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Abstract  1 

Background: The National Institute for Health Research Health Informatics Collaborative 2 

(NIHR HIC) viral hepatitis theme is working to overcome governance and data challenges to  3 

collate routine clinical data from electronic patients records from multiple UK hospital sites 4 

for translational research. The development of hepatocellular carcinoma (HCC) is a critical 5 

outcome for patients with viral hepatitis with the drivers of cancer transformation poorly 6 

understood.  7 

 8 

Objective: This study aims to develop a natural language processing (NLP) algorithm for 9 

automatic HCC identification from imaging reports to facilitate studies into HCC. 10 

 11 

Methods: 1140 imaging reports were retrieved from the NIHR HIC viral hepatitis research 12 

database v1.0. These reports were from two sites, one used for method development (site 1) 13 

and the other for validation (site 2). Reports were initially manually annotated as binary 14 

classes (HCC vs. non-HCC). We designed inference rules for recognising HCC presence, 15 

wherein medical terms for eligibility criteria of HCC were determined by domain experts. A 16 

rule-based NLP algorithm with five submodules (regular expressions of medical terms, terms 17 

recognition, negation detection, sentence tagging, and report label generation) was 18 

developed and iteratively tuned.  19 

 20 

Results: Our rule-based algorithm achieves an accuracy of 99.85% (sensitivity: 90%, 21 

specificity: 100%) for identifying HCC on the development set and 99.59% (sensitivity: 100%, 22 

specificity: 99.58%) on the validation set. This method outperforms several off-the-shelf 23 

models on HCC identification including “machine learning based” and “deep learning based” 24 

text classifiers in achieving significantly higher sensitivity. 25 

 26 

Conclusion: Our rule-based NLP method gives high sensitivity and high specificity for HCC 27 

identification, even from imbalanced datasets with a small number positive cases, and can 28 

be used to rapidly screen imaging reports, at large-scale to facilitate epidemiological and 29 

clinical studies into HCC.  30 

 31 
Keywords: Hepatocellular Carcinoma (HCC), Imaging Reports, Free-text, Natural Language 32 

Processing (NLP), Rule-based, HBV/HCV 33 
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Statement of Significance 34 

 35 

Problem: Establishing a cohort of hepatocellular carcinoma (HCC) from imaging reports via 36 

manual review requires advanced clinical knowledge and is costly, time consuming, 37 

impractical when performed on a large scale. 38 

 39 

What is Already Known: Although some studies have applied natural language processing 40 

(NLP) techniques to facilitate identifying HCC information from narrative medical data, the 41 

proposed methods based on a pre-selection by diagnosis codes, or subject to certain 42 

standard templates, have limitations in application.  43 

 44 

What This Paper Adds: We have developed a hierarchical rule-based NLP method for 45 

automatic identification of HCC that uses diagnostic concepts and tumour feature 46 

representations that suggest an HCC diagnosis to form reference rules, accounts for 47 

differing linguistic styles within reports, and embeds a data pre-processing module that can 48 

be configured and customised for different reporting formats. In doing so we have overcome 49 

major challenges including the analysis of imbalanced data (inherent in clinical records) and 50 

lack of existing unified reporting standards.  51 
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Background 52 

Primary liver cancer (of which the vast majority are hepatocellular carcinoma; HCC) is the 53 

sixth most common cancer and the fourth leading cause of cancer-related mortality globally 54 

(1). There were approximately 0.9 million incident cases of HCC in 2020 and this will rise to 55 

an estimated ~1.4 million in 2040 (2). HCC typically develops in the setting of chronic liver 56 

disease;  chronic infection with hepatitis B or C virus (HBV or HCV), alcohol and metabolic 57 

syndromes are the most frequent HCC risk factors (3). However, most patients with HCC are 58 

diagnosed in the late stages of the disease when treatment options are limited (4), leading to 59 

poor outcomes (~12% 5-year survival rate for these late-stage HCC patients (5)). 60 

 61 

Imaging investigations are currently crucial in HCC surveillance and diagnosis as there are 62 

no sensitive tumour biomarkers for accurate early HCC detection (6). The European 63 

Association for the Study of the Liver (EASL) clinical guidelines (7) strongly recommend that 64 

HCC surveillance using abdominal ultrasound is performed every 6 months in populations at 65 

high-risk of HCC. Imaging modalities including multiphasic computed tomography (CT) or 66 

magnetic resonance imaging (MRI), usually with intravenous contrast injection, are non-67 

invasive methods currently recommended in clinical guidelines for HCC diagnosis  in 68 

patients with liver cirrhosis —usually where liver nodules have first been detected by 69 

ultrasound (7-10). Imaging reports are typically generated, in non-standardised narrative 70 

format by radiologist, after reviewing the scans (11). These reports typically contain vital 71 

information about the presence or absence, and stage of HCC. 72 

 73 

Despite their potential utility, imaging reports exist mainly as free-text clinical narrative, 74 

which are difficult to query for secondary use. The potential utility of accurate automatic 75 

interpretation of these reports is enormous and includes clinical use in audit, diagnostic 76 

reporting and dissemination, financial management and planning of health service provision. 77 

