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Abstract  
 

The geographical area around a health facility characterizing the population that utilizes some 

or all of its services – a health facility catchment area (HFCA)-, forms the fundamental basis 

of estimating reliable population denominator for disease mapping and routine healthcare 

planning. Consequently, the approaches used to delineate the catchment area have a direct 

impact on the health of a population. To date, there is no systematic literature review 

documenting different approaches that have been used to define HFCAs while elucidating the 

implications on derived population denominators. To fill this gap, we systematically reviewed 

literature and documented approaches that have been used to define HFCA in sub–Saharan 

Africa (SSA). Simple to complex approaches have been used to define catchment areas in 

SSA with varying degrees of complexity and limitations in the last four decades. These 

approaches are mainly driven by lack of geocoded data on the residential address of care 

seekers and their care-seeking behaviour. To generate closer-to-reality HFCA, for robust 

disease mapping and healthcare planning, additional data and innovative approaches 

balancing between model complexity and routine programmatic use are required.  
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Introduction 
 
A health facility catchment area (HFCA), also known as a sphere of influence, tributary area, 

service area or demand field, represents a geographical area around a health facility 

describing the majority population that uses its services [1,2]. A HFCA is needed to define the 

catchment population (denominator), which is essential for disease mapping, optimizing timely 

routine and emergency access, immunization campaigns and vaccination programmes, 

distribution and allocation of essential health commodities, and planning the location of a new 

health facility [3–9]. Therefore, knowledge of HFCAs is important for efficient healthcare 

planning, and resource allocation within a population [10]. 

 

Defining a representative HFCA is non-trivial [11]. Its definition is substantially dependent on 

the availability of geo-positioned residential addresses of patients linked to the sought facility 

and robust data on their health-seeking behaviour. The healthcare-seeking behaviour is 

influenced by social-economic, cultural, and religious factors, transport systems, weather 

patterns, and the characteristics of facilities such as size, services offered, stock-outs, and 

competition from other health facilities [1,2,6,12]. However, in the majority of sub-Saharan 

Africa (SSA) and other low-resource settings, such data are not readily available due to limited 

resources in the context of many competing needs [2]. The problem is more pronounced in 

rural poor settings where formal address systems are almost non-existent [13]. In addition, 

privacy concerns may limit the use of precise spatial locations for the residential address of 

the patients [13,14].  

 

As a result, reliable HFCAs have not been adequately defined by the ministries of Health 

(MoH) [2,12,15] which hampers routine planning and surveillance [12]. Current attempts have 

involved the use of the most fundamental data (health facility location and a set of simple 

auxiliary factors) to define HFCA [6] using a range of simple to complex approaches. However, 

these approaches are conveniently implemented, disregarding the implications of the defined 

HFCA on the accuracy of the catchment population and consequences for public service 

planning. To date, there has been no review of approaches that have been used to define 

HFCA in SSA to harness the best practices and innovations in defining a closer-to-reality 

HFCA. Here, we review approaches that have been used to define HFCA in SSA while 

documenting their pros and cons. We conclude by proposing a pragmatic approach based on 

the best practices of published literature that can be applied in the SSA context. 

Methods 
 
Our review followed updated guidelines from the Preferred Reporting Items for Systematic 

Reviews and Meta-Analysis (PRISMA) [16]. 

 

Search strategy 

 
To identify eligible papers, a comprehensive search strategy was developed under the 

guidance of an information and library expert and a group of spatial epidemiologists. First, we 

developed a search strategy that leveraged the unique search optimization features and 

indexing of each of the three electronic databases: PubMed, Scopus and CINHAL. The final 

literature search was conducted in April 2022. The main search terms were HFCA and its 

synonyms such as hospital catchment, health service area, facility service area combined with 
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defining/creation/modelling/estimation/delineation/planning and the list of SSA countries. 

Boolean operators and asterisks were used to optimize the search process. We also screened 

the bibliography of the selected papers for additional papers. We used Mendeley and Rayyan 

to serve as bibliographic software for managing references in the review. 

