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Abstract: South Africa was among the first countries to detect the SARS-CoV-2 Omicron 

variant. Propelled by increased transmissibility and immune escape properties, Omicron displaced 

other globally circulating variants within 3 months of its emergence. Due to limited testing, 

Omicron’s attenuated clinical severity, and an increased risk of reinfection, the size of the Omicron 

BA.1 and BA.2 subvariants (BA.1/2) wave remains poorly understood in South Africa and in many 

other countries. Using South African data from urban and rural cohorts closely monitored since 

the beginning of the pandemic, we analyzed sequential serum samples collected before, during, 

and after the Omicron BA.1/2 wave to infer infection rates and monitor changes in the immune 

histories of participants over time. Omicron BA.1/2 infection attack rates reached 65% (95% CI, 

60% – 69%) in the rural cohort and 58% (95% CI, 61% – 74%) in the urban cohort, with repeat 

infections and vaccine breakthroughs accounting for >60% of all infections at both sites. 

Combined with previously collected data on pre-Omicron variant infections within the same 

cohorts, we identified 14 distinct categories of SARS-CoV-2 antigen exposure histories in the 

aftermath of the Omicron BA.1/2 wave, indicating a particularly fragmented immunologic 

landscape. Few individuals (<6%) remained naïve to SARS-CoV-2 and no exposure history 

category represented over 25% of the population at either cohort site. Further, cohort participants 

were more than twice as likely to get infected during the Omicron BA.1/2 wave, compared to the 

Delta wave. Prior infection with the ancestral strain (with D614G mutation), Beta, and Delta 

variants provided 13% (95% CI, -21% – 37%) , 34% (95% CI, 17% – 48%), and 51% (95% CI, 

39% – 60%) protection against Omicron BA.1/2 infection, respectively. Hybrid immunity (prior 

infection and vaccination) and repeated prior infections (without vaccination) reduced the risks of 

Omicron BA.1/2 infection by 60% (95% CI, 42% – 72%) and 85% (95% CI, 76% – 92%) 

respectively. Reinfections and vaccine breakthroughs had 41% (95% CI, 26% – 53%) lower risk 

of onward transmission than primary infections. Our study sheds light on a rapidly shifting 

landscape of population immunity, along with the changing characteristics of SARS-CoV-2, and 

how these factors interact to shape the success of emerging variants. Our findings are especially 

relevant to populations similar to South Africa with low SARS-CoV-2 vaccine coverage and a 

dominant contribution of immunity from prior infection. Looking forward, the study provides 

context for anticipating the long-term circulation of SARS-CoV-2 in populations no longer naïve 

to the virus. 
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Main Text:  

Introduction  

One of SARS-CoV-2’s most prominent features has been its rapid adaptive evolution throughout 

the pandemic: every few months, new variants with selective advantages have emerged, displaced 

resident variants, and reached global dominance. To date, the World Health Organization has 

classified five SARS-CoV-2 lineages as variants of concern (VOCs) due to their enhanced 

transmissibility and immune escape properties, including Alpha, Beta, Gamma, Delta and Omicron 

(1, 2). Following the rise of Omicron (BA.1), new lineages continue to evolve with further 

mutations, including those on the spike protein not seen on Omicron BA.1 that evade immune 

responses (notably BA.2, BA.2.12.1, BA.4, and BA.5 (3)). The selective advantage of a new 

immune-escape variant and subvariants is shaped in part by the host population immunity, first at 

the location of emergence, and then globally (4).  

As of August 1st, 2022, South Africa has experienced five SARS-CoV-2 epidemic waves: the 

1st wave was dominated by the ancestral strain carrying the D614G mutation (D614G); the 2nd 

wave by the Beta VOC (with little impact of the Alpha VOC that was globally dominant at that 

time (5)); the 3rd wave by the Delta VOC; the 4th wave by Omicron subvariants BA.1 and BA.2 

(BA.1/2 wave); and the 5th wave by Omicron subvariants BA.4 and BA.5 (BA.4/5 wave). In 

addition to the Beta VOC (6), the Omicron subvariants BA.1, BA.4 and BA.5, are likely to have 

emerged in South Africa or the surrounding region (7, 8). Detailed studies of the immunologic 

landscape in South Africa could provide a unique perspective on how immunity contributes to 

variant success on a population level, near the region of their emergence. The PHIRST-C cohorts 

have generated detailed prospective data on infection and serology spanning South Africa’s first 

four waves, in carefully sampled populations from randomly selected households (9). Here we 

quantify changes in the population immunologic landscape to SARS-CoV-2 over time, and 

particularly in the aftermath of the Omicron BA.1/2 wave, compare Omicron’s epidemiologic 
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properties to those of prior variants, adjusting for changes in prior immunity, and discuss how 

these factors may interact to determine the fate of new variants. 

Results  

Overview of serologic specimen collection and SARS-CoV-2 dynamics in the PHIRST-C 

cohort. 

As previously described (9, 10), in June 2020, the Prospective Household  study  of  SARS-CoV-

2,  Influenza  and  Respiratory  Syncytial virus community burden, Transmission dynamics and 

viral interaction in South Africa, PHIRST-C, where “C” stands  for  coronavirus  disease  2019  

(COVID-19) enrolled a total of 1,200 individuals living in 222 randomly selected households. Two 

sites were selected with 114 households (643 individuals) enrolled in a rural site located in 

Agincourt, Mpumalanga Province, northeast South Africa and 108 households (557 individuals) 

in an urban site, located in Jouberton township, Matlosana, North West Province, South Africa. 

From July 2020 through April 2022, ten sequential serum specimens were collected for each 

participant (Figure 1). Blood draws 1-9 were conducted at approximately 2-month intervals, with 

blood draws 8 and 9 collected one month prior and after the emergence of Omicron BA.1 variant 

in Southern Africa (8). Blood draw 10 was conducted at the end of the Omicron BA.1/2 wave, ~4 

months after blood draw 9, but prior to the emergence of Omicron BA.4/5 (Figure 1) (8).  The 

cohort included a period of intense follow-up of active infections (July 16, 2020 - August 28, 2021, 

in the rural site and July 27, 2020 - August 28, 2021, in the urban site, covering the D614G, Beta, 

and Delta waves) during which nasal swab samples were collected twice-weekly for SARS-CoV-

2 real-time reverse transcription polymerase chain reaction (rRT-PCR), irrespective of symptoms.  

We used sequential readouts of the Roche Elecsys Anti-SARS-CoV-2 nucleocapsid assay (11) 

before (blood draws 8, 9) and at the end of (blood draw 10) the Omicron BA.1/2 wave to infer the 

cumulative rate of infections and re-infections during the Omicron BA.1/2 wave among the cohort 

populations. The inference of primary and repeat infections with Omicron was based on the 

dynamics of sequential serologic assay readouts, after calibrating the method on the Delta 

epidemic wave, for which we had both serology and PCR data. The analysis was performed on a 

subset of 905 of 1,200 cohort participants with complete serum specimens collected during the 

relevant Delta and Omicron periods (details of the serologic inference and calibration are described 

in Material and Methods Section 3). We ascertained infections predating the Omicron BA.1/2 
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wave  based on both variant-specific PCR tests and serology, as detailed in a prior study ((10), 

covering the period through blood draw 8, or mid-September, 2021). All COVID-19 vaccinations 

were recorded, although the vaccine coverage remained low in this population, with <20% 

individuals receiving 1 or more doses prior to the emergence of the Omicron variant at both sites. 

In Table 1, we summarize the infection attack rate during the Omicron BA.1/2 epidemic wave by 

age, sex, rural and urban site, underlying medical conditions, and prior SARS-CoV-2 exposure. 

Increasing population immunity and changing immunologic landscape over four epidemic 

waves among the PHIRST-C cohort population. 