Additionally these reports could be used for large national research programs, such as NIHR 78 

HIC,  that seek to address important research questions for clinical benefit including HCC 79 

epidemiology, risk factors, biomarkers for early detection and clinical outcomes (12). 80 

Establishing an HCC cohort from unstructured imaging report data via manual review is 81 

costly, time consuming, impractical and requires advanced clinical knowledge when 82 

performed on a large scale (13). In the United States, the American College of Radiology 83 

(ACR) published the Liver Imaging Reporting and Data System (LI-RADS) to standardise the 84 

reporting of various imaging modalities for HCC (8), with each report assigned to a category. 85 

This means that these reports are relatively structured for easy for data query (14). However, 86 

this system has not yet been widely adopted in the UK, and it is currently impossible to 87 
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gather even simple information, like HCC diagnosis from imaging reports in an automated 88 

fashion. There is a clear need to leverage computational approaches for extracting 89 

information such as HCC diagnosis from unstructured imaging reports.  90 

 91 

The classification of HCC using imaging reports requires extracting relevant words and 92 

phrases that define an HCC diagnosis from these free-text reports, for which natural 93 

language processing (NLP) techniques provide promising automatic solutions. NLP is a 94 

range of computational techniques for analysing and representing naturally occurring texts at 95 

different levels of linguistic analysis for the purpose of accomplish human-like language 96 

processing for a range of tasks or applications. Text classification leveraging NLP is an 97 

attractive method that may be used to facilitate the development of precisely phenotyped 98 

clinical cohorts using free-text medical records (13, 19, 20). Over recent years, machine 99 

learning (ML) or deep learning (DL) based NLP models have been shown to be effective in 100 

text classification tasks (15, 16); however, in the medical domain there is often a scarcity of 101 

large amounts of manually labelled data that is required for the robust training of such 102 

models. More recently, advanced NLP techniques, one of which uses pre-trained language 103 

models based on transformers have been developed (17), for which minimal annotated data 104 

is required to fine-tune the model for specific downstream NLP tasks. However, it is still 105 

difficult to leverage the existing pre-trained models for text classification where the data is 106 

highly imbalanced such that there is a significantly lower proportion of imaging reports with 107 

HCC cases compared to those that do not suggest a HCC diagnosis. To overcome the 108 

challenges of small sample size of labelled data and high-degree imbalance of data, in this 109 

study we propose to develop a rule-based NLP method to classify imaging reports for HCC 110 

identification, as diagnosis information extraction based on HCC inference rules does not 111 

require large amounts of manually-annotated data as well as can handle the imbalance 112 

issue by direct keywords recognition and matching. 113 

 114 

Previous studies have applied NLP techniques including ML or rule-based methods or hybrid 115 

approaches into HCC-related medical text to extract standardised descriptions of anatomical 116 

findings, annotate tumour characteristics, or track the tumour statuses based on reports from 117 

patients with HCC (12, 22-24). Other studies have focused on classifying imaging reports to 118 

predict downstream radiology resource utilisation in patients undergoing HCC 119 

surveillance (25). However, there are few studies (13,14) addressing the same task as this 120 

study that focused on how to identify information that defines an HCC diagnosis from 121 

imaging reports. One study conducted text classification for HCC identification using imaging 122 

reports that were pre-selected by international classification of disease (ICD) codes (13), 123 

which inherently does not address the high imbalance issue of imaging reports, nor consider 124 
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the misclassification issue by diagnosis codes. Another study used a large bank of standard 125 

LI-RADS formatted imaging reports as annotated data to train models (14), which is not 126 

applicable in the region/ countries that do not widely use such template system for reporting 127 

imaging examination findings. Therefore, we set out to develop a rule-based NLP method 128 

which (a) utilises both diagnostic concepts and tumour feature representations that suggest 129 

an HCC diagnosis to form reference rules, (b) takes into account linguistic styles in different 130 

sections of imaging reports and the matching priority of medical terms, and (c) embeds data 131 

preprocessing steps that can be configured and customised for different reporting formats. 132 

Given these, our method will be capable of classifying HCC using imaging reports in real-133 

world datasets that are being drawn automatically from operational systems (i.e., without 134 

pre-selection by diagnosis codes), as well as can be applied in imaging reports with different 135 

reporting styles, rather than being subject to certain templates e.g., LI-RADS reporting 136 

standard. 137 

 138 
 139 
Methods and Materials 140 

Data sources 141 

Imaging reports used in this study were collected from patients with HBV, HCV, or HEV and 142 

stored in the central data repository of the NIHR HIC viral hepatitis theme, for which the data 143 

collection process has been detailed previously (15, 16). The imaging reports for this study 144 

cover various imaging modalities, including CT, MRI, and ultrasound, and were originally 145 

from two different sites: Oxford University Hospitals NHS Foundation Trust (site 1) and 146 