 

Eligibility criteria  

 
The review sought to identify studies that were closely related to the measurement and 

conceptualization of HFCA in any SSA country. We did not limit the search by year; therefore, 

all years were included in the review. We excluded reviews, editorials, and conference 

presentations but included any relevant studies from their bibliography. We screened the 

identified studies in three stages: (1) screening by title, (2) screening by abstract, and (3) 

screening by reading the full text. Two authors independently reviewed all abstracts and full-

text formats of the studies while a third author was used to resolve discordances. After 

screening, data were extracted from the remaining studies. 

 

Data extraction  

 
An online data extraction form was developed to obtain information about HFCA models and 

other important study characteristics. These characteristics were 1) bibliographic information, 

2) facility level 3) health or study outcome, 4) analytical method used to define HFCA, 5) data 

needed to define HFCA, 6) sensitivity analysis, 7) and modelling gaps and recommendations 

that were acknowledged by the authors. Extraction discrepancies were resolved by consensus 

and by an independent arbitrator. 

 

Data synthesis 

 
Given the large scope of the review and the heterogeneity of the studies reviewed, a meta-

analysis was not appropriate. However, a qualitative synthesis was conducted to identify 

approaches and methodological commonalities across studies and contexts.  

Result 
 
Overall, we retrieved 808 articles which were exported to the Mendeley reference manager. 

Studies were screened and excluded by title, abstract, and full text. Studies excluded after 

full-text review did not explicitly define an approach to model HFCA. Ultimately, 83 peer-

reviewed articles met the inclusion criteria (Figure 1). The earliest manuscript was published 

in 1977 while the majority of the studies (84%) were published after 2008 with 2020-21 

contributing 30% of all the studies. The studies varied by geographical scale and scope. Four 

studies (5%) were conducted across multiple countries whereas 79 studies (95%) were 

conducted within 21 individual SSA countries. Kenya (16%), Uganda (13%) and Zimbabwe 

(10%) had the highest number of studies while nine countries, each had at most two studies. 

 

The studies were evenly distributed across the health system hierarchical structure, focusing 

on either primary (28.9%), secondary (33.7%), or both tiers (37.3%). The main health 

outcomes across the studies were highly variable. We identified 22 different health outcomes, 

with malaria (26.5%), HIV (15.7%), healthcare utilization (15.7%), vaccination (6.0%) and 

maternal and newborn care (6.0%) featuring in 70% of the manuscripts. Table 1 summarises 
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data, threshold used to delineate HFCA, limitations (where indicated) and approaches, that 

have been used to define HFCA across the last 4 decades in SSA. 

 

Figure 1: Flowchart for study selection from literature search to data extraction and analyses. 

 

The use of subnational administrative boundaries (e.g., wards) to define HFCA was the 

second most common approach (21 studies). The boundaries of a polygon in which a facility 

was located and sometimes the neighbouring polygons formed the HFCA. Boundaries were 

used either independently or in combination with urban areas, disease estimates, population 

count or allocated by the MoH. The location of the health facility and the administrative 

boundaries combined with auxiliary datasets were the minimum dataset required. However, 

this approach ignores cross-border movement, and migration in and out of the catchment over 

time, particularly in rural areas where alternatives are limited. 

 
Buffers around a health facility defining HFCA require the location of the health facility as the 

only input. Due to this simplicity, it was the most common approach (24 studies) including 

those that refined the buffers using population, administrative boundaries, or road networks 

(Table 1). The buffer size was based on a pragmatic distance that captured most patients or 

thresholds derived from literature, household surveys, local or international practices, facility 

level/function, and locality (urban or rural). The use of buffers was criticized because it is based 

on unrealistic straight-line distances which do not account for topography, transport modes, 

seasonality, mobility of people, the attractiveness of facilities, the inability of sick people to 
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walk, and documented healthcare-seeking behaviour (such as bypassing the nearest facility). 

The authors justified the approach given the lack of updated data, especially healthcare-

seeking behaviour data. 