Infection attack rates of the Omicron BA.1/2 subvariants were substantially higher than those of 

previously circulating variants in both study sites. In the rural site, infection rates for pre-Omicron 

variants were 8.2% (95% CI 5.7% – 11.0%) for D614G, 20.7% (95% CI 17.1% – 24.3%) for Beta 

and 38.7% (95% CI 34.3% – 43.1%) for Delta, with higher attack rates in each successive wave 

(Figure 2A, left panel). In the urban site, infection attack rates were more similar among pre-

Omicron variants: 25.8% (95% CI 21.6% – 30.0%) for D614G, 32.1% (95% CI 27.7% – 36.5%) 

for Beta, 23.2% (95% CI 19.2% – 27.2%) for Delta (Figure 2B, left panel). Differences in infection 

attack rates between the urban and rural sites reflect the spatial heterogeneity of SARS-CoV-2 

circulation in South Africa. Attack rates for the Omicron BA.1/2 subvariants reached 64.6% (95% 

CI 60.4% – 68.9%) in the rural site (Figure 2A, left panel) and 58.1% (95% CI 53.4% – 62.8%) in 

the urban site (Figure 2B, left panel).  

Prior to the emergence of Omicron, in September 2021, the cumulative infection rate (including 

reinfections), was 67.6% (95% CI 61.4% – 73.8%) in the rural site and 81.0% (95% CI 73.8% – 

88.3%) in the urban site (Figure 2 A and B, right panels), with primary infections accounting for 

the majority of all infections in both sites (Figure 2 E and F, left panels). In contrast, reinfections 

were predominant with Omicron BA.1/2, with primary infections representing only 37.9% (95% 

CI 32.5% – 43.3%) and 28.6% (95% CI 23.0% – 34.3%) of all Omicron BA.1/2 infections in the 

rural and urban site, respectively (Figure 2 E and F, right panels). As a result, cohort participants 

had experienced an average of 1.32 (95%CI 1.25 – 1.40) and 1.39 (95% CI 1.31 – 1.48) SARS-
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CoV-2 infection episodes in the rural and the urban site, respectively, approximately 2 years into 

the pandemic (Figure 2A-B).  

    Longitudinal rRT-PCR and serologic follow up at the individual level, combined with 

household-level random sampling scheme, provide a unique opportunity to track the history of 

SARS-CoV-2 immunizing events in the cohort populations, including vaccination (partially or 

fully) and infection. Figure 2 C and D are Sankey diagrams tracking the transition of different 

SARS-CoV-2 exposure histories after each of the four epidemic waves. The first three epidemic 

waves were dominated by primary exposures to D614G, Beta, and Delta variants. In addition, less 

than 20% of the population was vaccinated (most during the Delta wave) by either the Janssen 

Ad26.COV2.S or the Pfizer–BioNTech BNT162b2 vaccines prior to the emergence of Omicron. 

At the end of the third wave, only 30.1% and 22.0% of the population remained naïve to SARS-

CoV-2 in the rural and the urban site, respectively. Most of the population had experienced a single 

SARS-CoV-2 exposure prior to Omicron’s emergence (55.9% in the rural and 54.8% in the urban 

site), while a minority had two or more exposures (14.0% and 23.2% in the rural and urban site 

respectively, Figure 2 E-F). This observation is in line with the finding of a durable immune 

protection conferred by prior infection and vaccination in the pre-Omicron era (10). In contrast, 

the large contribution of re-infections during the Omicron wave shifted the population immune 

landscape towards a dominance of repeat exposures (52.1% of individuals in rural site and 60.4% 

in the urban site had experienced more than one exposure, whether prior infection or vaccination, 

after the fourth epidemic wave). The high ratio of reinfections to primary infections observed 

during the Omicron wave is in line with a high level of population immunity predating Omicron 

BA.1/2’s arrival, combined with this variant’s immune evasion properties (ratio of reinfection to 

infection of 1.41 in the rural site and 2.04 in the urban site, Figure 2 E-F). As a result, the Omicron 

BA.1/2 wave left behind a heterogeneous immunological landscape, with population subgroups 

characterized by distinct exposure histories, and no exposure category accounting for more than 

25% of the population (Figure 2 C-D). 

Risk factors, increased infectivity and immune evasion of the Omicron BA.1/2 variant, 

relative to Delta. 

Next, we fitted a chain-binomial household transmission model to the inferred serologic infections 

to contrast the characteristics of the Delta and Omicron variants, including the role of age, sex, 
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household size, and prior exposure history (see Material and Methods Section 4 for details). We 

further differentiated the risk of transmission of primary infections and vaccine breakthroughs or 

reinfections, as well as the risk of acquiring infection within the household and from the 

community (stratified by age, sex and cohort site). We found that the Omicron BA.1/2 variant was 

more than twice as likely to transmit as the Delta variant (odds ratio Omicron vs. Delta: 2.35, 95% 

CI 2.11 – 2.62), after controlling for other risk factors (Figure 3). Vaccine breakthroughs and 

reinfections were 41% less likely to transmit than primary infections (odds ratio 0.59, 95% CI 0.47 

– 0.74), suggesting a transmission reduction effect of prior immunity, in line with other findings 

(12).  

    Prior work has demonstrated Omicron BA. 1/2’s significant immune escape properties (13–17). 

In our data (Figure 3), the most recent prior infection with the Delta variant still conferred 

significant residual protection against Omicron (odds ratio 0.49, 95% CI 0.40 – 0.61), but 

protection declined from earlier infections: the odds ratio of prior Beta infection (2nd wave) was 

0.66 (95% CI 0.52 – 0.83), while a prior D614G infection (1st wave) did not offer significant 

protection (0.87 (95% CI 0.63 – 1.21)). In contrast, prior Beta and D614G infections conferred a 

higher level of protection against Delta (odds ratios: 0.40 (0.28 – 0.56) and 0.44 (0.30 – 0.64), 

respectively) than against Omicron. Neither one nor two doses of vaccine showed significant 

protection against Omicron (Figure 3), despite >90% being administered within 5 months of 

Omicron’s emergence. It is also worth noting that <5% of participants (43/905, Table 1) had 

received one or two doses of vaccine before Omicron, resulting in wide confidence intervals on 

the effects of vaccination, and suggesting limited statistical power in these strata. However, hybrid 

immunity, defined as a combination of one prior infection (with any variant) with one or two doses 

of vaccines, conferred significant protection (odds ratio 0.40, 95% CI 0.28 – 0.58). Of note, repeat 

infections provided the strongest protection against the Omicron BA.1/2 variant, reducing the risk 

of infection by 85% (odds ratio 0.15, 95% CI 0.08 – 0.24).  

In terms of behavioral and demographic factors, we found that the risk of transmission to 

household contacts (per-contact risk) decreased significantly with household size (number of 

household members) (odds ratio 0.87, 95% CI 0.83 – 0.90, Figure 3). Interestingly, we found that 

the risk of acquiring infection within the household or from the community varied substantially by 

age, sex and study site. Pre-school children aged 0-4 years had much higher risk of acquiring 

infection within the household relative to adults 35-49 years (odds ratio, urban site: 2.20, 95%CI 
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1.39 – 3.42; odds ratio, rural site: 4.05, 95% CI 2.84 – 5.71) but much lower risk of acquiring 

infection from the community (odds ratio, urban site: <0.001, 95% CI 0.00 – 0.23; odds ratio, rural 

site: 0.09, 95% CI 0.01 – 0.33, Figure 3). Similarly, individuals 60 years and older had very low 

risk of acquiring infection from the community (odds ratio, urban site: 0.22, 95% CI 0.05 – 0.58; 

odds ratio, rural site: 0.14, 95% CI 0.01 – 0.48). In the urban cohort, age group 19 – 34 years had 

the highest risk of acquiring infection from the community as compared to acquiring infection 

from the household (odds ratio: 1.64 with 95% CI 1.05 – 2.48), and so did age group 13 – 18 years 

in the rural site (odds ratio: 2.81 with 95% CI 1.76 – 4.42). Females had a significantly higher risk 

of infection within the household relative to males in the urban site (odds ratio female vs. male: 

1.44, 95% CI 1.09 – 1.88) but there was no difference in the rural site. 

Comparing the disease severity of Omicron with that of earlier variants. 

