same process is repeated to generate inputs for each following stage. For any combination of target 
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variables, both the main and feature models are trained on the same dataset and applied simultaneously to generate 
predictions.  

 
2.2 Formulations of LSTM model 
Both the main and feature models introduced above have the same network structure, which is built by one layer of 
long-short term memory (LSTM) network 28 and two layers of Multilayer perceptron (MLP). LSTM is a special kind 
of recurrent neural network, which is capable of learning long-term dependencies. The key idea behind LSTM is the 
cell state (𝐶𝑡) controlled by three gates named input gate (𝑖𝑡), output gate (𝑜𝑡) and forget gate (𝑓𝑡). The cell state keeps 
the information that passes along the sequence, and those three gates help filter information in the cell state at each 
time point. The output ℎ𝑡  from the LSTM layer will serve as input to pass through MLP layers. Then the finial 
predictions are the outputs from MLP layers. We apply the dropouts at the MLP layers to include randomness for the 
predictions.  

The LSTM layer can be formalized as follow: 

𝑓𝑡 ⁡= ⁡𝑠𝑖𝑔𝑚𝑜𝑖𝑑(𝑊𝑓[ℎ𝑡−1, 𝑥𝑡]⁡+⁡𝑏𝑓) 

𝑖𝑡 ⁡= ⁡𝑠𝑖𝑔𝑚𝑜𝑖𝑑(𝑊𝑖[ℎ𝑡−1, 𝑥𝑡] ⁡+⁡𝑏𝑖) 

𝐶𝑡̂ = ⁡𝑡𝑎𝑛ℎ(𝑊𝑐[ℎ𝑡−1, 𝑥𝑡]⁡+⁡𝑏𝑐) 

𝐶𝑡 ⁡= ⁡𝑓𝑡 × 𝐶𝑡−1 ⁡+⁡ 𝑖𝑡 × 𝐶̂𝑡 

𝑜𝑡 ⁡= ⁡𝑠𝑖𝑔𝑚𝑜𝑖𝑑(𝑊0[ℎ𝑡−1, 𝑥𝑡]⁡+⁡𝑏𝑜) 

ℎ𝑡 ⁡=⁡ 𝑜𝑡 × 𝑡𝑎𝑛ℎ(𝐶𝑡) 

where 𝑥𝑡 and ℎ𝑡 denote, respectively, input data and hidden state at time 𝑡. 𝐶̂𝑡 denotes a candidate new cell state that 
could be added to the cell state. 𝑊𝑗  and 𝑏𝑗 represent weights and bias terms at each gate or cell state 𝑗.  The prediction 
function for the entire network model can be formulated as: 

𝑦(𝑡 + 1, . . . , 𝑡 + 7) ⁡= ⁡𝑊2(𝑅𝑒𝑙𝑢(𝑊1(ℎ𝑡) ⁡+⁡𝑏1))⁡+⁡𝑏2⁡ 

where 𝑦(𝑡 + 1, . . . , 𝑡 + 7) are the predicted cases from 𝑡 + 1 to 𝑡 + 7, 𝑊1 ,𝑊2 ,𝑏1 , and 𝑏2 are weights and biases for 
the fully connected neural network, 𝑅𝑒𝑙𝑢 is the activation function: 

𝑅𝑒𝑙𝑢(𝑥) ⁡= ⁡𝑚𝑎𝑥(0, 𝑥)⁡ 

 
2.3 Model parameterization 
The models are implemented using Python 3·8 with open sources packages such as PyTorch, Pandas and NumPy. In 
initial setting of the multi-stage Neural Network model, different size of hidden layers in LSTM were explored for 
model training and testing. The sensitivity analysis showed subtle differences of performance between different 
settings. Hence, we set size of hidden layers as constant for both main model and features model. The full dataset is 
randomly divided into two sets, 70% for training and 30% for testing, early stop will apply, if the testing error no 
longer improving. We use smoothed L1 loss as the model loss function, the formulation is described below: 

𝑙(𝑥, 𝑦) = ⁡{
0.5(𝑥 − 𝑦)2

𝛽 ,⁡⁡⁡⁡⁡⁡𝑖𝑓⁡|𝑥 − 𝑦| < ⁡𝛽

|𝑥 − 𝑦| + 0.5𝛽,⁡⁡⁡⁡⁡⁡⁡⁡𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒
⁡⁡⁡⁡ 

The model performances are most sensitive to the training periods; we test different combinations of training periods 
for the main model and the features model. Finally, we use 1 layer of LSTM layer connected with two dense connected 
layers. For the main model, we set the hidden layer size as 256, and for the features model, we set the hidden layer 
size as 328. 