Imperial College Healthcare NHS Trust (site 2). Imaging reports were manually labelled (i.e., 147 

assigning a binary label ('yes’ or ‘no’) to an imaging report to indicate whether there is HCC 148 

presence in that imaging examination). We then selected imaging reports that have been 149 

manually labelled  to develop and validate a rule-based method. 150 

 151 

Rule-based NLP model  152 

The framework of the proposed rule-based NLP method for HCC identification from imaging 153 

reports is shown in Figure 1, including text preprocessing, HCC inference rules, rule-based 154 

algorithm, and iterative development. 155 

 156 

Module 1: Text preprocessing using NLP tools 157 

All retrieved raw reports were preprocessed in Python 3.6 using NLP typical techniques, 158 

including Natural Language Toolkit (NLTK) and spaCy. Firstly, we excluded those invalid 159 

reports, e.g., with a “due to image omission or degradation” note, or blank reports. Then for 160 
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the eligible reports, scripts were made to clean and pre-process the text (section extraction 161 

or removal). In this part, we applied the keywords matching algorithm to extract the 162 

impression part of an imaging report or remove the irrelevant description. Specifically, 163 

different strategies were used to tackle reports based on their characteristics (Figure S1): 164 

• If an “impression” section was available in a report, we used this section for HCC 165 

identification. This was performed using regular expression for the words 166 

“impression”, “opinion”, “conclusion”, “summary”, “comment”, or their corresponding 167 

abbreviations or synonyms.  168 

• For those reports without an “impression” section but with a “findings” section 169 

available,  we extracted the “findings” section. Additionally, as the “findings” section 170 

typically includes descriptions of multiple body systems, we excluded the text 171 

irrelevant to liver system by removing sentences mentioning other body systems. To 172 

perform this process we built a lexicon of body systems that are not relevant to HCC 173 

information extraction, such as gallbladder, spleen, kidney, or their synonyms, and 174 

conditions related to these organs (eg. gallstone, splenomegaly, hydronephrosis) 175 

(Table S1).  176 

• For those reports without an explicit “impression” or “findings” section title, we 177 

considered a removal of irrelevant content from the report. Specifically, as we are 178 

interested in the findings of the current imaging investigation, we excluded the 179 

sections such as “reason for study”, “reason for examination”, “clinical history”, or 180 

“clinical information”, by using keyword matching filters, and used the remaining text 181 

for a report.  182 

• For those reports without any section titles, we split the report and excluded the text 183 

irrelevant to findings of liver system based on the built lexicon of other body systems 184 

as mentioned above.  185 

 186 

For the extracted text, we then employed text processing techniques to reduce the 187 

complexity and noise of the data, and prepare the substantive content for further analysis. In 188 

particular, we first split reports into paragraphs using the new line character (as it not 189 

uncommon that imaging reports list relevant findings/impressions line by line) and then 190 

tokenise text into individual sentences. We also used lemmatization technique to 191 

standardise words and removed stop words (e.g., “an”, “of”, and “the”) that are used for 192 

connection and grammar but do not provide informative meaning. However, we did not 193 

consider words such as “nor”, “not”, “none”, “can’t”, “aren’t”, “amount” as stop words in this 194 

study, as they have negation meaning or useful information.  195 

 196 

 . CC-BY-NC-ND 4.0 International licenseIt is made available under a 
 is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity. (which was not certified by peer review)

The copyright holder for this preprint this version posted August 24, 2022. ; https://doi.org/10.1101/2022.08.23.22279119doi: medRxiv preprint 

https://doi.org/10.1101/2022.08.23.22279119
http://creativecommons.org/licenses/by-nc-nd/4.0/


 8 

Module 2: Design of HCC inference rules for imaging reports 197 

To build inference rules for HCC from imaging reports, key terms for the inclusion and 198 

exclusion criteria of HCC were highlighted by a senior hepatologist (E.B.) to form a list of 199 

“seed terms”. We then expanded the list based on multiple clinical guidelines for diagnosis of 200 

HCC based on imaging examination (7-9, 17). In the development phase, we initially ranked 201 

the priorities of the key terms to form diagnostic rules, with a reference to the LI-RADS (8). 202 

Typically, medical terms presenting in the “impression” section are different from those in the 203 

“findings” section in an imaging study report, as the former tend to be conclusive/diagnostic 204 

terms (e.g., “no evidence of hepatoma”) whilst the latter tend to be descriptive terms of 205 

organ/tumour features (e.g., “There are two subcentimetre foci of hypervascularity within 206 

segment 8 of the liver. There is no washout demonstrated”). Therefore, to identify HCC 207 

information from different sections we further classified key terms into two levels, one 208 

concerning concepts of tumour features and the other concerning the variations of tumour 209 

diagnostic concepts. The medical terms for HCC identification are provided in Table 1. 210 

