Supplementary Material

รเ	JPPLEMENTARY METHODS	.3
	ALSPAC genotype data	3
	ALSPAC potential confounders	3
	Multiple imputation	4
	Mendelian randomization: brief description	5
	Additional details of GWAS used to create instruments for MR	5
	Creating weighted genetic risk scores	7
	Statistical power for one-sample MR	7
	Two-sample MR methods	8
SL	JPPLEMENTARY TABLES	.9
	Table S1. Variables included in the multiple imputation models (N=3,305)	9
	Table S2. Characteristics of ALSPAC participants	10
	Table S3. Cross-sectional association between CRP and cognitive outcomes at age 24 in ALSPAC, unadjusted and adjusted for potential confounders (complete cases)	
	Table S4. Cross-sectional association between GlycA and cognitive outcomes at age 24 in ALSPAG unadjusted and adjusted for potential confounders (complete cases)	-
	Table S5. Cross-sectional association between CRP and cognitive outcomes at age 24 in ALSPAC, unadjusted and adjusted for potential confounders, excluding individuals with CRP > 10mg/I (complete cases).	14
	Table S6. Cross-sectional association between GlycA and cognitive outcomes at age 24 in ALSPAG unadjusted and adjusted for potential confounders, excluding individuals with CRP > 10mg/l (complete cases).	-
	Table S7. Logistic regression to predict missingness in cognitive data at age 24	16
	Table S8. Details of GWAS used to create instruments for one and two sample MR	18
	Table S9. Variance explained by SNPs in original GWAS paper for comparison	21
	Table S10. Source of GWAS full summary statistics and instruments	22
	Table S11. Number of SNPs available from each GWAS after criterion applied.	23
	Table S12. One-sample MR in ALSPAC: Number of SNPs with proxies included	24
	Table S13. One-sample MR in ALSPAC: association between genetic risk scores and potentialconfounders in linear regression models.	25
	Table S14. One-sample MR in ALSPAC: effect of inflammatory markers on standard deviation change in cognition.	28
	Table S15. One-sample MR in ALSPAC: effect of cognitive functioning on standard deviation change in inflammatory markers.	29
	Table S16. Two-sample MR (inflammatory markers on general cognitive ability): Number of SNPs with proxies included	

Table S17. Two-sample MR: effect of inflammatory markers on general cognitive ability
Table S18. Two-sample MR (inflammatory markers on general cognitive ability): test of heterogeneity and pleiotropy. 3.
Table S19. Two-sample MR (general cognitive ability on inflammatory markers): Number of SNPs with proxies included
Table S20. Two-sample MR: effect of general cognitive ability on inflammatory markers
Table S21. Two-sample MR (general cognitive ability on inflammatory markers): test of heterogeneity and pleiotropy. 3
Table S22. Two-sample MR: effect of general cognitive ability on inflammatory markers followingSteiger filtering
Table S23. Deviations from pre-registration with justifications 3
Table S24. Code used for analysis in this paper3
SUPPLEMENTARY FIGURES
Figure S1. Two-sample MR sensitivity plots: effect of CRP (Ligthart cis instrument) on general cognitive ability4
Figure S2. Two-sample MR sensitivity plots: effect of CRP (Han cis instrument) on general cognitive ability4
Figure S3. Two-sample MR sensitivity plots: effect of IL-6 (Ahluwalia cis instrument) on general cognitive ability4
Figure S4. Two-sample MR sensitivity plots: effect of sIL-6R (Rosa instrument) on general cognitive ability4
Figure S5. Two-sample MR sensitivity plots: effect of GlycA (Borges instrument) on general cognitive ability4
Figure S6. Two-sample MR sensitivity plots: effect of CRP (Ligthart genome-wide instrument) on general cognitive ability4
Figure S7. Two-sample MR sensitivity plots: effect of CRP (Han genome-wide instrument) on general cognitive ability4
Figure S8. Two-sample MR sensitivity plots: effect of IL-6 (Ahluwalia genome-wide instrument) on general cognitive ability4
Figure S9. Two-sample MR sensitivity plots: effect of IL-6 (Swerdlow instrument) on general cognitive ability4
Figure S10. Two-sample MR sensitivity plots: effect of GlycA (Kettunen instrument) on general cognitive ability4
Figure S11. Two-sample MR sensitivity plots: effect of general cognitive ability on CRP (Ligthart et al. GWAS)
Figure S12. Two-sample MR sensitivity plots: effect of general cognitive ability on CRP (Han et al. GWAS)5
Figure S13. Two-sample MR sensitivity plots: effect of general cognitive ability on IL-6 (Ahluwalia et al. GWAS).
Figure S14. Two-sample MR sensitivity plots: effect of general cognitive ability on GlycA (Borges e al. GWAS)