 

 . CC-BY-NC-ND 4.0 International licenseIt is made available under a 
 is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity. (which was not certified by peer review)

The copyright holder for this preprint this version posted August 24, 2022. ; https://doi.org/10.1101/2022.08.23.22279132doi: medRxiv preprint 

https://doi.org/10.1101/2022.08.23.22279132
http://creativecommons.org/licenses/by-nc-nd/4.0/


 12 

2.4 Model evaluation metrics 
The formulations for AE, PAE, and WIS 29 are defined below. 𝐹 is the model prediction function;⁡𝑢, 𝑚 and 𝑙 are the 
upper bound, the median, and the lower bound of the predictions, respectively, and 𝑦 is the ground truth.  

𝐴𝐸 = |𝑚 − 𝑦| 

𝑃𝐴𝐸 =⁡
|𝑚 − 𝑦|

𝑦 ⁡× ⁡100% 

For each (1 − ⁡𝛼) × ⁡100% prediction interval, the WIS is defined as: 

𝐼𝑆𝛼(𝐹, 𝑦) = (𝑢 − 𝑙) +⁡
2
𝛼 ×

(𝑙 − 𝑦)⁡× 1(𝑦 < 𝑙) +⁡
2
𝛼 ×

(𝑦 − 𝑢) ⁡× ⁡1(𝑦 > 𝑢) 

𝑊𝐼𝑆𝛼{0:𝐾}(𝐹, 𝑦) =
1

𝐾 + 1/2 × (𝑤0 ×⁡ |𝑦 − 𝑚| +⁡∑{
𝐾

𝑘=1

𝑤𝑘 ⁡× ⁡𝐼𝑆𝛼𝑘(𝐹, 𝑦)}) 

where 𝑤𝑘 = ⁡ 𝛼𝑘
2

, in this paper we choose 𝐾 = 3 with 𝛼1 = 0 · 05, 𝛼2 = 0 · 2 and 𝛼3 = 0 · 5. 

2.5 Model Selection 
All the results in the main document are based on our best performance model. We apply sensitivity analysis for four 
alternative models under two time period separately. From August 2020 to Feb 2021, the epidemiological data do not 
contain vaccination data, while since February 2021 to August 2021, we add the vaccination data to the 
epidemiological data category. Static variables are automatically included for all the models. The category assignment 
for each variable can be found in main document table 1. 

There are two steps for the model selection: 1) Determine the optimal training periods for each candidate model. 2) 
Under the optimal training periods, find the best performing model.  For this part of the analysis, we evaluated our 
models based on point predictions.  

For each of the four models, we test different training periods for the main model (𝑡𝑚) and the features model (𝑡𝑓). 
Each prediction is evaluated by PAE and AE. In this study, we weighted them equally in model selection. The rule 
for selecting the best training period is described below: 

𝐿(𝑡𝑚, 𝑡𝑓) = ⁡∑(
𝐴𝐸𝑡𝑚,𝑡𝑓,𝑖

max⁡{𝐴𝐸𝑖}
⁡+⁡

𝑃𝐴𝐸𝑡𝑚,𝑡𝑓,𝑖

max⁡{𝑃𝐴𝐸𝑖}
)

𝑖

⁡, 𝑖 = 1, 2, 3, 4 

Where 𝐿(𝑡𝑚, 𝑡𝑓) is an aggregated loss function of hyperparameters 𝑡𝑚 and 𝑡𝑓; 𝐴𝐸𝑡𝑚,𝑡𝑓,𝑖 and 𝑃𝐴𝐸𝑡𝑚,𝑡𝑓,𝑖 are average 
absolute error and average percentage absolute error at forecasting window 𝑖;  max⁡{𝐴𝐸𝑖}  and max⁡{𝑃𝐴𝐸𝑖}  are 
maximum errors corresponding to all the combinations of  (𝑡𝑚, 𝑡𝑓). We select 𝑡𝑚 and 𝑡𝑓 that minimize the 𝐿(𝑡𝑚, 𝑡𝑓) 
(Supplementary Table 2).  