 211 

Module 3: Development of rule-based NLP algorithm for HCC identification 212 

We used the initially-developed inference rules to design a rule-based NLP algorithm 213 

prototype. The logical process of the algorithm is to tag each sentence within a report and 214 

then aggregating all the tags to generate a final label for the report based on the inference 215 

rules set out (Figure S2). The algorithm module contains five submodules as follows: 216 

• Regular expressions of medical terms. We iteratively built and tuned the regular 217 

expressions of target medical terms based on the development set (Table S2).  218 

• Relevant medical terms recognition. We matched and extracted terms from imaging 219 

reports by the built regular expressions. To facilitate the following step of negation 220 

detection we replaced a matched term with a corresponding standard terminology 221 

that can be accurately recognised by a named entity recognition (NER) model. 222 

• Negation detection. For detecting if a target term is negated in imaging reports, we 223 

built a negation detection module based on negSpacy (18) and Stanza. negSpacy is 224 

a pipeline developed based on NegEx (19) for identifying negations in text. Stanza  is 225 

a collection of state-of-the-art NLP tools, for syntactic analysis and NER in both 226 

general and biomedical domains (20, 21). Specifically, our negation detection module 227 

firstly wraps Stanza, using the pre-trained syntactic analysis model based on Medical 228 

Information Mart for Intensive Care III (MIMIC-III) database and the pre-trained NER 229 

model based on MIMIC-III imaging reports. Then we added negSpacy components 230 

into our negation detection module. For negation patterns in negSpacy, we used the 231 
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clinical sensitive version designed for clinical domain (18), and also added new 232 

customised negation patterns for imaging reports based on our development set. 233 

• Sentence tagging based on priority (sentence-level). With identifying medical terms 234 

and detecting negation, we sequentially tagged a sentence based on the priority 235 

ranking to obtain a list of candidate tags for each sentence. We then assigned the 236 

tag with the highest priority among the candidate tags to each sentence. As a result, 237 

a set of sentence tags will be generated for each report. 238 

• Inferring report label (document-level). To infer a final label (HCC or non-HCC) for 239 

each report, we sorted the sentence tags by the priority ranking, and generated 240 

report label using the sentence tag with highest priority. 241 

 242 

Module 4: Iterative tuning process for the rule-based NLP algorithm 243 

We used the development set to tune the designed rule-based NLP algorithm (Figure 1, 244 

Module 4). Specifically, we first utilised the algorithm to label reports, then checked the 245 

reason for errors so as to adjust the key terms lists and their priority ranking accordingly. 246 

The tuning process was iteratively performed until the accuracy could not be further 247 

improved.  248 

 249 

Evaluation metrics 250 

To evaluate the algorithm performance, a confusion matrix was generated. The true positive 251 

(TP) value indicates the number of HCC-labelled reports that are correctly recognised by the 252 

algorithm as HCC, whilst the true negative (TN) value indicates the number of reports 253 

labelled with non-HCC and correctly recognised by the algorithm as non-HCC. The false 254 

positive (FP) value represents the number of reports labelled with non-HCC but wrongly 255 

recognised by the algorithm as HCC, whilst the false negative (FN) value represents the 256 

number of reports labelled with HCC but wrongly recognised by the algorithm as non-HCC. 257 

We used the following metrics to evaluate algorithm performance: sensitivity (aka, recall or 258 

true positive rate), TP/ (TP + FN); specificity (aka, true negative rate), TN/ (TN + FP); 259 

precision (aka, positive predictive value (PPV)), TP/ (TP + FP); accuracy, (TP + TN)/ (TP + 260 

FP + TN + FN), and; F1 score, TP/ (TP+1/2(FP+FN)). As the original labels of each report 261 

were binary, “probably positive” or “definitely positive” from our algorithm were collapsed as 262 

“positive”, and “probably negative” or “definitely negative” were collapsed as “negative”. 263 

 264 

ML and DL models for comparison 265 

We compared the performance of our rule-based NLP algorithm against the following three 266 

categories of off-the-shelf supervised learning models: (a) conventional simple yet 267 
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competitive ML based text classifiers, including Naive Bayes (NB), Logistic Regression (LR), 268 

and Support Vector Machine (SVM), with bag-of-words (BOW) or term frequency-inverse 269 

document frequency (TF-IDF) as the text representation methods (22). (b) DL based text 270 

classification architectures, including text convolutional neural network (CNN) (23) and 271 

hierarchical attention networks (HAN) (24), with word2vec as the representation method of 272 

text (25, 26). To obtain word embedding related to target domain of imaging reports, we 273 

trained a word2vec model on all reports of CT, MRI, or ultrasound scans from MIMIC-III 274 

database. (c) Fine-tuning pre-trained DL models with contextual representation of text, 275 