Estimating the severity of Omicron BA.1/2 remains difficult due to profound changes in case 

reporting and the impact of prior exposures on clinical presentation, relative to prior pandemic 

waves. We compared our infection attack rate estimates with surveillance data to estimate the 

extent of under-reporting (18). The cumulative SARS-CoV-2 incidence rate reported by the 

surveillance system for the Omicron wave was 0.54 per 100 individuals in the health district of the 

rural site (Ehlanzeni District) and 0.76 per 100 in the urban site district (Dr Kenneth Kaunda 

District). The infection ascertainment rate was estimated at 0.84% in the rural site district and 

1.31% in the urban site district, considerably lower than the ascertainment rates of prior waves 

(3% – 10%, 10, 11), indicating that the surveillance system captured only a very small fraction of 

all Omicron BA.1/2 infections.  

    In Figure 4A, we estimate the infection fatality ratio (IFR) of each epidemic wave in the urban 

site of the study, which is more representative of South Africa’s urbanized population. We used 

the in-hospital death rate reported to the COVID-19 National Hospital Surveillance (19) at the 

district level (as numerator, Figure 4B) and the age-specific infection rates estimated in the 

PHIRST-C urban cohort (as denominator, Figure 4C). We estimate that the IFR was 0.043% (95% 

CI 0.040% – 0.047%) during the Omicron BA.1/2 wave, significantly lower than in the prior three 

waves (0.15% (95% CI 0.13% - 0.17%) during the 1st wave dominated by D614G, 0.36% (95% 
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CI 0.30% – 0.46%) during the 2nd wave dominated by Beta, 0.41% (95% CI 0.37% – 0.47%) 

during the 3rd wave dominated by Delta).  

In Figure 4 D-F, we deconstruct the infection profile of each epidemic wave to highlight the role 

of  key factors affecting severity. Prior immunity has an important role in shaping IFR, with the 

fraction of primary infections decreasing with each new epidemic wave, from 100% during the 1st 

wave to 93%, and 73% and 29% during the Beta (2nd) and Delta (3rd) and Omicron BA.1/2 (4th) 

waves (Figure 4D). Notable changes in the age patterns of infections in different waves have also 

affected the IFR. In particular, the second wave had the highest proportion of infections in 

individuals 60 years and older (14.7%), followed by the 3rd wave (8.8%), 4th wave (6.9%), and 1st 

wave (4.9%). Finally, each epidemic wave was dominated by a different variant (Figure 4D), and 

variations in the intrinsic severity of each variant would also impact the observed variations in 

IFRs across different epidemic waves. 

 

Discussion 

Our findings indicate that the Omicron BA.1/2 wave had significantly higher attack rates than any 

of the previously circulating variants in South Africa, infecting 58-65% of the population in our 

urban and rural cohorts, despite high levels of pre-existing population immunity. Reinfections and 

vaccine breakthrough infections accounted for the majority of Omicron BA.1/2 infections, likely 

attributable to a minority of population remaining naïve prior to the Omicron BA.1/2 wave and to 

Omicron BA.1/2’s immune-escape properties (16, 20, 21). Additionally, a household transmission 

model estimated that participants were more than twice as likely to get infected during the Omicron 

BA.1/2 wave than the Delta wave, after adjustment for prior immunity and other factors. These 

findings support that the fitness advantage of Omicron BA.1/2 over Delta was not solely due to 

immune escape but also higher intrinsic transmissibility (22). However, relaxing 

nonpharmaceutical interventions on high infection attack rate during the Omicron wave likely also 

contributing to the higher infection risk during the Omicron BA.1/2 wave (vs. Delta wave), as 

prior to the 4th epidemic wave (October 1 2021), the national COVID-19 measures were tuned 

down to Alert Level 1, the lowest level in South Africa’s COVID-19 alert system (23). It is worth 

noting that our serologic estimates of Omicron infection attack rates and the large contribution of 

reinfections and vaccine breakthroughs are in close agreement with earlier model projections for 
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South Africa (in the urban site, the infection attack rate was estimated at 58.1% by serology vs. 

44% - 81% by model projections, while the proportion of reinfections was 71% by serology vs. 

49% - 72% by model projections (10)). These projections were based on a dynamic transmission 

model calibrated to the PHIRST-C urban site population and solely relied on epidemiological 

evidence of Omicron’s growth advantage and immune protection reduction (10). The concordance 

between model projections and post-projection serologic surveys highlights how mathematical 

modelling can synthetize routine surveillance data and detailed cohort information to anticipate 

epidemic size and other dynamical features of public health relevance, months before serologic 

surveys become available. 

A unique feature of our cohort populations includes intense monitoring since the first SARS-

CoV-2 epidemic wave, with nasal swab collection at a twice weekly frequency, combined with 

frequent serum specimen collection (10). Combining genomic sequencing, variant-specific rRT-

PCRs, serologic testing, as well as information on vaccine administration, we had the unusual 

opportunity to track each individual participant’s SARS-CoV-2 antigen exposure history in 

chronological order. Random sampling of households ensured that the immune exposure 

distribution within these cohorts reflected the immunologic landscape of the broader population at 

the study sites. After the third epidemic wave dominated by Delta, and prior to Omicron’s 

emergence, more than 60% of the population at both sites had been infected by and/or vaccinated 

against SARS-CoV-2 at least once, with limited occurrence of reinfections (Figure 2). While there 

are different hypotheses addressing the evolutionary origins of Omicron BA.1’s emergence and 

this variant’s unusual number of mutations (24), the rising level of SARS-CoV-2 exposure in South 

Africa in 2020-2021 would be expected to promote the fitness advantage of immune escape 

variants over earlier variants. Globally, especially in high income countries, a similar shift in the 

immunologic landscape appears to have occurred, mainly via increased vaccine coverage, allowing 

Omicron to out-compete other variants and rapidly reach global dominance within 3 months of 

initial detection in Southern Africa (5). In addition to immune escape, our data also support a 

significant enhanced transmissibility advantage of Omicron BA.1/2, which would also contribute 

to rapid replacement of pre-existing variants.  

After the Omicron BA.1/2 epidemic wave in South Africa, only 5.7% and 5.4% of the cohort 

population remained naïve to SARS-CoV-2 in the rural and urban sites respectively, and past 

immune histories in the rest of the population were highly diverse. Remarkably, the immunologic 

 . CC-BY-NC-ND 4.0 International licenseIt is made available under a 
 is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity. (which was not certified by peer review)

The copyright holder for this preprint this version posted August 22, 2022. ; https://doi.org/10.1101/2022.08.19.22278993doi: medRxiv preprint 

https://doi.org/10.1101/2022.08.19.22278993
http://creativecommons.org/licenses/by-nc-nd/4.0/


 

11 
 

landscape of the population has become highly fragmented, with no single SARS-CoV-2 exposure 

category representing more than 25% of the population (Figure 2). For instance, among 379 

individuals (across both study sites) who experienced a single SARS-CoV-2 exposure, 49.6% 

(188/379) were infected by the Omicron variant and the rest were exposed to pre-Omicron variants 

or vaccines. These two population groups primed by different antigens will likely have different 

antibody responses as the sera of individuals primed by pre-Omicron variants or vaccines poorly 

neutralize the Omicron BA.1/2 variant and vice versa (15, 25). Among individuals that were 

primed by different types of pre-Omicron variants or vaccines, differences in antibody responses 

are also expected, though they would be less prominent than the differences between individuals 

primed by the Omicron vs. pre-Omicron variants (26).  

After the 4th wave, among individuals who experienced two or more SARS-CoV-2 exposures, 

most had experienced Omicron BA.1/2 reinfections or vaccine breakthroughs with Omicron 

(80.3%, Figure 2 C-D). As SARS-CoV-2 moves into the endemic phase, multiple antigen 

exposures will become the norm, and these complex exposure histories will define population 

immune pressure to select new variants. We can see some of this play out already in the rapid 

succession of BA.1/2 and BA.4/5 waves, with in vitro experimental and computational predictive 

approaches informing which mutations are likely to become successful. Deep mutational scanning 

experiments of the SARS-CoV-2 receptor binding domain suggest that further mutations of 

Omicron BA.1/2 at sites 452 and 486 could lead to further immune evasion against antibodies 

isolated from individuals who had pre-Omicron and Omicron BA.1 breakthrough infections (20, 

27, 28). Our study suggests that after the Omicron BA.1/2 wave, the population was dominated by 

Omicron BA.1/2 convalescent individuals (Omicron BA.1/2 breakthroughs/reinfections in 

particular), and hence the strongest immune pressure would arise from these individuals. 