Supplementary Table 2: Summary of training periods selection. 
Input features Time Period 𝒕𝒎 𝒕𝒇 

Epidemiological data August 2020 to February 2021 60 45 

Epidemiological data February 2021 to August 2021 30 30 

Epidemiological, and mobility data August 2020 to February 2021 60 75 

Epidemiological, and mobility data February 2021 to August 2021 40 40 

Epidemiological, mobility, and survey data August 2020 to February 2021 45 75 

Epidemiological, mobility, and survey data February 2021 to August 2021 30 30 

Epidemiological, mobility, survey, and climate data August 2020 to February 2021 60 45 

Epidemiological, mobility, survey, and climate data February 2021 to August 2021 40 40 

Once the training periods were determined, we further evaluated the performances between different inputs. The 
results of comparing these four models with the CDC ensemble model from August 2020 to August 2021 are shown 
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in Appendix Figure 7 and 8 reveal the break down performance before and after February 2021. Both PAE and AE 
are used to evaluated performance, and the value for each bar in the plots is the average over all states and time.   

 
Supplementary Figure 7: Model comparison for cases models by the mean PAE and the mean AE for the period 
between August 2020 to September 2021. The y-axis represents the average absolute error for 1-4 weeks cases’ 
prediction results across the entire study period. 

 

 
 Supplementary Figure 8: Model comparison for cases models by the mean PAE and the mean AE during two periods: 
from August 2020 to February 2021, and from February 2021 to August 2021. The y-axis represents the average 
absolute error for 1-4 weeks cases’ prediction results across selected period. 
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3. Supplementary results 
3.1 Model performance across time by AE and WIS 
Appendix Figure 9, and 10 illustrate the relative performance of the LSTM against the CDC ensemble model for each 
of the 52-week periods evaluated, for 1 to 4 week forecast windows, based on AE and WIS respectively. Each pair of 
bar plots represents PAE distribution for all the states at a given week, where the green bar represents the error 
distribution for the multi-stage LSTM model, and the yellow bar represents the error distribution for the CDC 
ensemble model. The red curve represents the weekly reported cases at the national level. 

 

 
Supplementary Figure 9: Comparison of model performance (AE) between the multi-stage LSTM Model and the CDC 
ensemble model. For better visualize the results, we normalize AE by taking the log. The left y-axis represents the log 
AE for 1-4 weeks cases’ prediction results and right y-axis represents national level reported cases. 
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Supplementary Figure 10: Comparison of model performance (WIS) between the multi-stage LSTM Model and the 
CDC ensemble model. For better visualize the results, we normalize WIS by taking the log. The y-axis represents the 
log WIS for 1-4 weeks deaths’ prediction results. 
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3.2 Model performance across states by AE and WIS 
The Pearson’s correlation coefficient for raw WIS and the state-level population is 0·96. Thus, we normalized the 
WIS by population to remove population bias. For visualization purpose we convert AE into logarithm scale. The 
color scales represent the magnitude of each error metric; the scales are fixed as (1,10) and (6,11) for WIS and 
normalized log(AE), respectively. Hence, the deeper the color, the larger the error for the state. 

 
Supplementary Figure 11: Average model performance at the state level by normalized WIS. The color scales 
represent the magnitude of the error metric; the scales of normalized WIS are fixed in 1–10 range. The deeper color 
corresponds to larger error. 

 

 
Supplementary Figure 12: Average model performance at the state level by logarithm of AE. The color scales represent 
the magnitude of the error metric; the scales of logarithm AE are fixed in 6–11 range. The deeper color corresponds 
to larger error. 
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3.3 Reported Cases Trend by Region 
To better understand the presence of spatial patterns in model performance as illustrated in Figures 3, we generate 
and compare state-level confirmed case trends between each region.  
 