 
Table 1: Summary of methods used to generate health facility catchment areas in sub-Saharan Africa 
including required datasets and limitations of the approaches  

Methods used to define 
HFCA 

Time/distance 
threshold  

Minimum data 
required  

Gaps that were acknowledged  

Administrative boundaries 
such as wards, and sectors 
[17–29] or merged units as 
EAs assumed to be HFCA 

Polygons in the 
neighbourhood of the 
facility or preselected 
by MoH 

Administrative 
boundaries, 
 
health facility,  
 
residential 
address 
  
disease 
estimates  
 
spatial extents 
of a city or 
urban area 

Cross-border movement and 
migration of people are not accounted 
for. 
 
Unrealistic in rural areas with poor 
and limited access  
 
Ecological bias 
 
Use of a static catchment over time 
 
 

Bounded urban area - a 
whole city or partly defined 
by sector or suburbs [30,31] 

Area bounded by an 
urban area 

Disease estimates within 
administrative boundaries 
showing regions with a high 
number of cases [32–35] 

cumulative case ratio, 
the highest number of 
cases often 80%, 
admission rates 

Administrative boundaries, 
villages or populations 
allocated by MoH to a health 
facility [26,28,36–38]. 

Villages, wards, or 
populations allocated 
to clinics by the MoH 

Buffers ranging from 1 km to 
>50 km [11,13,23,39–53] 
drawn around a health 
facility often augmented by 
population [54] 

Informed by facility 
level, function, urban 
or rural, capturing a 
majority of patients, 
pragmatic, or 
reasonable distance, 
previous cut-offs, 
based on household 
survey, local or 
international practices 
e.g., WHO threshold.  

Health facility, 
residential 
address,  
Population, 
transport 
factors and 
barriers, 
boundaries  

Straight-line distances are unrealistic, 
do not account for topography, 
transport modes, the likelihood of 
living beyond the threshold, lack of 
updated spatial and healthcare-
seeking behaviour data, the inability 
of sick people to walk, facilities are 
not uniformly attractive, seasonal 
mobility of people, bypassing of the 
nearest facility, the catchment is not a 
function of distance only  

Radial buffers accounting 
for geographical barriers 
[55], enumeration [56,57] or 
parish boundaries and road 
networks [34,58]  

Thiessen polygon, a region 
incorporating all points that 
are closer to a given facility 
than any other [6,59–61] 

All points that are 
closer to a given 
facility than any other 

Health facility, 
coarse 
residential 
location 

Straight-line distances are unrealistic, 
bypassing the nearest facility, does 
not account for transport modes, 
healthcare-seeking behaviour and 
other factors beyond distance, per-
capita utilization rate is constant 
within the HFCA 

Thiessen polygon with 
boundaries, travel factors, 
buffers, and population [62] 

Modelled travel time or 
distance based on a least-
cost path model [5,13,38,63–
72] or on network analysis 
[73] often adjusted for facility 
capacity [74], population 
[75], Thiessen polygon [76], 
boundary [77,78] or 
residential addresses [79] 

Based on care 
utilization decay 
curve, recommended 
thresholds by MoH or 
international 
community, previous 
publications 

Health facility, 
travel factors 
and barriers, 
population, 
residential 
location, 
household 
survey, facility 
capacity, 
boundaries, 
seasonality,  

Account for bypassing of the nearest 
facility, facility type and ownership, 
quality of service, referral, urbanity, 
care-seeking behaviour, the severity 
of illness, seasonality, other 
dimensions of access, supply and 
demand factors, resources and 
infrastructure changes over time, 
local speeds, traffic, overlaps in 
HFCA, realistic distribution and use of 
public transport. Better data is 
needed to test model assumptions. A 
trade-off between model complexity 
and precision.  