Figure S15. Two-sample MR sensitivity plots: effect of general cognitive ability on GlycA (Kettunen
et al. GWAS)54

SUPPLEMENTARY METHODS

ALSPAC genotype data

ALSPAC children were genotyped using the Illumina HumanHap550 quad chip genotyping platforms by 23andme (Genome build: Build 37). Quality controls using Plink v1.07 included excluding individuals with (1) gender mismatches, (2) minimal or excessive heterozygosity, (3) missingness (> 3%), (4) insufficient sample replication (IBD < 0.8), (5) non-European ancestry. SNPs with minor allele frequency of <1%, call rate < 95%, or evidence for violations of Hardy-Weinberg equilibrium (p < 5E-7) were removed. Cryptic relatedness was measured as proportion of identity by descent (IBD > 0.1). Participants who passed these quality controls were retained during subsequent phasing and imputation. This resulted in 9,115 participants and 500,527 SNPs. There were 8,237 children with genotype data available after using cryptic relatedness. Imputation of genotypes was done with Impute v2.2.2 software with the 1000 genomes reference panel, resulting in 7,191,388 SNPs after MAF > .01 and info score (indicating high imputation quality) > 0.8. For further details, please visit: alspac.github.io/omics_documentation/alspac_omics_data_catalogue.html#org48674f8

ALSPAC potential confounders

Sex. Sex of child was obtained from birth notification.

Ethnicity. Child ethnic background was defined as either white or non-white. This is a derived variable (created using responses to other questions) in ALSPAC based on two questions (C800 and C801) which asked the mother to describe the race or ethnic group of herself and her partner. Child ethnic background was defined as non-white if either the mother or partners ethnic group was reported as non-white.

BMI at age 24. Body mass index (BMI) at age 24 is a derived variable calculated as [weight (kg)] / [height (m)²].

Maternal education. Mother's highest educational qualification is a derived variable in ALSPAC which includes the following categories: Degree, A-level, O-level, Vocational, CSE/none. It is important to note that here we use the original raw variable (C645). ALSPAC also created another recoded variable (C645A) which puts all mothers who left education questions blank to "CSE/none", under the assumption that mothers with no educational qualifications would leave this question blank. This recoded version was not used here, instead any questions with "not known" or that were missed were recorded as missing.

Maternal socioeconomic status (SES). A proxy for maternal socioeconomic position – maternal occupation – was used. Maternal occupation is a derived variables in ALSPAC which is based on the Office of Population Censuses and Surveys (OPCS) job codes. This

question was asked to the mothers within ALSPAC during pregnancy and includes the following categories: professional, intermediate, skilled (non-manual), skilled (manual), partly skilled, unskilled, and armed forces. Due to a small number of individuals in the group armed forces (N < 5), these individuals were removed.

Alcohol use at age 24. The AUDIT-C, a shortened version of the AUDIT (1), is used to identify individuals who are hazardous drinkers or have alcohol use disorders. It includes three questions: "How often did you have a drink containing alcohol in the past year", "How many drinks did you have on a typical day when you were drinking in the past year?" and "How often did you have six or more drinks on one occasion in the past year?". Each question is scored 0-4. Total scores range from 0-12.

Smoking status at age 24. Smoking status was a derived variable based on responses to multiple questions related to smoking and score on the Fagerström Test for Nicotine Dependence (FTND) (2) (FKSM1150). The following categories were created: "never smoked a whole cigarette", "not smoked in the last 30 days", "not a daily smoker", "daily smoker". Individuals who scored 1-10 on the FTND (who must be daily smokers) were grouped into one category as "daily smoker".

IQ at age 8. Total IQ score (which includes verbal and performance IQ) on the Wechsler Intelligence Scale for Children (WISC) (3) was used as a measure of IQ at age 8.

Multiple imputation

Participants who had data on all three cognitive outcomes at age 24 were included in the analysis (N=3,305). All participants had complete data the three cognitive outcomes and sex. For details of variables included in the imputation models, please see Table S1. For each set of imputations, 100 datasets were imputed using chained equations with the *mi impute chained* command in Stata. Auxiliary variables were identified as variables that are associated with variables being imputed (i.e., the exposures and/or potential confounders; $r \ge .09$), see Table S1 for list of Auxiliary variables. All variables were included in each model.

We ran several sensitivity analyses to check the robustness of our findings from the multiple imputation models. First, the multiple imputation produced implausible values for some predictors that were not normally distributed (e.g., minus values for CRP). Whilst the goal of multiple imputation is not to predict missing values (4), we re-ran the multiple imputation using predictive mean matching to 10-nearest neighbours to check whether only including plausible values alters our findings. This did not substantially alter our findings. Second, we checked whether re-running the multiple imputation with fewer imputed datasets (N=50) substantially affected the standard errors (i.e., uncertainty associated with missing values (5,6)). If this is the case, it may suggest that more imputed datasets are required to decrease uncertainty associated with missing values. The standard errors were similar across the two analyses. Third, we re-ran the multiply imputed models separately for each outcome: working memory (N = 3,478), emotion recognition (N = 3,613) and response inhibition (N = 3,430) to check whether this altered the findings. This did not alter our overall conclusions.