where we used Bidirectional Encoder Representations from Transformers (BERT) (27) and 276 

its variant versions in clinical domain including ClinicalBERT (28) and BlueBERT (29). For all 277 

the supervised learning models, we used data from site 1 (the development set) to train 278 

classifiers and evaluate the performance on data from site 2 (the test set) with the metrics 279 

above. As data are highly imbalanced, we applied cost-sensitive learning scheme during 280 

training to take into account the skewed distribution (30). 281 

 282 

RESULTS 283 

Descriptive characteristics of imaging reports 284 

We included 1140 imaging reports with labels available (655 from site 1 and 485 from site 2) 285 

for this study. The earliest reports are sourced from the year 2003, while the latest reports 286 

are from the year 2019. Due to the long timespan (~15 years) and reports collected from 287 

different sites, these imaging reports have variable reporting and linguistic styles. For both 288 

sites, the imaging modality of most reports was ultrasound, with CT and MRI examinations 289 

performed less frequently, in accordance with clinical guidelines (Table 2). For site 1 vs. site 290 

2, the prevalence of HCC presence in ultrasound reports was 0.84% (5/598) vs. 1.27% 291 

(4/314), whilst 18.18% (6/33) vs. 5.43% (5/92) for CT reports and 12.50% (3/24) vs. 3.80% 292 

(3/79) for MRI reports. 293 

 294 

Text characteristics of reports across the two sites are summarised in Table 3. The 295 

proportion of reports that had “impression” sections was varied between sites. Only 18% 296 

(117/655) of reports from site 1 included an “impression” section, while the remaining 82% of 297 

reports did not, making HCC identification more challenging. In contrast, 75% (366/485) of 298 

the reports from site 2 had “impression” sections. The number of sentences or words per 299 

report was significantly different between the two sites, both before and after text pre-300 

processing (all p values <0.001), which reflects significant heterogeneity between sites. The 301 

information of running time for data preprocessing are provided in Table S3. 302 

 303 
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Performance on the development set 304 

After iteratively tuning and amending the algorithm using the development set, the priority 305 

ranking of terms in diagnostic rules were finalised (Table 1). Compared to the original labels 306 

in the development set, our algorithm obtained an overall consistency of 99.38%, with 71.43% 307 

consistency on HCC cases and 100% on non-HCC cases, with a short duration of running 308 

time (Table S3). The confusion matrix is shown in Figure 2A. However, among the five 309 

HCC-labelled reports being identified as non-HCC by the algorithm, four were actually non-310 

HCC reports after further manual checking, and the remaining one was incorrectly identified 311 

by the algorithm (Table S4). To further verify the correctness of our algorithm to label non-312 

HCC cases, we randomly selected 10% (64/641) of original non-HCC reports by stratified 313 

sampling (59 for ultrasound, 3 for CT, 2 for MRI), and manually checked the ground truth 314 

labels of these reports. We found that all the 64 reports were accurately identified by the 315 

algorithm. We then generated a new confusion matrix after data correction (Figure 2B), and 316 

the overall accuracy is 99.85%, with 90% (9/10) of sensitivity and 100% (645/645) of 317 

specificity.  318 

 319 

We summarised the frequency of terms used for the identification process in the 320 

development set (Figure 2C). HCC presence identification was derived mostly based on 321 

“(probable) HCC” or its synonyms (“hepatoma/ hepatocellular carcinoma”), followed by 322 

“enlarged liver lesion” or “hypervascular lesion”. In contrast, non-HCC (HCC absence) 323 

identification was inferred mostly based on normal examination or negation of liver lesion, 324 

followed by benign tumour or negation of HCC. 325 

 326 

 Performance on the validation set 327 

Compared to the originally collected labels in the test set, the algorithm achieved an overall 328 

consistency of 99.18% (481/485), with 91.67% consistency (11/12) on HCC cases, and 329 

99.37% (470/473) on non-HCC cases; the confusion matrix is shown in Figure 3A. However, 330 

for the one HCC-labelled report being identified as non-HCC, the ground-truth label of the 331 

report is in fact “non-HCC” (Table S5). For the three non-HCC-labelled reports being 332 

identified as HCC, one report was in fact highly suspicious of HCC, two reports were 333 

equivocal or indeterminate (Table S5). To further verify the correctness of our proposed 334 

algorithm on non-HCC cases in the test set, 47 reports (10%) of the original 468 non-HCC 335 

reports were randomly selected, for which ground truth labels were manually checked. We 336 

found that all these 47 reports were accurately identified by our proposed NLP algorithm.  337 

 338 

After data correction, the overall accuracy of the rule-based NLP method on the test set is 339 