We first group states into each HHS region as shown in Appendix Figure 13 below. Most of the midwestern states 
are included in region 5, region 7, and region 8. 

 
Supplementary Figure 13: HHS regions map. 
 
We define a trend variable 𝑇𝑖𝑡 for each state 𝑖 at each week 𝑡 using the weekly confirmed cases from August 2020 to 
August 2021 for each state as follows: 

𝑇𝑖𝑡 = ⁡
𝐶𝑖𝑡

max⁡(𝐶𝑖1,… , 𝐶𝑖n)
 

where 𝐶𝑖𝑡 is the number of confirmed cases for state 𝑖 at week 𝑡, and max⁡(𝐶𝑖1,… , 𝐶𝑖n) is the maximum weekly 
confirmed cases over the selected weeks 1 to 𝑛, for state 𝑖. 𝑇𝑖𝑡 ∈ [0, 1] represents how reported cases for state 𝑖 at 
week 𝑡 compare to the highest reported cases over the entire period. 
  
For each HHS region 𝑗, we calculate the average trendline 𝑇̅𝑗𝑡 based on all state trends within the region: 

𝑇̅𝑗𝑡 =
∑ 𝑇𝑖𝑡𝑖∈𝑗

𝑁𝑗
⁡ 

where 𝑁𝑗 is the number of states within HHS region 𝑗. This variable represents the normalized reported cases trend 
for each HHS region (i.e. when the most of states within a region show decreasing or increasing trend). The 
normalized 𝑇̅𝑗𝑡 variable enables better comparison of trends across regions since 𝑇̅𝑗𝑡 ∈ [0, 1].The results of 𝑇̅𝑗𝑡 are 
shown in Appendix Figure 14.  
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Supplementary Figure 14: Weekly confirmed cases trend 𝑇̅𝑗𝑡 by HHS regions.  
 
Most of the midwestern states are included in region 5, region 7, and region 8. This plot illustrates different 
transmission patterns for regions 5, 7 and 8, relative to the rest of the country between November 2020 and February 
2021. Specifically, while most of regions have upward 𝑇̅𝑗𝑡, the three regions mentioned above have decreasing 
trends. This result could be a possible explanation for why the forecasts for the midwestern states is less accurate 
relative to the rest of the country (as shown in Figure 3 and Appendix Figure 11). 
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3.4 An example of classification for different outbreak phases 

 
Supplementary Figure 15: Week group based on weekly growth rate for nine selected states. The y-axis represents the 
weekly reported cases and the color of the dots indicates the cluster group for the given week.  

 

 
 
 
 
 
 
 
 
 
 
 
 
 

 . CC-BY-NC-ND 4.0 International licenseIt is made available under a 
 is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity. (which was not certified by peer review)

The copyright holder for this preprint this version posted August 24, 2022. ; https://doi.org/10.1101/2022.08.23.22279132doi: medRxiv preprint 

https://doi.org/10.1101/2022.08.23.22279132
http://creativecommons.org/licenses/by-nc-nd/4.0/


 20 

 
3.5 Model Performance by Outbreak Phase 
 

 
Supplementary Figure 16: Evaluation of the CDC Ensemble model by outbreak phases based on PAE. The colors 
represent different outbreak phases, and each bar represents the distribution of PAE in corresponding outbreak 
phases. 
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Supplementary Figure 17: Evaluation of the multi-stage LSTM model by outbreak phases based on WIS. The colors 
represent different outbreak phases, and each bar represents the distribution of WIS in corresponding outbreak 
phases. 
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Supplementary Figure 18: Evaluation of the CDC Ensemble model by outbreak phases based on WIS. The colors 
represent different outbreak phases, and each bar represents the distribution of WIS in corresponding outbreak 
phases. 
 