Mendelian randomization: brief description

Mendelian randomization (MR) is a method used to assess causality (7,8). This method uses genetic variants (typically Single Nucleotide Polymorphisms; SNPs) strongly associated with environmental exposures of interest as proxies for the exposure (8). MR is less susceptible to the limitations of conventional epidemiological approaches (reverse causation and confounding), and if certain assumptions are met, allows causal inferences between the exposure and outcome to be drawn (8).

MR can be conducted in a one or two sample setting (9). One-sample MR involves using individual level data. In many one-sample MR studies, SNPs identified from GWAS conducted on the exposure are used to create a genetic risk score which is used to indicate lifetime risk of the exposure (10). The causal effect of the exposure on the outcome is then often assessed using two-stage least squares regression (11). Two-sample MR often uses summary-level data from publicly available GWAS. Here, SNPs are treated like individual studies (e.g., randomised controlled trials) which are then meta-analysed. There are advantages and disadvantages of both MR approaches, see (7) for more details. It is important to note the three key assumptions of MR: (a) instruments are associated with the exposure, (b) instruments are not associated with potential confounders and (c) instruments are associated with the outcome only via the exposure (10). If key assumptions are not met, this reduces confidence in inferences drawn from MR analyses. In two-sample MR, there is the additional assumption that GWAS for the exposure and outcome come from similar but not overlapping participants (9).

Additional details of GWAS used to create instruments for MR

Ligthart et al. (2018) Circulating CRP was natural log transformed. Individuals were excluded from all analyses if they had an auto-immune disease, were taking immune-modulating agents (if information was available), or they had CRP \geq 4 SD from the mean.

Han et al. (2020) Circulating CRP was rank-based inverse-normal transformed. Average values of serum CRP were calculated for individuals that underwent two assessments.

Ahluwalia et al. (2021) Circulating IL-6 was natural log-transformed. Only population-based samples or healthy controls from case-control studies were included in the final analyses.

Borges et al. (2020) Details not available.

Kettunen et al. (2016) For details on individual criteria applied in studies used in the Kettunen GWAS, see Kettunen et al. (2016) supplementary materials.

Rosa et al. (2019) The Rosa instrument was based on the Sun et al. (2018) GWAS on sIL-6R. The cohorts in this GWAS included participants who were generally in good health. Blood donation criteria excluded individuals with a history of major diseases (such as myocardial infarction, stroke, cancer, HIV, and hepatitis B or C) and individuals who have had recent

illness or infection. For details on blood sample collections, see (17). Quality controls included exclusions for sex mismatches, low call rates, duplicate sample, extreme heterozygosity, and non-European descent.

Swerdlow et al. (2012) Circulating IL-6 was natural log transformed.

Sarwar et al. (2012) Circulating IL-6 was natural log transformed.

Mahedy et al. (2021) In all three cognitive GWAS (working memory, emotion recognition, response inhibition), no transformations were applied to the outcomes. In the emotion recognition and response inhibition GWAS, no exclusions were applied. In the working memory GWAS, individuals who responded to < 50% trials or had a negative score (*d*-prime) were excluded.

Lam et al. (2021) MTAG of two GWAS:

Davies et al. (2018) A general cognitive ability score was derived from two consortia (COGENT and CHARGE) and UK Biobank. For each cohort in CHARGE and COGENT, the general cognitive function component was constructed from several cognitive tasks (required a minimum of three different domains) using principal component analysis. In UK Biobank, scores on the verbal-numerical reasoning test (13-item multiple-choice questions) that assesses 'fluid' cognitive ability was used. Details on all cognitive phenotypes from all cohorts is reported in Davies et al. (2018) supplementary Note 1. Exclusion criteria included clinical stroke (including self-reported stroke) or prevalent dementia.

Savage et al. (2018) A general cognitive ability score was derived from each cohort (except the High IQ/Health and Retirement Study where a logistic regression was run predicting whether participants were drawn from a population of very high intelligence). Cohorts had either a single sum score, mean score, or factor score from a battery of cognitive tests (for example, IQ score, fluid intelligence test and cognitive tasks such as digit span/processing speed). For more details on cognitive tests used, and exclusion criteria applied in each cohort, see Savage et al. (2018).