99.59% (483/485), with 100% sensitivity and 99.58% (471/473) specificity (Figure 3B). 340 
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Similar to that of the development set, we also summarised the frequency of terms used for 341 

identifying the process in the test set (Figure 3C). HCC presence identification was derived 342 

mostly based on “(probable) HCC” or its synonyms (“hepatoma/ hepatocellular carcinoma”), 343 

followed by “liver lesion” and “hypervascular lesion”. In contrast, non-HCC (HCC absence) 344 

identification was derived mostly based on normal examination or negation of liver lesion, 345 

then followed by negation of HCC. 346 

 347 

Comparison of performance between our rule-based method and ML/DL models  348 

We used the development set (after data correction) to train ML and DL based models. The 349 

performance comparisons between the proposed rule-based NLP method and supervised 350 

learning models in the test set are summarised in Table 4. The rule-based method was 351 

superior to conventional ML models regardless of the feature representation method (BOW 352 

or TF-IDF) as well as outperformed DL models (CNN, HAN, BERT, ClinicalBERT, or 353 

BlueBERT). Particularly, the rule-based method achieved significantly higher sensitivity 354 

compared to other models, although the rule-based method demonstrated only a marginal 355 

improvement in overall accuracy due to a small number of HCC cases. HAN with word2vec 356 

obtained a higher sensitivity (75%) than other supervised learning models; however, it is still 357 

significantly inferior to the rule-based method (100%). Although the pre-trained transformers 358 

models can achieve comparable specificity (97.67% to 99.79%), they had low sensitivity 359 

(33.33% to 58.33%) due to small sample size of data for the class of HCC. The rule-based 360 

method was capable of handling skewed data distributions by achieving a much higher F1 361 

score and prevision (F1 score = 0.9231; Precision = 99.59%) compared to supervised 362 

learning models regardless of model architecture and feature representation method (F1 363 

score = 0.11 to 0.47; Precision = 6.3% to 80.0%). 364 

 365 

DISCUSSION  366 

In this study, we designed a rule-based NLP algorithm to identify the presence of HCC from 367 

free-text imaging reports. With a reference to ground-truth labels, the proposed rule-based 368 

NLP method achieve superior performance, especially higher sensitivity in highly-369 

imbalanced datasets with small numbers of positive cases, compared to existing off-the-370 

shelf models. The inner-working and sensitivity of the proposed method are  not related to 371 

imaging modality, because we considered the major features used for HCC identification in 372 

different imaging modalities. For those labelled reports, the proposed method can be used to 373 

correct data, as we found some reports were incorrectly labelled during data collection, 374 

especially for HCC presence. For those unlabelled reports, the proposed method is capable 375 

 . CC-BY-NC-ND 4.0 International licenseIt is made available under a 
 is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity. (which was not certified by peer review)

The copyright holder for this preprint this version posted August 24, 2022. ; https://doi.org/10.1101/2022.08.23.22279119doi: medRxiv preprint 

https://doi.org/10.1101/2022.08.23.22279119
http://creativecommons.org/licenses/by-nc-nd/4.0/


 13

of rapidly identifying the presence of HCC from the imaging reports, so as to provide labels 376 

for further cohort studies to advance HCC-related research. 377 

 378 

Rule-based methods, ML or DL based models, or hybrid methods have been used to 379 

develop NLP pipelines in imaging reports (31-36), but few studies have focused on HCC 380 

identification (13, 14). A previous study has applied a hybrid NLP algorithm (Automated 381 

Retrieval Console, ARC), that was originally designed for other cancers, in HCC 382 

identification from free-text medical notes (13), wherein HCC were firstly identified by ICD-9 383 

codes and then further verified by the hybrid NLP algorithm. With a pre-selection of 384 

candidate reports by ICD codes, this method can avoid the imbalanced data for text 385 

classification, whilst the issue of HCC misclassification by ICD codes is not considered. As 386 

LI-RADS has been well applied in US, another study (14) trained ML based models for HCC 387 

identification, which used imaging reports created from a LI-RADS template as labelled data. 388 

However, it is difficult to transfer such methods to those regions where LI-RADS standard 389 

are not widely used. Our study differs from previous studies and is novel in that we designed 390 

a rule-based NLP which utilised both tumour feature and diagnostic concept representations 391 

of HCC, along with the priority ranking of these terms, for which we accounted for linguistic 392 

styles in different sections of reports. Therefore, our algorithm has high specificity and 393 

perfect sensitivity in the datasets we have interrogated, and is capable of accurately 394 

identifying the presence of HCC, even in a small and highly-imbalanced dataset. 395 