Strikingly, mutations L452R and F486V have appeared in Omicron BA.4/5 lineages and these 

variants have now caused a fifth epidemic wave in South Africa. Interestingly, repeat infections 

by two or more pre-Omicron variants accounted for only a small fraction of the population after 

the third wave in our data, but these individuals retained great protection against Omicron BA.1/2.  

As a large fraction of the population in South Africa (and globally) have experienced two or 

more antigenically distinct exposures involving Omicron lineages, prior variants, and/or 

vaccination episodes, the potential impact of immune imprinting needs to be closely monitored. 

The effects of imprinting have already been observed, where, for instance, individuals primed by 
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spike-based vaccines have a more spike-focused immune response, compared to individuals 

primed by pre-Omicron infections (in which case, priming also includes non-spike proteins) (29, 

30). It will be important to evaluate how imprinting by Omicron and pre-Omicron spike antigens 

differentially affects the immune response. Several studies have demonstrated that the antibody 

response after Omicron BA.1 breakthrough infection is dominated by recall memory B-cells 

against conserved epitopes shared between pre-Omicron strains and Omicron BA.1/2. Over 

reliance on immune memory may impact the breadth and strength of antibody and B-cell immunity 

as new antigenically drifted variants arise (15, 20, 31, 32). With each new variant wave, and 

vaccine reformulation anticipated for later in 2022, imprinting could play a role in shaping future 

disease trajectories. Ensuring the continuation of long-term cohort studies is particularly key to 

answering this question and guiding future vaccine updates. 

Comparing our serology-based infection estimates with surveillance data indicates that only the 

“tip of the iceberg” of all SARS-CoV-2 infections (less than 1%) were captured by routine 

surveillance during the Omicron BA.1/2 epidemic wave in South Africa. On the other hand, 

weekly case surveillance accurately captured the speed of Omicron’s spread, and mathematical 

models calibrated to these data generated early projections of epidemic size that are comparable 

to serologic estimates (10). Despite a particularly high rate of infection with the Omicron BA.1/2 

wave, there were fewer in-hospital deaths reported during this wave than in all prior waves in 

South Africa, suggesting a marked reduction in the overall infection fatality ratio (Figure 4). The 

lower estimated disease severity of Omicron BA.1/2 needs to be interpreted in the context of 

changes in infection demographics, circulating variant, and immunologic landscape across waves 

(33, 34). Firstly, the intrinsic severity of Omicron BA.1/2 could be lower than that of prior variants, 

especially when compared to Delta, as suggested by observational studies (35, 36). In addition, in 

vitro studies support Omicron’s limited ability to infect the lung (37), which could be a potential 

mechanism for Omicron BA.1/2’s observed attenuated severity. Secondly, the level of prior 

immunity was much higher during the Omicron BA.1/2 epidemic wave, as shown in our data. If 

prior immunity confers significant protection against SARS-CoV-2 deaths, as many studies show, 

then the high level of prior immunity at the start of the Omicron BA.1/2 wave would also contribute 

to the perceived attenuation of disease severity. It is also worth noting that “survival bias” could 

further underestimate the crude IFR, whereby frail individuals may have succumbed to earlier 

waves and left a healthier population at the start of the Omicron wave (38–40). Finally, the age 
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profile of infections could also influence the overall IFR, as the risk of SARS-CoV-2 death 

increases exponentially with age, with most COVID-19 deaths concentrated in the population 60 

years and older (41). The proportion of infections among individuals 60 years and older was 6.9% 

during the Omicron wave, intermediate between prior waves. Future cohort analyses of Omicron 

BA.1/2 disease severity need to carefully adjust for age, prior infection and vaccination, and 

potential observational biases.  

Our study has several limitations. First, Omicron BA.1/2 infections were ascertained by 

serology without confirmation by rRT-PCR, and infections may have been misclassified due to 

imperfect sensitivity and specificity of the serologic approach. We trialed the approach during the 

Delta wave, by comparing serology with rRT-PCR results, and found appropriate sensitivity and 

specificity (Figure S4). Refinement of the serologic analysis and/or improved serologic assays 

more sensitive to waning (42) could further reduce potential misclassification. Second, the lack of 

virologic samples hindered differentiation between the Omicron BA.1 and BA.2 lineages, which 

may have different epidemiological properties in terms of transmissibility, immune evasion, and 

disease severity. Lastly, our study was concentrated on a relatively confined geographic scale and 

findings may not be representative of the broader population in South Africa. 

In conclusion, our study suggests the massive scale of the Omicron BA.1/2 wave of infections 

in South Africa, orders of magnitude larger than the observations based on surveillance data. 

Reinfections and vaccine breakthrough infections dominated this wave due to combined effects of 

Omicron BA.1/2’s immune evasion properties and a high proportion of the population with pre-

existing immunity. The overall disease severity of Omicron BA.1/2 was much lower than that of 

pre-Omicron waves, reflecting the contribution of attenuated intrinsic severity of this variant, but 

also changes in the age patterns of infections, and the impact of prior immunity. The remarkably 

diverse population immunologic landscape left by successive waves of SARS-CoV-2 will affect 

the epidemiological success of future variants. Our study sites are uniquely located in a region 

which has witnessed the emergence of key SARS-CoV-2 variants including Beta, Omicron BA.1, 

BA.4 and BA.5. As we reach the endemic phase of SARS-CoV-2, longitudinal studies will 

continue to be important to monitor shifts in population immunologic landscape and provide 
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important context for understanding the fitness advantage and adaptive evolution of current and 

future variants. 
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Table 1 Omicron BA.1/2 infection attack rate (AR) in rural and urban cohorts of South Africa 

based on 905 participants with complete serologic information (75% of the total 1200 participants). 
 Rural (478) 

 

Urban (427) 

Characteristics n/N (AR%) n/N (AR%) 

Age group, in years   

    0-4 42/64 (65.6) 19/37 (51.4) 

    5-12 129/185 (69.7) 76/113 (67.3) 

    13-18 39/59 (66.1) 46/67 (68.7) 

    19-39 44/64 (68.8) 50/77 (64.9) 

    40-59 37/71 (52.1) 43/91 (47.3) 

    60+ 18/35 (51.4) 14/42 (33.3) 

Sex   

    Male 116/171 (67.8) 108/188 (57.4) 

    Female 193/307 (62.9) 140/239 (58.6) 

Household size (no. individuals)   

    3-5 129/190 (67.9) 121/212 (57.1) 

    6-8 91/156 (58.3) 84/148 (56.8) 

    9-12 71/99 (71.7) 31/50 (62.0) 

    13+ 18/33 (54.5) 12/17  (70.6) 

HIV status   

    Negative 257/392 (65.6) 201/345 (58.3) 

    PLWH* 39/63 (61.9) 41/71 (57.7) 

    Unknown 13/23 (56.5) 6/11 (58.2) 

SARS-CoV-2 immunity status   

    Naive 117/144 (81.3) 71/94 (75.5) 

    Vaccination 1st dose 14/21 (66.7) 4/5 (80.0) 

    Vaccination 2nd dose 4/6 (66.7) 6/11 (54.5) 

  Prior infection (D614G) 20/27 (74.1) 47/67 (70.2) 

  Prior infection (Beta) 50/69 (72.5) 56/92 (60.9) 

  Prior infection (Delta) 81/149 (54.4) 33/61 (54.1) 

  Hybrid immunity† 19/41 (46.3) 15/47 (31.9) 

  Repeated infections 4/19 (21.1) 10/37 (27.0) 

    Rest‡ 0/2 (0.0) 6/13 (46.2) 

 
*PLWH: People living with HIV.  †Hybrid immunity: one episode of prior infection and vaccination. ‡Rest: this 
category consists of repeat infections plus vaccination, and prior infection with other less frequent lineages including 
Alpha and C.1.2 variants.  
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Fig. 1. PHIRST-C study June 2020 – April 2022, SARS-CoV-2 serology and epidemiologic curve in the two 

study sites. (A) Serum samples and epidemiologic curve in the rural site. Dots represent the Roche Elecsys Anti-

SARS-CoV-2 nucleocapsid assay cutoff index (COI) at different timepoints of the serum specimen collection; Each 

dot represents one serum specimen collection, with dot color denoting blood draw collection time, from blue (early) 

to red (late). The shaded curve at the bottom represents the daily incidence of SARS-CoV-2 cases in routine 

surveillance data collected by the Ehlanzeni District, Mpumalanga Province. Colors of the shaded curve represent 

different variant types. Here, blood draw (BD) 10 was collected at the end of the first Omicron wave. Since in South 

Africa, Omicron BA.4 and BA.5 only started to rise at April, 2022 (8), we assume the Omicron wave prior to BD 10 

were BA.1 and BA.2 subvariants. The hatched area represents the period of intense follow-up of the PHIRST-C cohort, 

when nasal swabs were collected and tested on rRT-PCR at twice-a-week frequency. (B) Same as (A) but for the urban 

site.  