Creating weighted genetic risk scores

Weighted genetic risk scores were created for inflammatory (CRP, IL-6, GlycA, sIL-6R) and cognitive (working memory, emotion recognition, response inhibition) phenotypes for each ALSPAC participant in Plink v1.90 (24). Specifically, risk alleles were weighted by the effect size (beta) reported in the GWAS and then summed to provide a single risk score. Unrelated individuals were kept, and withdrawals of consent were removed. For SNPs not available in ALSPAC, proxies were identified that had: $r^2 > 0.8$ (using *LDproxy_batch* function in EUR) population in R), rsID available, SNP available in full summary statistics and ALSPAC. Quality checks involved (1) checking there were no mismatches in SNP alleles between base data and ALSPAC (no mismatches were detected) and (2) checking for palindromic SNPs (SNPs with alleles A/T or C/G). Palindromic SNPs have the same allele pairs on both the forward and backward strand, and therefore if the base or outcome GWAS does not specify which strand the analysis was done on, there is the possibility that they could be reporting from different strands resulting in an error in the MR results. In total, there were 88 distinct palindromic SNPs. As there were no mismatches in allele pairs between the base data and ALSPAC, it is unlikely that there are strand differences. Nevertheless, a sensitivity analysis was conducted removing these SNPs to check whether this influenced the results. Rerunning the analysis with these SNPs removed did not substantially influence the results.

Statistical power for one-sample MR

We conducted a *post-hoc* power calculation using mRnd (25)

(shiny.cnsgenomics.com/mRnd/) to check the statistical power of the one-sample MR. The following parameters were used based on the data obtained in this study: power (0.08), alpha (0.05), βyx (approximate regression coefficient from one-sample MR assuming this is the true effect size; 0.1); β OLS (approximate regression coefficient from observational analysis; 0.05), $\sigma 2(x)$ and $\sigma 2(y)$ (variance of exposure and outcome based on per SD change; 1). For R²xz (proportion of variance explained for the association between allele score and exposure variable), we set various thresholds given the variability across instruments (conservative = 0.02; liberal = 0.03; very liberal = 0.04). Based on this, the required sample size to detect the expected effect size would be conservative (N = 39,295), liberal (N = 26,197) and very liberal (N = 19,648).

Two-sample MR methods

Inverse Variance Weighted (IVW) method. This method is often used in meta-analyses where individual studies are weighted by the inverse of their variance (i.e., their precision) and combined to estimate an average effect (26,27). In MR, instead of individual studies, individual SNP effects (Wald ratios) are combined. Wald ratios are calculated by dividing the SNP outcome association by the SNP exposure association. This method forces the intercept through zero assuming no horizontal pleiotropy (i.e., it assumes SNPs are associated with the outcome *only* via the exposure). Therefore, the IVW method will provide a consistent estimate if all SNPs are valid instrumental variables (26,27).

MR-Egger method. This method is similar to the IVW method except that it does not force the intercept through zero. Consequently, this method provides an estimate in the presence of invalid SNPs (SNPs that affect the outcome through pathways other than the exposure) (28). The slope provides a causal effect estimate and the intercept can be used to indicate the degree of horizontal pleiotropy.

Weighted-median method. This method uses the median of the ratio estimates and will provide a consistent estimate if at least 50% of the weights come from valid SNPs (29).

Weighted-mode method. This method will provide a consistent estimate if the most common causal effect estimates come from valid SNPs (even if the majority of SNPs are not valid) (30).

MR-PRESSO method. This method consists of the following three tests: (a) MR-PRESSO global test which can be used to detect horizontal pleiotropy, (b) MR-PRESSO outlier test which removes outliers from IVW estimates, (c) MR-PRESSO distortion test which tests whether there is a large distortion in the causal estimates once outlier have been removed (31). In this study, we also used the MR-PRESSO outlier test to examine whether the causal effect estimates are robust to the removal of outliers.