 396 

Two types of methods are typically used to handle the issue of highly imbalanced classes in 397 

text classification: a) resampling method and b) cost-sensitive learning scheme (30). In our 398 

study, the sample size of the minority class (HCC) was too small to apply resampling 399 

methods (specifically oversampling techniques such as SMOTE), which may produce un-400 

representative synthetic examples for the minority class (30, 37). Therefore, we used a cost-401 

sensitive learning scheme, putting greater weights on the minority class (in this case, HCC) 402 

to tackle the issue of imbalance. However, even in our study the ML or DL models trained 403 

with this imbalanced learning scheme, were unable to achieve comparable performance to 404 

the proposed rule-based method, due to limited data on positive cases for supervised 405 

learning. 406 

 407 

Compared to ML or DL models, the advantages of a rule-based method are that a large 408 

amount of labelled data is not required for development and validation, and that the method 409 

is useful as a cold-start to automatically label reports. It is therefore sensible to choose a 410 

rule-based method at the initial phase, instead of ML or DL models as large volume of 411 
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labelled data is needed for training such models to achieve high performance, particularly 412 

when a large imbalance between positive and negative cases exists.  413 

 414 

Our rule-based NLP method achieved a high accuracy on both HCC and non-HCC cases 415 

and it is capable of rapidly labelling data on a large-scale. Our findings provide an 416 

opportunity for DL to be applied in HCC identification in future by weak supervision schemes 417 

(38, 39). Weak supervision uses noisy labelled data that might include incorrect labels to 418 

train supervised learning models. DL has been demonstrated to be valuable and robust in 419 

medical text mining tasks, even in noisy data. However, the lack of labelled data is a major 420 

bottleneck to applying such technique for disease information extraction (40). Recently DL-421 

based NLP models trained with rule-based method labelled data (weak supervision learning) 422 

has been successfully applied into medical free-text mining tasks such as hip fracture 423 

classification (38) and Alzheimer's disease risk factor characterisation(41), achieving 424 

competitive performance compared to models trained on human-annotated data. 425 

Promisingly, our proposed rule-based NLP method provides a foundation for application of 426 

these techniques to identify HCC from free-text imaging reports. Data collection within the 427 

NIHR HIC viral hepatitis theme is still ongoing (15), and therefore it is expected that a large 428 

amount of unlabelled imaging reports will be collected from more collaborators across 429 

England in the near future. Reports can be automatically labelled by our rule-based NLP 430 

pipeline and accordingly can be fed into a DL model for training. 431 

 432 

It is well recognised that a rule-based method typically has limited flexibility and robustness. 433 

Misspellings and numerous non-standardised ways of describing the same concept are 434 

common in imaging reports. Rule-based NLP systems may not work well if vocabularies and 435 

linguistic styles are significantly different. In the future, with more data accumulated, a more 436 

robust and flexible NLP pipeline using DL will be developed on the basis of the proposed 437 

rule-based method as discussed above. In addition, staging HCC is important to determine 438 

outcomes and planning of optimal therapy (17). Future work will also extend the proposed 439 

methodology for HCC staging. 440 

 441 

Conclusion 442 

A rule-based NLP method to classify free-text imaging reports is developed to accurately 443 

identify HCC information for highly-imbalanced small-size dataset. When labelled data are 444 

not sufficiently available, a rule-based NLP algorithm with an integration of the domain 445 

knowledge can achieve a desirable accuracy, compared to supervised learning algorithms. 446 

Such a rule-based NLP algorithm not only can be utilised to rapidly screen patient free-text 447 
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imaging reports on a large scale to facilitate epidemiological and clinical studies but also can 448 

serve as a tool for data correction.  449 

 450 
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Data from NIHR HIC viral hepatitis theme may be made available to researchers on request 488 

following positive review by the steering committee. Further details are available at 489 

https://hic.nihr.ac.uk. Queries regarding data access should be directed to orh-490 

tr.nihrhic@nhs.net. MIMIC is provided through the work of researcher at the MIT Laboratory 491 

for Computational Physiology and the collaborators. Data are available through formally 492 

requesting access with the steps here: https://mimic.mit.edu/docs/gettingstarted/. 493 
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Tables 

Table 1. Medical terms and priority rankings in inference rules for hepatocellular carcinoma (HCC) 

Medical terms and their synonyms types Ranking Ranking Report section 
  Inclusion Exclusion  

HCC, hepatocellular carcinoma, 
hepatoma(s) 

diagnostic concepts 1  Impression 

haemangioma(s|ta), cyst(s), cystic, 
cholecystitis 

diagnostic concepts  1 Impression/ 
Finding/ Full 
report 

hepatic h(a)ematoma diagnostic concepts  2 Impression/ 
Finding/ Full 
report 

metastasis, metastatic, metastasize tumour features  3 Impression/ 
Finding/ Full 
report 

(focal/ enhancing/ mass/ malignant) 
(liver/ hepatic/ intrahepatic) lesion/ 
tumour/ mass 

tumour features 2  Impression/ 
Finding/ Full 
report 

arterial (phase) enhancement/ 
hyperenhancement 

tumour features 3a  Finding/ Full 
report 

(non-peripheral) washout tumour features 3b  Finding/ Full 
report 

enhancing capsule tumour features 3c   

observation size: ≤9mm, 10-19mm, 
≥20mm (if specified for liver) 

tumour features 3d  Finding/ Full 
report 

increase in size (if specified for liver, 
rather than other organs) 

tumour features 4  Impression/ 
Finding/ Full 
report 

normal, stable, unremarkable, 
unchanged, asymptomatic 

diagnostic concepts/ 
tumour features 

 5 Impression 

hypervascularity, hypervascular (lesion/ 
nodule) 

diagnostic concepts/ 
tumour features 

6  Impression/ 
Finding/ Full 
report 

nodule(s) tumour features 7  Finding/ Full 
report 

 