 

Abbreviation: BD stands for blood draw.  
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Fig. 2. SARS-CoV-2 infection attack rates and shifts in immunologic landscape. (A) Infection attack rates in the 

rural site by variant type (left) and the cumulative number of infection episodes per capita after each epidemic wave 

(right). The end of the 1st wave is marked by blood draw 2, 2nd wave is marked by blood draw 5, 3rd is marked by 

blood draw 8, 4th is marked by blood draw 10. (B) Same as (A) but for the urban site. (C) Sankey diagram 

demonstrating the distribution of different type of immunologic exposures (including vaccination and infection) in the 

population of the rural site after each epidemic wave and the transition of immunologic exposures in-between waves. 

Gray color represents SARS-CoV-2 immunologic naïve individuals; blue shades represent non-Omicron exposures; 

red shades represent Omicron exposures; darker colors represent repeat exposures while transparent shading 

represents primary exposures. (D) same as (C) but for the urban site. (E) The distribution of the population by the 

number of SARS-CoV-2 exposures experienced after the 3rd epidemic wave (left) or after the 4th epidemic wave 

(right). Each infection/vaccine dose is counted as 1 exposure. Gray bars represent naïve individuals; blue bars 

represent individuals who have been infected by pre-Omicron variants or received SARS-CoV-2 vaccinations; red 

bars represent individuals who have been infected by Omicron. 

 

*In additional to Delta, here also includes other less frequent lineages including other lineages including Alpha and 

C.1.2 variants. 
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Fig. 3. Risk factors associated with SARS-CoV-2 Omicron BA.1/2 and Delta infection. Odds ratios (adjusted after 

controlling for other risk factors, see Material and Methods Section 4 for details) were estimated by a chain binomial 

model where the infection status was inferred from serology. 

 
Abbreviation: PLWH: persons living with HIV. 

Category “Unknown” for “HIV infection status” and category “Rest” in “Prior exposure” (Table 1) were included in 

the model but omitted here due to small sample size in the strata. 
*0-4 age group have odds ratio point estimate less than 0.01, thus not shown in the figure. 
#Non-primary infections represent repeat/breakthrough infections. 
†Household size denotes the number of household members within a household and is analyzed as a continuous 

variable. 
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Figure 4: The infection fatality ratios and the factors associated with SARS-CoV-2 disease severity for different 

epidemic waves in the urban site’s district. (A) the estimated infection fatality ratio for each epidemic wave; (B) 

the mortality burden of each epidemic wave measured by the cumulative rate of in-hospital deaths per 100 individuals; 

(C) the infection attack rate of each epidemic wave in the North West based on the PHIRST-C urban cohort, assuming 

that the urban cohort population is representative of the population of the North West Province; (D) The wave-specific 

distribution of infection types based on prior exposure histories, including primary infection, vaccine breakthroughs 

(1 or 2 doses of vaccines), reinfections (infection after one prior infection), and multiple prior exposures (infection 

with two or more prior infections or a mixture of prior infection and vaccination). (E) The wave-specific age 

distribution of infections. (F) The wave-specific distribution of variant type among infections. Panel B-F share the 

same axis on the right. 

 
*For the 4th wave, we could not confirm variant type by variant-specific rRT-PCR or sequencing, however, judging 

from the timing of emergence and dominance of Omicron in South Africa in late November 2021, we assumed here 

that all infections during the 4th wave were due to Omicron BA.1/2 variants. 
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Materials and Methods 
1. Cohort design and the timing of serum sample collection for the Omicron BA.1/2 wave 

The study builds on prior work on the PHIRST-C cohorts (PHIRST-C is an acronym for Prospective Household study 

of SARS-CoV-2, Influenza and Respiratory Syncytial virus community burden, Transmission dynamics and viral 

interaction in South Africa, PHIRST-C, where “C” stands for COVID-19). Details on these South African cohorts 

have been previously described elsewhere (9, 10). To briefly summarize, the PHIRST-C cohorts consist of 114 

households (638 participants) in a rural site located in Agincourt, a rural community in Mpumalanga Province, and 

108 households (557 participants) in an urban site located in Jouberton township, Matlosana, North West Province. 

These cohorts were subject to an intense period of follow-up, from July 2020 to August 2021, during which nasal 

swab specimens were collected twice-weekly and a total of 7 blood draws (BDs) were collected at enrollment and 

then approximately every two months. We used these data to reconstruct the prior exposure history of each cohort 

individual before Omicron arose, and to calibrate a serology-based approach to infer infections during the Omicron 

period. After the intense follow-up period concluded, three additional BDs were collected at both study sites (Figure 

1), with BD 8 collected in mid-September 2021 (the end of Delta wave), BD 9 in mid-November 2021 (at the time 

Omicron BA1/2’s emergence in Southern Africa, but prior to the rise in reported cases), and BD 10 in late March 

2022 (at the end of South Africa’s Omicron BA.1/2 wave). We used these data to infer the Omicron infection status 

of each cohort participant. 

 

2. Laboratory methods  

The laboratory methods of the intense follow-up period have been described in detail in prior study by Cohen et. al. 

(9). Serum specimens collected at blood draws 8, 9, and 10 follow the same protocol as those for prior blood draws 

detailed in (9): briefly, serum specimens were collected using venous blood, centrifuged into serum separator tubes, 

refrigerated immediately and transported to the NICD laboratories. According to manufacturer instructions, aliquots 

of prespecified volume were tested for the presence of SARS-CoV-2 antibodies by the Roche Elecsys Anti-SARS-

CoV-2 nucleocapsid (N) assay (43).  

 

3. Inference of SARS-CoV-2 Omicron infections among PHIRS-C participants based on the antibody trajectory 

estimated from pre- and post-Omicron BA.1/2 (4th) wave blood draws. 

3.1 Overview 

As the PHIRST-C intense follow-up period ended in August 2021, individuals were no longer tested by rRT-PCR at 

twice-weekly frequency, thus Omicron BA.1/2 infections in the cohort population can only be ascertained through 

serology. We borrowed a paired sera approach from prior influenza studies, where serum samples are collected before 

and after the epidemic wave, with the rise in antibody titers between the pre- and post-wave sera used as a marker of 

influenza infection. This approach has been the gold standard to ascertain influenza infection attack rate, as prior 

exposures were common in the population (44). To identify SARS-CoV-2 primary infections and reinfections during 

the Omicron BA.1/2 wave at both sites, we relied on the serial serologic results of BD 8, 9, (pre-Omicron BA.1/2 

wave) and BD 10 (post-Omicron BA.1/2 wave) by the Roche Elecsys Anti-SARS-CoV-2 nucleocapsid (N) assay 
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(refer to as Roche anti-N here after). To capture both primary infections and reinfections occurring in-between BD 8, 

9, and 10, rather than relying on a boost of pre-post season paired sera as the sole marker of infection (44), we finely 

categorize the serial BDs patterns based on the sequential seroconversion and boosting/waning patterns of the Roche 

anti-N assay readouts. To trial the approach, we relied on a study period surrounding the Delta wave where we had 

both periodic serology and twice-weekly Rt-PCR testing on all individuals.  We matched BDs 8, 9, and 10 (4th wave 

dominated by Omicron) with BDs 5, 6 and 8 (3rd wave dominated by Delta) based on the similar timing of serum 

specimen collection with respect to the epidemic curves of these waves (Figure 1). We identified the serial serologic 

patterns most strongly associated with rRT-PCR confirmed SARS-CoV-2 infections during the Delta wave. We then 

generalized the serial serologic patterns to BDs 8, 9, and 10 to infer Omicron BA.1/2 infections during the 4th epidemic 

wave. 