SUPPLEMENTARY TABLES

Variable	N with missing data (% missing)	Regression model used to impute missing data
Outcome variables		
Working memory (age 24, z-score)	0 (0%)	N/A
Emotion recognition (age 24, z-score)	0 (0%)	N/A
Response inhibition (age 24, z-score)	0 (0%)	N/A
Exposure variables		
CRP (age 24, z-score)	807 (24.4%)	Linear
GlycA (age 24, z-score)	590 (17.9%)	Linear
Potential confounders		
Sex	0 (0%)	N/A
Ethnicity	344 (10.4%)	Logistic
BMI (age 24)	34 (1.0%)	Linear
Maternal education	380 (11.5%)	Ordinal Logistic
Maternal SES	658 (19.9%)	Ordinal Logistic
Alcohol use (age 24)	56 (1.7%)	Linear
Smoking status (age 24)	29 (0.9%)	Ordinal Logistic
IQ (age 8)	585 (17.7%)	Linear
Auxiliary variables		
CRP (age 9)	1,360 (41.2%)	Linear
CRP (age 15)	1,583 (47.9%)	Linear
CRP (age 17)	1,536 (46.5%)	Linear
GlycA (age 7)	1,339 (40.5%)	Linear
GlycA (age 15)	1,630 (49.3%)	Linear
GlycA (age17)	1,589 (48.1%)	Linear
IL-6 (age 9)	1,363 (41.2%)	Linear
Working memory (age 10)	682 (20.6%)	Linear
Alcohol use (AUDIT – age 17)	1,040 (31.5%)	Linear
Maternal financial difficulties (pregnancy)	366 (11.1%)	Linear
Maternal age (delivery)	221 (6.7%)	Linear
BMI (age 7)	480 (14.5%)	Linear
BMI (age 13)	653 (19.8%)	Linear
BMI (age 15)	768 (23.2%)	Linear
BMI (age 17)	698 (21.1%)	Linear
Maternal depression (18 weeks gestation)	474 (14.3%)	Linear
Monocyte levels (age 24)	643 (19.5%)	Linear
Lymphocyte levels (age 24)	643 (19.5%)	Linear
Paternal SES	504 (15.3%)	Ordinal Logistic

Table S1. Variables included in the multiple imputation models (N=3,305)

Phenotype	ALSPAC variable name	Descriptive statistics Mean (SD), min max	N
		Exposures	
	CRP_F24	<i>M</i> = 2.28 (6.52)	3,015
CDD		Min = .1	
CRP (age 24)		Max = 224.72	
(ugc 24)	CRP_F24	<i>M</i> = 1.55 (1.82)	2,901
	(excludes	Min = .1	
	values ≥ 10 mg/l)	Max = 9.8	
GlycA	Gp_F24	<i>M</i> = 1.23 (0.17)	3,258
, (age 24)	-	Min = 0.84	,
		Max = 2.25	
	Gp_F24	<i>M</i> = 1.22 (0.16)	3,144
	(excludes	Min = 0.84	- ,
	CRP_F24 ≥ 10)	Max = 2.19	
		Outcomes	
Emotion	FKEP1070	<i>M</i> = 66.36 (7.89)	3,613
ecognition		Min = 25	
(age 24)		Max = 88	
Working	Derived variable	<i>M</i> = 2.76 (0.80)	3,478
memory		Min = 0	
(age 24)		Max = 3.78	
Response	FKEP3060	<i>M</i> = 258.72 (53.11)	3,430
inhibition		Min = 67	
(age 24)		Max = 508	
		Potential Confounders	
BMI	FKMS1040	<i>M</i> = 24.92 (5.08)	3,974
(age 24)		Min = 13.68	
		Max = 63.74	
Alcohol use	FKAL1500	<i>M</i> = 5.16 (2.51)	3,928
(age 24)		Min = 0	
		Max = 12	
IQ	f8ws112	<i>M</i> = 103.97 (16.54)	7,346
(age 8)		Min = 45	
		Max = 151	
Sex	kz021	0. Male = 7,690	15,038
		1. Female = 7,348	
Ethnicity	c804	0. White = 11,523	12,136
		1. Non-white = 613	
Maternal	c645	0. Degree = 1,608	11,703
education		1. A level = 2,793	

Table S2. Characteristics of ALSPAC participants.

		2. O level = 4,323	
		3. Vocational = 1,229	
		4. CSE/none = 1,750	
Maternal SEP	c755	0. Professional = 595 10,10	06
		1. Intermediate = 3,180	
		 Skilled (non-manual) = 4,322 	
		3. Skilled (manual) = 790	
		4. Partly skilled = 997	
		5. Unskilled = 222	
Smoking status	FKSM1150	0. Never smoked a whole 3,95 cigarette = 1,435	3
(age 24)		 Not smoked in last 30 days = 1,390 	
		2. Not a daily smoker = 642	
		3. Daily smoker = 486	

N = excludes missing data; maternal education = mothers highest education qualification; maternal SEP = maternal occupation using Office of Population Censuses and Surveys (OPCS) job codes as a proxy for socioeconomic position; CSE = certificate of secondary education.

Outcome (models)	b	95% CI	<i>p</i> -value	Ν
Working Memory				
Model 1	03	06, .009	.14	2,624
Model 2	02	06, .02	.34	2,327
Model 3	03	08, .03	.33	2,020
Model 4	02	08, .03	.39	1,976
Model 5	01	06, .04	.69	1,700
Emotion Recognition				
Model 1	01	05, .02	.49	2,718
Model 2	01	05, .03	.54	2,407
Model 3	.002	05, .05	.94	2,089
Model 4	.003	05, .06	.91	2,042
Model 5	.01	04, .06	.67	1,758
Response Inhibition				
Model 1	.02	02, .06	.29	2,582
Model 2	.004	03, .04	.83	2,291
Model 3	.01	04, .07	.65	1,988
Model 4	.003	05, .06	.91	1,945
Model 5	001	05, 05	.98	1,686

Table S3. Cross-sectional association between CRP and cognitive outcomes at age 24 in ALSPAC, unadjusted and adjusted for potential confounders (complete cases).