Participatory GIS with 
auxiliary data and patient 
addresses [13,80–82] 

Patients identify their 
addresses from maps 
or interviews with 
long-term residents or 
health staff  

Participants, 
maps, health 
facility, list of 
place names, 
population  

Expensive to acquire high-resolution 
satellite imagery and incompleteness 
of spatial data 

Patient's address linked to 
the utilized facility [8–10,83–

Over 90% of all 
admissions, all 

health facility 
linked to 

poor record keeping, the credibility of 
reported distances, and bypassing of 
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86] or refined with 
boundaries, disease rates, 
and population [12,87].  

addresses linked to 
the utilized facility.  

residences, 
base map, 
travel factors  

facilities by those who live far. limiting 
within a region. 

Two-step floating catchment 
area [71] combined with 
patient address [88] and 
gravity models [89] 

considers interaction 
between supply and 
demand  
 
 

Facility, urban 
residence, 
travel factors, 
population, 
capacity 

Account for variations in mode of 
transport, road conditions, times of 
travel, traffic, travel behaviours, 
speeds, utilization rates, and 
navigation errors.  

Spatial statistical models 
based on admission rates 
[35] or reporting probabilities 
[90] or the use of fuzzy 
choice [6]  

EAs contribute to 
HFCA with varying 
likelihood based on 
proportion attending a 
facility or reporting 
probability 

Health facility, 
residential EA, 
spatial factors 
that affect 
travel, 
admissions, 

Account for competition, population 
mobility, socio-demographic factors, 
care-seeking behaviour, geocoding 
inadequacies, cases not seen at a 
facility, realistic transport modes, 
non-governmental facilities 

 

Closely related to the buffers is the use of Thiessen polygons also known as Voronoi diagrams 

to define HFCA (4 studies). They define a region incorporating all points that are closer to a 

given facility than any other facility, have similar data requirements and limitations as the 

buffers and can be combined with other approaches (Table 1). The need to account for the 

variable per-capita utilization rate within the HFCA was an additional limitation that was 

highlighted. 

 

To account for some of the limitations in the use of administrative areas, buffers and Thiessen 

polygons, in defining HFCA, 20 studies applied a threshold on modelled travel time/distance 

to define a slightly improved HFCA. Time or distance was modelled through the path of least 

resistance via network analysis or cost distance surface accounting for transport mode, 

speeds, travel barriers (game park, reserves, water bodies and forest), travel factors (road 

network, land cover, topography) and sometimes simplified healthcare seeking behaviour. In 

some instances, modelled time was adjusted for facility capacity, and population or used in 

combination with Thiessen polygon, boundary or residential addresses (Table 1). The choice 

of the threshold was based on previous publications, policy recommendations by MoH or the 

international community or the use of a utilization decay curve.  

 

Despite accounting for some limitations, drawbacks of modelled travel time/distance to define 

HFCA exist. Authors recognised the need to better account for care-seeking behaviour 

(bypassing the nearest facility, severity of illness, other dimensions of access, localised 

speeds, traffic, weather seasonality, urbanicity, realistic distribution and use of public 

transport, resources and infrastructure variation over time) supply-side factors (facility type 

and ownership, quality of services at facilities, referral patterns), and overlapping of two or 

more HFCA. Further, the authors argued that better data are needed to test model 

assumptions while balancing the trade-offs between model complexity, precision and routine 

application. 

 

Albeit minimal, four studies used public participatory Geographical Information System (GIS) 

approaches. This involved community members and the patients defining HFCA, for example 

through data collection. Patients would identify their residential addresses from maps 

presented to them during health facility visits or interviews with long-term residents of an area 

or health staff to map HFCA. The main requirements were the participants, maps, imagery or 

a list of place names of the area. The approach was limited given the cost associated with 

acquiring high-resolution satellite imagery of the area and the incompleteness of existing 

spatial data. 
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On the other hand, the use of geocoded patient addresses (9 studies) linked with the health 

facility provided the most representative catchment area. The patient's addresses were 

available at different spatial resolutions and were often refined or combined with boundaries, 

disease rates, and population. However, poor record keeping, bypassing of facilities, limiting 

the catchments within a region and the credibility of reported distances were reported as 

limitations. 