Table 2. Distribution of imaging modalities and HCC prevalence (labels annotated by medical 

students) in each site  

Imaging modalities 
Site 1 (n=655) Site 2 (n=485) 

Total Labelled with HCC Total Labelled with HCC 

Ultrasound 598 5 (0.84%) 314 4 (1.27%) 

CT  33 6 (18.18%) 92 5 (5.43%) 

MRI 24 3 (12.50%) 79 3 (3.80%) 

CT, computed tomography; HCC, hepatocellular carcinoma; ICHT, Imperial College Healthcare NHS 

Trust; MRI, magnetic resonance imaging. 

 

Table 3. Text characteristics of imaging reports across two sites 
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  Site 1 (n=655) Site 2 (n=485) p-value 

Raw reports 

Number of reports with an 
“impression” section†  117 (18%) 366 (75%) <0.001 

Number of sentences per 
report, median [IQR] 9 [6, 13] 11 [8, 15] <0.001 

Word count per report, 
median [IQR] 89 [ 65, 126] 123 [85, 178] <0.001 

Preprocessed 
reports 

Number of sentences per 
report, median [IQR] 4 [3, 5] 2 [1, 4] <0.001 

Word count per report, 
median [IQR] 38 [28, 51] 23 [11, 51] <0.001 

† This also includes an equivalent section of ‘impression’, such as ‘opinion’, ‘summary’, ‘comment’, etc. 

IQR, interquartile range. 

 

Table 4. The performance comparison between the proposed rule-based method and ML- or DL-

based models in the test set (Site 2) after label correction 

Methods Sensitivity Specificity Precision Accuracy F1 score 

Rule-based NLP 100% 99.58% 85.71% 99.59% 0.9231 

ML Models with BOW         

NB + BOW 66.67%  91.12% 16.00% 90.52% 0.2581 

SVM# + BOW 58.33% 97.46% 36.84% 96.49% 0.4516 

LR + BOW 66.67% 95.77% 28.57% 95.05% 0.4000 

ML Models with TF-IDF         

NB + TF-IDF 58.33% 94.50% 21.21% 93.61% 0.3111 

SVM# + TF-IDF 58.33% 91.54% 14.89% 90.72% 0.2373 

LR + TF-IDF 58.33% 92.39% 16.28% 91.55% 0.2545 

DL Models with word2vec         

Word2Vec + CNN 41.67% 84.14% 6.25% 83.09% 0.1087 

Word2Vec + HAN 75.00% 91.97% 19.15% 91.55% 0.3051 

DL Models with contextual 

representation 

        

BERT  33.33% 99.79% 80.00% 98.14% 0.4700 

ClinicalBERT 33.33% 99.58% 66.67% 97.94% 0.4444 

BlueBERT 58.33% 97.67% 38.89% 96.70% 0.4667 

# SVM classifier with linear kernel were used.  

DL, deep learning; CNN, convolutional neural network; HAN, hierarchical attention networks; BERT, 

bidirectional encoder representations from transformers; BOW, bag of words; ML, machine learning; 
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TF-IDF, term frequency-inverse document frequency. TPR, true positive rate; TNR, true negative rate. 

NB, Naive Bayes, LR, Logistic Regression; SVM, Support Vector Machine. 

 

 

 
Figures 

 

 

Figure 1. Framework of the proposed NLP method for identifying HCC from imaging reports 
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Figure 2. Results in development set (site 1): (A) confusion matrix compared to raw labels; (B) 

confusion matrix compared to actual (ground-truth) labels; (C) Distribution of each criteria used by the 

algorithm in development set. Noting that the categories of ‘keywords not found’ or ‘indeterminate’ 

were classified into ‘non-HCC’ by the algorithm. 

 

 . CC-BY-NC-ND 4.0 International licenseIt is made available under a 
 is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity. (which was not certified by peer review)

The copyright holder for this preprint this version posted August 24, 2022. ; https://doi.org/10.1101/2022.08.23.22279119doi: medRxiv preprint 

https://doi.org/10.1101/2022.08.23.22279119
http://creativecommons.org/licenses/by-nc-nd/4.0/


 

Figure 3. Results in test set (site 2): (A) Normalised confusion matrix compared to raw labels, (B) 

Normalised confusion matrix compared to ground-truth labels, (C) Distribution of each criteria used by 

the algorithm in test set. Noting that the categories of ‘keywords not found’ or ‘indeterminate’ were 

classified into ‘non-HCC’ by the algorithm. 
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