95% CI = 95% Confidence Interval. Model 1: unadjusted; Model 2: adjusted for sex, ethnicity, and BMI at age 24; Model 3: additionally adjusted for maternal education and socioeconomic position; Model 4: additionally adjusted for smoking and alcohol use at age 24; Model 5: additionally adjusted for IQ at age 8. Exposure and outcomes are standardised.

Outcome (models)	b	95% CI	<i>p</i> -value	Ν
Working Memory				
Model 1	08	11,04	<.001	2,849
Model 2	06	10,02	.004	2,523
Model 3	04	08, .005	.083	2,190
Model 4	03	08, .02	.19	2,142
Model 5	02	06, .03	.53	1,839
Emotion Recognition				
Model 1	05	09,01	.007	2,949
Model 2	02	06, .03	.45	2,610
Model 3	.007	04, .05	.77	2,266
Model 4	.003	04, .05	.88	2,215
Model 5	.009	04, .06	.72	1,902
Response Inhibition				
Model 1	.05	.008, .08	.016	2,806
Model 2	.02	02, .06	.34	2,487
Model 3	.009	04, .05	.71	2,158
Model 4	002	05, .05	.94	2,111
Model 5	02	07, .03	.50	1,825

Table S4. Cross-sectional association between GlycA and cognitive outcomes at age 24 in ALSPAC, unadjusted and adjusted for potential confounders (complete cases).

95% CI = 95% Confidence Interval. Model 1: unadjusted; Model 2: adjusted for sex, ethnicity, and BMI at age 24; Model 3: additionally adjusted for maternal education and socioeconomic position; Model 4: additionally adjusted for smoking and alcohol use at age 24; Model 5: additionally adjusted for IQ at age 8. Exposure and outcomes are standardised.

Outcome (model)	b	95% CI	<i>p</i> -value	Ν
Working Memory				
Model 1	05	09,01	.008	2,527
Model 2	02	06, .03	.48	2,247
Model 3	01	06, .04	.69	1,956
Model 4	01	06, .04	.69	1,915
Model 5	.008	04, .06	.74	1,644
Emotion Recognition				
Model 1	02	06, .02	.36	2,617
Model 2	001	04, .04	.97	2,323
Model 3	.005	04, .05	.84	2,022
Model 4	.002	04, .05	.94	1,978
Model 5	.002	05, .05	.95	1,699
Response Inhibition				
Model 1	.03	01, .07	.19	2,490
Model 2	01	06, .03	.63	2,215
Model 3	02	06, .03	.53	1,926
Model 4	02	07, .03	.48	1,885
Model 5	03	08, .03	.33	1,630

Table S5. Cross-sectional association between CRP and cognitive outcomes at age 24 in ALSPAC, unadjusted and adjusted for potential confounders, excluding individuals with CRP > 10mg/l (complete cases).

95% CI = 95% Confidence Interval. Model 1: unadjusted; Model 2: adjusted for sex, ethnicity, and BMI at age 24; Model 3: additionally adjusted for maternal education and socioeconomic position; Model 4: additionally adjusted for smoking and alcohol use at age 24; Model 5: additionally adjusted for IQ at age 8. Exposure and outcomes are standardised.

Outcome (model)	b	95% CI	<i>p</i> -value	Ν
Working Memory				
Model 1	06	10,03	.001	2,752
Model 2	05	09,01	.024	2,443
Model 3	03	07, .02	.22	2,126
Model 4	02	07, .03	.42	2,081
Model 5	005	05, .04	.85	1,783
Emotion Recognition				
Model 1	04	08,01	.020	2,848
Model 2	01	05, .03	.67	2,526
Model 3	.01	04, .05	.73	2,199
Model 4	.003	04, .05	.90	2,151
Model 5	.01	04, .06	.73	1,843
Response Inhibition				
Model 1	.03	01, .06	.19	2,714
Model 2	.01	04, .05	.75	2.411
Model 3	01	05, .04	.77	2,096
Model 4	02	06, .03	.51	2,051
Model 5	03	08, .02	.28	1,769

Table S6. Cross-sectional association between GlycA and cognitive outcomes at age 24 in ALSPAC, unadjusted and adjusted for potential confounders, excluding individuals with CRP > 10mg/l (complete cases).