 

Finally, to advance the approaches using modelled travel time, there were six standalone 

efforts to derive HFCA based on two-step floating catchment area [71,88], gravity models [89], 

spatial-statistical [35,90] and fuzzy choice models [6]. Mainly, these approaches had 

residential areas or enumeration areas contributing to HFCA with varying degrees of likelihood 

based on several factors (Table 1). Despite having some improvements, they did not 

satisfactorily account for variations in travel (mode of transport and speeds, road conditions, 

time of travel, traffic conditions, navigation errors), utilization rates and care-seeking 

behaviour, competition between facilities, population mobility, socio-demographic factors, 

geocoding inadequacies, cases not seen at a facility and non-governmental facilities. 

 

Across the studies, a range of techniques were implemented as sensitivity analyses for the 

derived HFCA. These included deriving several HFCA for the same study area while using 

different; i) methods [23,34,59], ii) assumptions on healthcare-seeking behaviour [38], iii) 

population thresholds [80], iv) travel speed [71,88], v) radii for the buffer approach [54,73], vi) 

several teams validating the generated HFCA [81], and vii) using information criterion to select 

the best statistical model [35]. Finally, AccessMod and ArcMap were the most used software 

to derive HFCA. Other software included QGIS, Google Earth, GeoDa, Epi Info, R, STATA, 

FoxPro, and SAS 

Discussion 
 

The review has outlined approaches that have been used to define HFCA in SSA, a largely 

resource and data-constrained region. These approaches either rely on or are associated with 

techniques of defining geographical access as summarised in Ouma et al 2020 [91].  Overall, 

in SSA, there is a scarcity of geocoded data on patients' residential addresses linked with the 

facility where care was sought which is the gold standard in defining a HFCA (Table 2). As a 

result, only six studies utilized such data [8–10,12,83–87], while six other studies either relied 

on MoH-derived HFCA [26,28,36] or used participatory GIS to collect data needed to delineate 

spatial extents of HFCAs [13,80–82]. The rest of the approaches used a variety of methods, 

with varying degrees of representativeness to delineate HFCA  

 

Three commonly used approaches; administrative boundaries, buffers, and Thiessen 

polygons are limited because they oversimplify socio-demographic, epidemiological and 

health-seeking characteristics of communities when deriving HFCA (Table 1). These 

inadequate approaches will thus result in a non-representative catchment population and 

therefore, their use should be discouraged (Table 2). However, these approaches might be 

useful for applications that aggregate results to large subnational units. For example, a 

catchment derived using Thiessen polygons, but results presented at a district level. On the 

other hand, approaches based on travel time, gravity, and spatial statistical models while 

useful, also still require novel extensions to deal with their shortcomings (Table 1) to push the 
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frontier to the next level. The advances should be made widely accessible at the programmatic 

level for routine use. 

 

The key aspects that should be considered to open up a new avenue for HFCA definitions are 

cross-cross-border movement and overlapping catchments, mobility of patients, realistic travel 

times (that account for weather seasonality, transport modes within the public and private 

sector, localised speeds, road conditions, traffic, time of journey, navigation errors), 

competition between facilities, health-seeking behaviour (bypassing of the nearest facility, 

socio-demographic factors, severity of illness, cases not seen at a facility), facility 

characteristics (type and ownership, quality of service), residence (urban or rural) and referral 

patterns.  

 

To account for these aspects, better data will be needed. This will also aid in testing model 

assumptions, and deal with the perennial incompleteness of spatial data, poor record keeping 

and geocoding inadequacies [92]. With the advancement in data science (such as machine 

learning) and data collection techniques (such as remote sensing), a range of climatic and 

environmental data (e.g., land use, rainfall patterns), road networks and traffic patterns can 

now be easily collected [93–95]. Increasingly available household surveys and routine data 

will be valuable for tracking utilization rates in the population to derive better thresholds for 

different health outcomes and contexts. Further, the use of mobile phones has become 
ubiquitous across the globe and can be harnessed to record geographical location information, 

especially in SSA to improve HFCA definition [96]. However, privacy and data protection 

concerns will need to be addressed when utilizing data from mobile phones. This is also a 

challenge affecting sharing of patients' addresses and locations of service providers in the 

routine health information systems in SSA.  