 

3.2 Categorization of serial serologic patterns during the 3rd and 4th epidemic waves in South Africa. 

The Roche anti-N is a commercial assay that was calibrated to detect recent and prior SARS-CoV-2 infections, based 

on the level of serum antibody against the SARS-CoV-2 N protein. The assay cutoff index (COI) above or equal to 1 

marks seropositivity, while a COI below 1 is deemed seronegative (43). We assessed each participant’s serial serologic 

trajectory from pre- and post-wave serum specimens, measured by Roche anti-N COIs,. We used the assay 

seroconversion (anti-N COIs going from below 1 to above 1) as evidence of primary infection. We also used further 

rises in COI from a seropositive baseline (COI above 1) as a marker of reinfection, as a new exposure would be 

expected to generate anamnestic boosting of anti-N antibody levels above prior levels. We inferred SARS-CoV-2 

primary infections and reinfections during the 3rd epidemic wave based on participants’ serial serologic trajectory from 

pre- and post-wave serum specimen (measured in Roche anti-N COIs). We selected two BDs prior to the 3rd (Delta) 

epidemic wave (BD 5 and 6) and one BD at the end of the 3rd epidemic wave (BD 8) (Figure 1). We did not consider 

BD 7, because this offered an extra sampling time point that we would not have for the Omicron wave. We aimed to 

infer the occurrence of primary/repeat infections that occurred between May 1, 2021 (roughly the mid-point between 

BD 5 and BD 6) and BD 8, covering the majority of the 3rd epidemic wave. It’s worth noting that we chose the mid-

point between BD 5 and BD 6 as the start date of 3rd wave inference to mirror the timing of the Omicron emergence 

in South Africa during the 4th wave, which roughly falls in-between BD 8 and 9, in early November 2021.  

     

As the majority of the 3rd wave infections occurred in-between BD 6 and BD 8 (Figure 1), changes in the COIs from 

BD 6 to BD 8 are likely most informative of SARS-CoV-2 infections between the two blood draws. We categorized 

the sequential serologic patterns as follows, based on the Roche anti-N assay:  

1) Seroconversion from BD 6 (seronegative, COI<1) to BD 8 (seropositive, COI³1). This was likely due to 

a SARS-CoV-2 primary infection occurring between BD 6 and BD 8. However, sero-negativity at BD 6 

could also correspond to a prior infection that had sero-reverted by BD 6. In this case, seroconversion from 

BD 6 to BD 8 would suggest a reinfection between BD 6 and BD8. If sero-reversion had occurred by BD6, 

then the individual should be seropositive at the earlier blood draw (BD5). 
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2) If a participant was already seropositive at BD 6, we hypothesized that a reinfection occurring between 

BD 6 and BD 8 would induce anamnestic “boosting” of the anti-N antibody level which could lead to an 

increase in BD 8’s COI when compared to BD 6’s. Evidence of reinfection is particularly strong if the COI 

of BD 6 was lower than the COI of BD 5, establishing a waning baseline prior to further exposure. In this 

case, serial COI is expected to follow a “V-shape” trajectory from BD5-8, as suggested by a prior study 

also using serial blood samples to detect reinfections (45). Establishing a waning baseline is especially 

informative for the Roche anti-N assay. A prior study suggests that a small fraction of individuals can 

show a gradual increase in Roche anti-N COI up to 4 months after SARS-CoV-2 infection (46), likely due 

to this assay using a dual-antigen antibody detection method tuned for high avidity antibodies (47). Thus 

“double boosting” at BD 5, BD 6 then BD 8 may not necessarily suggest reinfection, and a boosting 

threshold may be needed to differentiate strong boosting (most likely due to reinfection) from weak 

boosting (due to the nature of the Roche-N longitudinal kinetics or measurement error). We will formally 

test these serial serologic patterns on their predictability of SARS-CoV-2 infections through comparing 

them with rRT-PCR confirmed infections during the Delta wave (detailed below then in Material and 

Methods Section 3.3).  

Building on the above logic, we start by categorizing the serial Roche anti-N COIs of BD 5, 6, and 8 into eight 

crude categories A, B, C, D, E, F, G, and H based on seroconversion and boosting/waning of the serial BDs’ COIs, 

specifically: 

• Category A: Seronegative at each BD 5, 6, and 8. This pattern is consistent with no infection before and 

during Delta wave. 

• Category B: Seropositive at BD 5 followed by decreasing COIs (waning) from BD 5 to BD 6 and further 

decline from BD 6 to BD 8. This suggests a prior infection before the Delta wave, and waning during Delta 

wave. 

• Category C: Seropositive at BD 5 followed by a rise in COI from BD 5 to BD 6 (boosting) then a decline 

in COI from BD 6 to BD 8. This could be evidence of re-infection between BD 5 and BD 6; we further 

refine this logic to distinguish reinfection “boosting” from long-term COI increase due to infection prior 

to BD 5 or measurement noise (see below). 

• Category D: Seronegative at BD 5 followed by seroconversion at BD 6 then declining COI from BD 6 to 

BD 8. This is evidence of a Delta infection between BD 5 and BD 6. 

• Category E: Seropositive at BD 5 followed by rise in COI from BD 5 to BD 6 then further rise of COI 

from BD 6 to BD 8. This could be evidence of reinfection between BD 5 and BD 6 or reinfection between 

BD 6 and BD 8; we further refine this logic to distinguish reinfection “boosting” from long-term COI 

increase due to infection prior to BD 5 or measurement noise (see below). 

• Category F: Seronegative at BD 5 followed by seroconversion at BD 6 and then boosting COI from BD 6 

to BD 8. This could be evidence of primary infection between BD 5 and BD 6 and/or reinfection between 

BD 6 and BD 8; we further refine this logic to distinguish reinfection “boosting” from long-term COI 

increase due to infection prior to BD 6 or measurement noise (see below). 
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• Category G: Seropositive at BD 5 followed by waning COI from BD 5 to BD 6 and boosting COI from 

BD 6 to BD 8. This could be evidence of reinfection between BD 5 and BD 8; we further refine this logic 

to distinguish reinfection “boosting” from measurement noise (see below). 

• Category H: Seronegative at BD 5 and BD 6 followed by seroconversion in-between BD6 and BD 8. This 

is evidence of primary infection between BD 6 and BD 8. 

Figure S1 A-H visualize the serologic trajectory of BD5, 6, and 8’s Roche anti-N COIs for individuals in Categories 

A through H, respectively. The quantitative criteria for the crude serial serologic pattern categorizations are listed in 

Table S1 under “Categorization (crude)”.  

A further rise of Roche anti-N COIs among seropositive individuals could be a marker for SARS-CoV-2 

reinfections. To identify the degree of boosting most concordant with reinfection, we refine the crude categories listed 

above into finer categories by introducing a hyperparameter of boosting threshold 𝛾>1: in a seropositive individual, a 

further increase of COI above the threshold 𝛾 may indicate a stronger signal of anamnestic boosting in antibody level 

due to reinfection, while boosting below 𝛾 is consistent with the slow long-term rise of antibody level from prior 

infection measured by the Roche anti-N assay (46, 47) and/or measurement noise (see next section for calibrating 𝛾 

for the optimized sensitivity/specificity). This refined characterization of serial serologic patterns is applied to crude 

categories C, E, F, G (categories with further boosting from seropositive baseline), specifically: 

• Category C is further divided into two sub-categories C0 and C1, where C1 requires BD6/BD5 > 𝛾 and C0 

requires BD6/BD5 £ 𝛾. 