95% CI = 95% Confidence Interval. Model 1: unadjusted; Model 2: adjusted for sex, ethnicity, and BMI at age 24; Model 3: additionally adjusted for maternal education and socioeconomic position; Model 4: additionally adjusted for smoking and alcohol use at age 24; Model 5: additionally adjusted for IQ at age 8. Exposure and outcome are standardised.

Predictor b 95% CI Ν р IQ – age 8 -0.03 -0.03 to -0.03 < 0.001 7,346 Sex (ref. male) -0.70 -0.78 to -0.62 < 0.001 15,038 Ethnicity (ref. white) 0.34 0.13 to 0.55 0.001 12,136 BMI – age 24 0.03 0.02 to 0.05 < 0.001 3,974 **Maternal education** 11,703 Degree [reference] [reference] [reference] A level 0.27 to 0.52 < 0.001 0.39 O level 0.82 0.69 to 0.94 < 0.001 Vocational 1.19 1.01 to 1.37 < 0.001 CSE 1.65 1.48 to 1.83 < 0.001 Maternal socioeconomic 10,106 position Professional [reference] [reference] [reference] Intermediate 0.26 to 0.62 < 0.001 0.44 0.66 to 1.01 < 0.001 Skilled (non-manual) 0.84 Skilled (manual) 0.95 to 1.44 1.19 < 0.001 Partly skilled 1.30 1.06 to 1.53 < 0.001 Unskilled 1.50 1.09 to 1.92 < 0.001 Smoking – age 24 3,953 Never smoked [reference] [reference] [reference] -0.27 to 0.14 Not smoked last 30 days -0.07 0.52 Not daily smoker 0.27 0.03 to 0.52 0.027 Daily smoker 0.63 0.38 to 0.88 < 0.001 Alcohol – age 24 -0.05 -0.08 to -0.01 0.005 3,928 CRP – age 24 0.01 -0.01 to 0.02 0.35 3,015 0.002 GlycA – age 24 0.83 0.31 to 1.34 3,258 0.97 5,080 CRP – age 9 0.0004 -0.02 to 0.02 CRP – age 15 0.013 -0.01 to 0.03 0.16 3,488 CRP – age 17 0.01 -0.01 to 0.02 0.27 3,285

Table S7. Logistic regression to predict missingness in cognitive data at age 24.

GlycA – age 7	-0.40	-0.79 to -0.003	0.048	5,518
GlycA – age 15	0.09	-0.43 to 0.62	0.72	3,363
GlycA – age 17	0.70	0.18 to 1.21	0.008	3,173
IL-6 – age 9	-0.02	-0.05 to 0.02	0.37	5,070

For each participant in ALSPAC, the outcome was coded as either 0 (not missing – individual has data on all three cognitive tasks at age 24; N = 3,305) or 1 (missing – individual does not have data on all three cognitive tasks at age 24).

Phenotype	GWAS/ Instrument	Population	Cohort/ studies(s)	Covariates	Ages	Ν	Includes ALSPAC (approximate % sample if applicable)	Ref
	Ligthart	Linthart Summer		Adjusted for age, sex,	Cohorts range		Yes (HapMap not 1KG GWAS)	(12)
CRP	et al. (2018)	European ancestry	88 studies	population structure, accounting for relatedness, if relevant.	from <i>M</i> age of 9.9 to 86.6 years	204,402	ALSPAC (N = 4,099) in total sample (N = 204,402) = 2%.	(12)
	Han et al. (2020)	European ancestry	UK Biobank	Adjusted for sex, age and first ten principal components.	M = 56.8 years (SD = 8.01)	418,642	No.	(13)
	Ahluwalia et al. (2021)	European ancestry	26 cohorts	Adjusted for age, sex, population substructure (through study-specific principal components) and/or study-specific site, when necessary.	Cohorts range from <i>M</i> age of 9.9 to 86.6 years	52,654	Yes. ALSPAC (N = 4,129) in discovery sample (N = 52,654) = 7.8%	(14)
IL-6	Swerdlow et al. (2012) Instrument	European ancestry	Whitehall II study	Identified SNPs <i>a priori,</i> then tested the association between SNPs and log IL-6 in Whitehall II.	M = 49.2 years (SD = 6.0)	Up to 4,479 per SNP	No.	(18)

 Table S8. Details of GWAS used to create instruments for one and two sample MR.