  
The travel time or distance thresholds that patients can travel are critical in the delineation of 

HFCA irrespective of the complexity of the approach. The threshold varies depending on the 

local context, health condition, severity of illness, and services offered at a facility. The use of 

healthcare utilization data for a particular outcome to create a decay curve or medical relevant 

thresholds is more useful than random and generalized thresholds. It is probably the use of 

random thresholds, cross-border movements, and simplified approaches (administrative 

boundaries, Thiessen polygons or buffers) that may have led to health coverage exceeding 

100% at the facility level in recent DHIS2 analyses [97].  

 
We, therefore, propose three levels when choosing an approach to delineate HFCA guided by 

the data availability and study objectives (Table 13.2). Level 1 is the most appropriate 

approach where HFCA can be defined unambiguously. It will require patients' addresses to 

be geocoded and linked with the service provider where care was sought and where possible 

to harness recent technologies to collect these data. The second level (Level 2) is based on 

travelled time or distance but requires innovative methods to deal with the outlined key 

shortcomings. Finally, level 3, is the least recommended and its use is discouraged due to 

unrealistic assumptions.  

 

Further MoH-derived HFCAs should be available across countries in SSA as a fundamental 

baseline for healthcare planning. However, limited studies referenced the use of MoH-derived 

HFCA, which may imply the absence of guidelines within MoH on defining robust HFCA. This 
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may be attributed to poor documentation, or that the role of HFCA is under-appreciated. In 

this line, though at nascent stages, is a promising initiative aiming to create a system that 

enables MoH and stakeholders to define, create and manage their HFCAs [98].  

 

Much of SSA and other low-resource countries are currently striving to achieve the ambitious 

targets within the Sustainable Development Goals (SDGs) framework by 2030. The SDG 

mantra of leaving no one behind, and reaching those farthest, behind, first would require 

estimating the populations in need of essential health services and defining health care 

coverage gaps at the HFCA level for targeted resource location. This will be essential for 

universal health coverage (UHC) to ensure that all people have access to the health services 

they need, when and where they need them, without financial hardship. Therefore, the role of 

accurate HFCA is timely and cannot be ignored as a catalyst for health development in SSA. 

In addition, the concept of a catchment area extends beyond health facilities and similar cases 

(limitations and requirements) may be advanced for catchment areas related to schools [4], 

community health workers, and vaccination posts among other service delivery points [2]. 

 
The review should be interpreted while considering several limitations. The literature search 

was limited to studies published in English. Secondly, given the vast nature of grey literature, 

some insights on HFCA in SSA might have been missed and our findings can only be applied 

to SSA countries or similar contexts. Despite these limitations, the review shows that most of 

the studies derived HFCA using simplified approaches due to a lack of appropriate data. To 

move the frontier of HFCA to the next level, the majority of the limitations that were 

acknowledged should be accounted for to derive closer-to-reality HFCA for robust catchment 

populations (denominator) for healthcare planning. 

 

Table 2: Choice of method in generating health facility catchment areas in sub-Saharan Africa 
and low resource settings  

Proposed level Approach Notes 

Level 3: Least 
appropriate 

Thiessen polygons, administrative 
boundaries, and buffers 

Oversimplified assumptions which are unrealistic in 
terms of healthcare-seeking behaviour and health 
system characteristics. Thus, should be rarely used 
unless results are aggregated to large subnational 
units 

Level 2: 
Moderately 
appropriate 

Modelled travel time and distance 
while accounting for key factors and 
balancing between model 
complexity and programme use. 

Should robustly account for healthcare-seeking 
behaviour, realistic transport systems, demand, and 
supply side of a health system. 

Level 1: Most 
appropriate 

Geocoded residential address of a 
patient linked to the utilized health 
facility at a high spatial resolution 

High spatial resolution patient residential addresses 
with their journey experiences and outcome within 
the health system should be well documented 
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