• Category E is further divided into three sub-categories E0, E1, and E2, where E2 requires BD8/BD6 > 𝛾, E1 

requires BD8/BD6 £ 𝛾 & BD6/BD5 > 𝛾, and E0 requires BD8/BD6 £ 𝛾 & BD6/BD5 £ 𝛾. 

• Category F is further divided into to two sub-categories F0 and F1, where F1 requires BD8/BD6 > 𝛾 and F0 

requires BD8/BD6 £ 𝛾. 

• Category G is further divided  into two sub-categories G0 and G1, where G1 requires BD8/BD6 > 𝛾 and G0 

requires BD8/BD6 £ 𝛾. 

The quantitative criteria for the refined subcategorization described above are also listed in Table S1 under the 

“Categorization (refined)” of the 3rd epidemic wave. Similarly, we categorized serologic patterns in BDs 8, 9, 10 (with 

BD 8 matching BD 5, BD 9 matching BD 6, and BD 8 matching BD 10) based on quantitative criteria listed in Table 

S2. Figure S2 A-H visualize, from Category A through H respectively, the serologic trajectory of BD8, 9, and 10’s 

Roche anti-N COIs.  

 

3.3 Calibrating 𝜸 and selecting serial serologic patterns associated with SARS-CoV-2 primary infections and 

reinfections among PHIRST-C cohorts during the 3rd epidemic wave in South Africa (intense follow-up period). 

We optimized the 𝛾 value as well as serial serologic patterns that best differentiated between individuals with SARS-

CoV-2 primary infections and reinfections from non-infected individuals. This analysis was based on infections 

occurring between the mid-point of BDs 5 and 6 and BD 8, corresponding to the 3rd wave dominated by Delta, in the 

period where rRT-PCR was available. We scanned through 𝛾 values from 1 to 3 using a step size of 0.1. Under each 

𝛾 value, we iterated through each of the 13 refined serial serology subcategories (A, B, C0, C1, D, E0, E1, E2, F0, F1, 
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G0, G1, H, detailed in Table S1). We calculated the net contribution to the Youden’s J statistics if the pattern of interest 

was considered as a marker of infection (primary or reinfections) during the time window of interest (Youden’s J = 

sensitivity + specificity – 1, the higher the value of Youden’s J, the better the performance of the classification 

balancing both sensitivity and specificity). We then selected all serial serologic patterns  with net-positive contribution 

to the Youden’s J statistics as markers for infection, while the rest of the 13 serial serologic patterns were markers of 

non-infection. This gave the best Youden’s J statistics under a given 𝛾 value. We found that at 𝛾 = 1.4, we arrived at 

the highest Youden’s J statistics of 0.820 and good sensitivity (0.804) for reinfections (Figure S3) with patterns E2, 

F1, G1, H indicating SARS-CoV-2 infections while the rest (A, B, C0, C1, D, E0, E1, F0, G0) indicating absence of 

infections (Figure S4 & Table S1). We generalize this categorization of infections (E2, F1, G1, H) vs non-infections 

(A, B, C0, C1, D, E0, E1, F0, G0) to BDs 8, 9, 10 to infer infections during the 4th (Omicron BA.1/2) wave. 

 

4. Chain-binomial SARS-CoV-2 household transmission model. 

Here we studied predictors and risk factors of SARS-CoV-2 infection during the Delta and the Omicron waves, in 

particular the contribution of prior immunity, demographic and medical characteristics, other infections in the 

household, and the risk of infection from the community. We used a chain-binomial household transmission model 

for SARS-CoV-2, as an extension of prior household models developed to study influenza transmission (48, 49). We 

jointly fitted the model to both the 3rd (Delta dominated) and 4th waves (Omicron BA.1/2), using serology-inferred 

infections as the outcome, as described in Section 3. Our model considers both community-acquired infections as well 

as multigenerational transmission within the household.  

    We denote 𝑃!
" as the risk of individual 𝑗 acquiring infection from outside the household (community); to model the 

risk of transmission between household contacts, we denote 𝑃##
$"  as the risk of an infected household contact 𝑖 infecting 

household contact 𝑗 in household ℎ. We can express 𝑃!
",  𝑃#

$" as: 

𝑃!
" = 𝑃! exp./𝛼%𝑎%

%

+/𝜃&𝑐&
'

5 ;		𝑃#
$" = 𝑃## exp./𝛼%𝑎%

%

+/𝛽'𝑏'
'

5 

 

where:  

• 𝑃! denotes the baseline SARS-CoV-2 community infection risk.  

• 𝑃##  denotes the baseline risk of SARS-CoV-2 transmission between an infected and another uninfected 

household contact.  

• 𝑎% denotes risk factors 𝑘 shared by community-acquired infection and household transmission, including, 

variant-specific transmissibility, variant-specific susceptibility due to prior exposure history, and HIV 

infection status (see Figure 3). 

• 𝑏' denotes household-specific risk factor 𝑙 that could potentially influence household transmission, including 

transmissibility of primary vs breakthrough infections, household size, site-specific age & sex (see Figure 3).  

• 𝑐& denotes community-specific risk factor 𝑚 that could potentially influence the acquisition of infection 

from the community, including site-specific age & sex (see Figure 3).  
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Let ℎ  denote a household, 𝑖  an individual, and 𝑖(#  an individual 𝑖  who remained infection-free during the 

Delta/Omicron waves in household ℎ, while 𝑖)#  is an individual 𝑖 who was infected in household ℎ (as determined by 

serology). We can then express the probability of household member 𝑖 escaping infection from all infected household 

contacts as: 

𝑒##$ = >?1 − 𝑃#
$"A

{+,$	}

 

where {𝑗 ≠ 𝑖} represents all infected household contacts. We can also express the probability of household member i 

escaping infections from the community as: 

𝑒!$ = (1 − 𝑃!$) 

 

Thus, within household ℎ, the likelihood of a household contact 𝑖 being non-infected is given by: 

𝑙($ = 𝑒!$𝑒##$  

And the likelihood of an individual 𝑖	being infected is given by: 

𝑙)$ = 1 − 𝑙($  

For household ℎ, the loglikelihood of observing the infection status of all household contacts is given by: 

log(𝑙#) =/log(𝑙)$ ) +/log(𝑙($ )
{$!"}/$#

"0

 

The overall likelihood of the observations across all households is given by: 

log(𝐿) = 	/log(𝑙#)
#

 

We used maximum likelihood method to optimize the function of log(𝐿) , and obtain point estimates of 

{𝛼%}, {𝛽'}, {𝜃&} and their corresponding confidence interval using likelihood ratio test.  
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Table S1: Categorization and infection outcome calibration of the 3rd wave serial serologic patterns (BDs 5, 6, 
8, Delta wave). The outcome is a SARS-CoV-2 infection occurring between the mid-points of BD 5 and BD 6, and 
BD 8.  These categories are used to calibrate a serology-based approach to infer infections during a the period of 
intense cohort follow up period, when rRT-PCR confirmed infections are available (detailed in Material and 
Methods Section 3.2-3.3). 