 
 
 
3.6 Compare model performance by outbreak with the CDC Ensemble model 
In addition to phase-based evaluation of our model directly, we also quantify our model performance relative to the 
CDC ensemble model for each outbreak phase. For each outbreak phase group 𝑖 and forecasting window 𝑗, we define 
a probability 𝑃𝑃𝐴𝐸

𝑖,𝑗  to indicate the frequency that multi-stage LSTM model outperforms the CDC ensemble model: 

𝑃𝑃𝐴𝐸
𝑖,𝑗 = ⁡

{𝑃𝐴𝐸𝐿𝑆𝑇𝑀
𝑖,𝑗 < ⁡𝑃𝐴𝐸𝐶𝐷𝐶

𝑖,𝑗 }⁡
𝑁𝑖,𝑗 ⁡

 

where {𝑃𝐴𝐸𝐿𝑆𝑇𝑀
𝑖,𝑗 < ⁡𝑃𝐴𝐸𝐶𝐷𝐶

𝑖,𝑗 } represents the number of times that the multi-stage LSTM model has smaller PAE than 
the CDC ensemble within phase group 𝑖 and at forecasting window 𝑗, 𝑁𝑖,𝑗  represents the total number of predictions 
assigned to one of five quantile outbreak phase group 𝑖⁡at⁡forecasting⁡window⁡𝑗. Results of 𝑃𝑃𝐴𝐸

𝑖,𝑗  are illustrated in 
Appendix Figure 19, which illustrates the probability of LSTM performing better than the CDC Ensemble model 
based on PAE under different outbreak phases. The colors represent different outbreak phases and the y axis plots the 
𝑃𝑃𝐴𝐸
𝑖,𝑗 . The grey dash line indicates a probability of 0·5.  The results based on AE are equivalent to PAE, hence we only 

present the analysis based on PAE and WIS.  
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Supplementary Figure 19: The probability of LSTM performing better than the CDC Ensemble model based on PAE 
under different outbreak phase. The colors represent different outbreak phase and y axis plots the probability that the 
multi-stage LSTM outperforms the CDC ensemble under each phase group. The grey dash line indicates a probability 
of 0·5.  

Similar to the definition of 𝑃𝑃𝐴𝐸
𝑖,𝑗 , we define 𝑃𝑊𝐼𝑆

𝑖,𝑗  as the probability that multi-stage LSTM model outperforms the CDC 
ensemble model based on WIS: 

𝑃𝑊𝐼𝑆
𝑖,𝑗 = ⁡

{𝑊𝐼𝑆𝐿𝑆𝑇𝑀
𝑖,𝑗 < ⁡𝑊𝐼𝑆𝐶𝐷𝐶

𝑖,𝑗 }⁡
𝑁𝑖,𝑗 ⁡

 

where {𝑊𝐼𝑆𝐿𝑆𝑇𝑀
𝑖,𝑗 < ⁡𝑊𝐼𝑆𝐶𝐷𝐶

𝑖,𝑗 } represents the number of times that the multi-stage LSTM model have smaller WIS 
than the CDC ensemble within phase group 𝑖  and at forecasting window 𝑗 , 𝑁𝑖,𝑗  represents the total number of 
predictions assigned to quantile outbreak phase group 𝑖⁡at⁡forecasting⁡window⁡𝑗. Results of 𝑃𝑊𝐼𝑆

𝑖,𝑗  are illustrated in 
Appendix Figure 20, which illustrates the probability of LSTM performing better than the CDC Ensemble model 
based on WIS under different outbreak phases. 
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Supplementary Figure 20: The probability of LSTM performing better than the CDC Ensemble model based on WIS 
under different outbreak phase. The colors represent different outbreak phase and y axis plots the probability that the 
multi-stage LSTM outperforms the CDC ensemble under each phase group. The grey dash line indicates a probability 
of 0·5.  

 

 

 
 
 
 
 
 
 
 
 
3.7 Comparing model performance after adding genomic cases data by AE and WIS 
Appendix Figure 21 and 22 illustrate the results for three different models based on AE and WIS: (a) Multi-stage 
LSTM model without variant cases data, (b) Multi-stage LSTM model with variant cases data and (c) CDC Ensemble 
model. The x-axis is the week that the predictions are made on. Each pair of bar plots represents PAE distribution for 
the selected states at a given week, where the green bar represents the error distribution for the multi-stage LSTM 
model without genomic data, purple bar represents the error distribution for the multi-stage LSTM model with 
genomic data, and the yellow bar represents the error distribution for the CDC ensemble model. 
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Supplementary Figure 21: Model performance based on log(AE).  for three different models: (a) Multi-stage LSTM 
model without variant cases data, (b) Multi-stage LSTM model with variant cases data and (c) CDC Ensemble model. 
The x-axis is the week that the predictions are made on. Each pair of bar plots represents PAE distribution for the 
selected states at a given week, where the green bar represents the error distribution for the multi-stage LSTM model 
without genomic data, purple bar represents the error distribution for the multi-stage LSTM model with genomic data, 
and the yellow bar represents the error distribution for the CDC ensemble model. 
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Supplementary Figure 22: Model performance based on log(WIS).  for three different models: (a) Multi-stage LSTM 
model without variant cases data, (b) Multi-stage LSTM model with variant cases data and (c) CDC Ensemble model. 
The x-axis is the week that the predictions are made on. Each pair of bar plots represents PAE distribution for the 
selected states at a given week, where the green bar represents the error distribution for the multi-stage LSTM model 
without genomic data, purple bar represents the error distribution for the multi-stage LSTM model with genomic data, 
and the yellow bar represents the error distribution for the CDC ensemble model. 

 

 

 

 

 
 
 
 
 
 
 
 
 
3.8 Results of weekly deaths forecasting 
We also apply the models for all epidemiological weeks from September 2020 to September 2021, each week we 
make weekly death predictions for the next 4 weeks. Appendix Figure 23-25 compares the model performance of the 
Multi-stage LSTM model with the CDC ensemble model at the state-level based on different error metric. Each pair 
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of bar plots represents error distribution for all the states at given week, where the green bar represents the error 
distribution for the Multi-stage LSTM model and the yellow bar represents the error distribution for the CDC ensemble 
model. The red curve indicates the weekly reported deaths at the national level.  

 
Supplementary Figure 23:  Comparison of Deaths performance between the multi-stage LSTM Model and the CDC 
ensemble model based on PAE. The y-axis represents the PAE for 1-4 weeks deaths’ prediction results. Each pair of 
bar plots represents PAE distribution for all the states at a given week, where the green bar represents the error 
distribution for the multi-stage LSTM model, and the yellow bar represents the error distribution for the CDC 
ensemble model. The red curve represents the weekly reported deaths at the national level. The left y-axis represents 
the PAE by different forecasting windows and right y-axis represents national level reported deaths.  
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Supplementary Figure 24:  Comparison of Deaths performance between the multi-stage LSTM Model and the CDC 
ensemble model based on log AE. The y-axis represents the AE for 1-4 weeks deaths’ prediction results. The y-axis 
represents the log(AE) for 1-4 weeks deaths’ prediction results. Each pair of bar plots represents log(AE) distribution 
for all the states at a given week, where the green bar represents the error distribution for the multi-stage LSTM model, 
and the yellow bar represents the error distribution for the CDC ensemble model. The red curve represents the weekly 
reported deaths at the national level. The left y-axis represents the log(AE) by different forecasting windows and right 
y-axis represents national level reported deaths. 
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Supplementary Figure 25:  Comparison of Deaths performance between the multi-stage LSTM Model and the CDC 
ensemble model based on log WIS. The y-axis represents the log WIS for 1-4 weeks deaths’ prediction results. The 
y-axis represents the log(WIS) for 1-4 weeks deaths’ prediction results. Each pair of bar plots represents log(WIS) 
distribution for all the states at a given week, where the green bar represents the error distribution for the multi-stage 
LSTM model, and the yellow bar represents the error distribution for the CDC ensemble model. The red curve 
represents the weekly reported deaths at the national level. The left y-axis represents the log(WIS) by different 
forecasting windows and right y-axis represents national level reported deaths. 
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For model selection for deaths prediction model, same as cases prediction model, we assign data into four categories 
and add hospitalization as part of the epidemiological data. The model performance based on different input data is 
shown in Appendix Figure 26.  

 
Supplementary Figure 26:  Model comparison for deaths models by mean PAE and mean AE for the period between 
September 2020 to September 2021. The y-axis represents the average absolute error for 1-4 weeks deaths’ prediction 
results across selected period. 
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