Categorization 
(crude) 

Categorization 
(refined#) 

Infection 
  outcome** 

Category 
(crude) Criteria Description Subcategory 

(refined) Criteria DJ* 𝜸 = 𝟏. 𝟒 

A 
BD5 < 1 & 
BD6 < 1 & 
BD8 < 1 

Seronegative across BD 5, 6, 
and 8 A NA -0.447 Non-infection 

B 
BD5 ³ 1 & 
BD6 < BD5 & 
BD8 < BD6 

Seropositive at BD5 followed by 
waning COI from BD 5 to BD 6 
and BD 6 to BD 8 

B NA -0.264 Non-infection 

C 
BD5 ³ 1 & 
BD6 > BD5 & 
BD8 < BD6 

Seropositive at BD5 followed by 
boosting COI from BD5 to BD6 
and waning COI from BD6 to 
BD8 

C1 BD6/BD5 > 𝛾 -0.028 Non-infection 

C0 BD6/BD5 £ 𝛾 -0.026 Non-infection 

D 
BD5 < 1 & 
BD6 > 1 & 
BD8 < BD6 

Seronegative at BD5 followed 
by seroconversion at BD6 then 
waning COI from BD6 to BD8 

D NA -0.009 Non-infection 

E 
BD5 ³ 1 & 
BD6 > BD5 & 
BD8 > BD6 

Seropositive at BD5 followed by 
boosting COI from BD5 to BD6 
and another boosting COI from 
BD6 to BD8 

E2 BD8/BD6 > 𝛾 0.004 Reinfection 

E1 BD8/BD6 £ 𝛾 & 
BD6/BD5 > 𝛾 -0.003 Non-infection 

E0 BD8/BD6 £ 𝛾 & 
BD6/BD5 £ 𝛾 

-0.007 Non-infection 

F 
BD5 < 1 & 
BD6 ³ 1 & 
BD8 > BD6 

Seronegative at BD5 followed 
by seroconversion at BD6 and 
boosting COI from BD6 to BD8 

F1 BD8/BD6 > 𝛾 0.017 Reinfection† 

F0 BD8/BD6 £ 𝛾 -0.008 Non-infection 

G 
BD5 ³ 1 & 
BD6 < BD5 & 
BD8 > BD6 

Seropositive at BD5 followed by 
waning COI from BD5 to BD6 
and boosting COI from BD6 to 
BD8 

G1 BD8/BD6 > 𝛾 0.061 Reinfection 

G0 BD8/BD6 £ 𝛾 -0.029 Non-infection 

H 
BD5 < 1 & 
BD6 < 1 & 
BD8 ³ 1 

Seronegative at BD5 and BD6 
followed by seroconversion at 
BD8 

H NA 0.738 Primary infection 
or reinfection‡ 

 
*DJ: the net contribution of the Youden’s J statistics of a particular serologic category, if the category were considered as a marker for infection 
(detailed in Section 3.3) 
**Outcome of whether a specific serologic category is considered as a marker of infection between May 1, 2021 (mid-point of BD 5 and BD 6), 
and BD 8. 
#Refined categorization differentiating strong vs weak boosting signal to account for potential measurement noise. 
†In rare occasions (Figure S4 C), this could also be primary infection occurred right before BD 6, with COI yet to reach high level at BD 6 and 
COI at BD 8 still significantly higher than that of BD 6 even after waning. 
‡This could be primary infection seroconverted between BD 6 and BD 8 or reinfection between BD 6 and BD 8 with prior infection sero-reverted 
at BD 5 and BD 6 (Figure S4 C-D). 
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Table S2: Categorization of the 4th wave serial serologic patterns (BDs 8, 9, 10, Omicron wave). The 
determination of infections outcomes (last column) for each subcategory of sequential serologic patterns A-H are 
based on the calibration detailed in Table S1. This approach captures infections and re-infections that occurred 
between the mid-point of BD 8 and BD 9, and BD 10, during the Omicron BA1/2 wave. 
 

Wave Categorization 
(crude) 

Categorization 
(refined#) 

Infection 
 outcome* 

4t
h   

ep
id

em
ic

 w
av

e 
in

 S
ou

th
 A

fr
ic

a  

Category 
(crude) Criteria Description Subcategory 

(refined) Criteria 𝜸 = 𝟏. 𝟒 

A 
BD8 < 1 & 
BD9 < 1 & 
BD10 < 1 

Seronegative across BD 
8, 9, and 10 A NA Non-infection 

B 
BD8 ³ 1 & 
BD9 < BD8 & 
BD10 < BD9 

Seropositive at BD8 
followed by waning COI 
from BD 8 to BD 9 and 
BD 9 to BD 10 

B NA Non-infection 

C 
BD8 ³ 1 & 
BD9 > BD8 & 
BD10 < BD9 

Seropositive at BD8 
followed by boosting 
COI from BD8 to BD9 
and waning COI from 
BD9 to BD10 

C1 BD9/BD8 > 𝛾 Non-infection 

C0 BD9/BD8 £ 𝛾 Non-infection 

D 
BD8 < 1 & 
BD9 > 1 & 
BD10 < BD9 

Seronegative at BD8 
followed by 
seroconversion at BD9 
then waning COI from 
BD9 to BD10 

D NA Non-infection 

E 
BD8 ³ 1 & 
BD9 > BD8 & 
BD10 > BD9 

Seropositive at BD8 
followed by boosting 
COI from BD8 to BD9 
and another boosting 
COI from BD9 to BD10 

E2 BD10/BD9 > 𝛾 Reinfection 

E1 BD10/BD9 £ 𝛾 & 
BD9/BD8 > 𝛾 Non-infection 

E0 BD10/BD9 £ 𝛾 & 
BD9/BD8 £ 𝛾 

Non-infection 

F 
BD8 < 1 & 
BD9 ³ 1 & 
BD10 > BD9 

Seronegative at BD8 
followed by 
seroconversion at BD9 
and boosting COI from 
BD9 to BD10 

F1 BD10/BD9 > 𝛾 Reinfection† 

F0 BD10/BD9 £ 𝛾 Non-infection 

G 
BD8 ³ 1 & 
BD9 < BD8 & 
BD10 > BD9 

Seropositive at BD8 
followed by waning COI 
from BD8 to BD9 and 
boosting COI from BD9 
to BD10 

G1 BD10/BD9 > 𝛾 Reinfection 

G0 BD10/BD9 £ 𝛾 Non-infection 

H 
BD8 < 1 & 
BD9 < 1 & 
BD10 ³ 1 

Seronegative at BD8 and 
BD9 followed by 
seroconversion at BD10 

H NA Primary infection 
or infection‡ 

 

*Outcome of whether a specific serologic category is considered as a marker of infection between mid-point (of BD 8 and BD 9), and BD 10.  
#Refined categorization differentiating strong vs weak boosting signal to account for potential measurement noise. 
†In rare occasions, this could also be primary infection occurred right before BD 9, with COI yet to reach high level at BD 9 and COI at BD 10 
still significantly higher than that of BD 9 even after waning. 
‡This could be primary infection seroconverted between BD 9 and BD 10 or reinfection between BD 9 and BD 10 with prior infection sero-
reverted at BD 8 and BD 9. 
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Figure S1: Panel A-H, The serologic trajectory for Roche anti-N COIs at BD 5, BD 6, and BD 8 for each of the crude 

serologic categories A, B, C, D, E, F, G, and H, respectively. The timing of the BDs bounds SARS-CoV-2 infections 

during South Africa’s 3rd epidemic wave (Figure 1). The horizontal dashed line indicates the Roche anti-N COI 

reactivity threshold for seropositivity. 
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Figure S2: Panel A-H, The serologic trajectory for Roche anti-N COIs at BD 8, BD 9, and BD 10 for each of the 

crude serologic categories A, B, C, D, E, F, G, and H, respectively. The timing of the BDs bounds SARS-CoV-2 

infections during South Africa’s 4th epidemic wave (Figure 1). The horizontal dashed line indicates the Roche anti-N 

COI reactivity threshold for seropositivity. 
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Figure S3: The optimized serial serologic patterns to categorize SARS-CoV-2 infections by Youden’s J statistics 

(blue line) and the corresponding sensitivity for reinfections (red line). 
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Figure S4: For 𝛾 = 1.4, The optimized serial serologic patterns to categorize SARS-CoV-2 infections by Youden’s J 

statistics (blue line) and the corresponding sensitivity for reinfections (red line). Panel A: the distribution of serologic 

patterns among all rRT-PCR confirmed infection (PCR+). B: the distribution of serologic patterns among all rRT-

PCR confirmed non-infection (PCR-). C: same as A but among primary infections, D, same as A but among 

reinfections infections. E, net-contribution of Youden’s J statistic for each of the serial serologic patterns. F, the 

receiver operating characteristic curve (ROC) by incorporating serial serologic patterns one by one in the order of the 

net contribution to Youden’s J statistics (panel E); the dashed line is the overall Youden’s J statistics. Across all panels, 

reds are serial serologic patterns selected as markers for SARS-CoV-2 infection (with net-positive contribution to 

Youden’s J), while blues are serial serologic patterns selected as marks for SARS-CoV-2 non-infection. 
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