	Sarwar et al. (2012) Instrument	European ancestry (≥ 90%)	16 studies	Unknown	Unknown	27,185	Unknown	(19)
	Borges et al. (2020)	European	UK Biobank	Unknown	Unknown	115,078	No	N/A
GlycA	Kettunen et al. (2016)	time from last meal, if applicable, and ten firs principal components et al. (2016) European 14 cohorts from genomic data and the resulting residuals were transformed to normal distribution by inverse rank-based		adjusted for age, sex, time from last meal, if applicable, and ten first principal components from genomic data and the resulting residuals were transformed to normal distribution by	Cohorts range from <i>M</i> age 23.9 to 61.3 years.	19,270	No.	(15)
sIL6R	Rosa et al. (2019) Instrument from Sun et al., (2018) GWAS on sIL6R.	European ancestry	INTERVAL study (UK)	Adjusted for sex, age, duration between blood draw and processing, first 3 ancestry principal components.	Cohorts <i>M</i> age is 44 years (<i>SD</i> = 14)	3,301	No.	(16,32)
Working memory	Mahedy et al. (2021)	European	ALSPAC	Adjusted for age, sex, and first 10 genetic principal components.	24 years	2,471	Yes.	(20)
Emotion recognition	Mahedy et al. (2021)	European	ALSPAC	Adjusted for age, sex, and first 10 genetic principal components	24 years	2,560	Yes.	(20)

Response Inhibition	Mahedy et al. (2021)	European	ALSPAC	Adjusted for age, sex, and first 10 genetic principal components	24 years	2,446	Yes.	(20)
General Cognitive Ability	*Lam et al. (2021)	European ancestry	Combined two cognitive GWAS: Savage et al. (2018) (14 cohorts) and Davies et al. (2018) (57 cohorts), with ~ 89% sample overlap.	Davies et al. (2018) adjusted for age, sex, and population stratification were included in the model for each cohort. Cohort-specific covariates (site or familial relationships) were also fitted as required. Savage et al. (2018) adjusted for age, sex, ancestry principal components.	Davies et al. (2018) cohorts ages range from 16 to 102 years. Savage et al. (2018) cohorts ages range from 5 to 98 years.	373,617	No.	(21)

M = mean; CRP = C-reactive protein; IL-6 = Interleukin-6; GlycA = Glycoprotein acetyls; sIL-6R = soluble interleukin-6 receptor; ALSPAC = Avon Longitudinal Study of Parents and Children; GWAS = genome-wide association studies; unknown = information not reported in paper (to authors knowledge). * = not all cohorts from the two cognitive GWAS were included due to problems with data access.

Original paper	Variance explained by SNPs				
Ligthart et al. (2018)	Same sample: lead variants at distinct loci explained up to 7.0% variance in CRP levels. Additional detail: 52-SNPs (48: HapMap, 4: 1KG GWAS): R ² = 0.065, <i>F</i> -statistic = 273.				
Han et al. (2020)	Same sample: 526 SNPs explained 13% variance in CRP levels.				
Ahluwalia et al. (2021)	Independent sample (NESDA): three GWAS index SNPs explained ~ 1.06% variance in IL-6 in NESDA cohort (rs4537545, rs660895, rs6734238).				
Kettunen et al. (2016)	Same sample: 74 variants (associated with one or more metabolic traits) explained 2.41% variance in glycoprotein acetyls.				
Rosa et al. (2019)	Same sample: 34 <i>cis</i> SNPs (r ² < 0.1, F-statistic > 15) located within 250kb IL6R. <i>F</i> -statistic estimates (beta ² /SE ²) for individual SNPs predicting sIL6R ranged from 15.73 to 504.90				

Table S9. Variance explained by SNPs in original GWAS paper for comparison.

Instruments reported in original papers may not contain the same SNPs that were used as instruments in this paper due to different criterion applied; NESDA = Netherlands Study of Depression and Anxiety; SNP = Single Nucleotide Polymorphism; same sample = variance explained by SNPs in same sample used to conduct GWAS; independent sample = variance explained by SNPs in an independent sample to that used to conduct GWAS.

GWAS Full Summary Statistics/Instruments	Source	Link (if available online) or author contact details
Ligthart et al. (2018)	IEU Open GWAS Project (<u>https://gwas.mrcieu.ac.uk/</u>)	gwas.mrcieu.ac.uk/datasets/ieu-b-35/
Han et al. (2020)	Requested from authors	Corresponding author: Xikun Han (email: <u>Xikun.Han@qimrberghofer.edu.au</u>)
Ahluwalia et al. (2021)	Requested from authors	Corresponding authors: Tarunveer Ahluwalia (email: <u>tarun.veer.singh.ahluwalia@regionh.dk</u> Behrooz Alizadeh (email: <u>b.z.alizadeh@umcg.nl</u>)
Swerdlow et al. (2012)*	Taken from Nils Kappelmann OSF	OSF: <u>osf.io/apme9/</u>
Sarwar et al. (2012)	Taken from Nils Kappelmann OSF	OSF: <u>osf.io/apme9/</u>
Borges et al. (2020)	IEU Open GWAS Project	gwas.mrcieu.ac.uk/datasets/met-d-GlycA/
Kettunen et al. (2016)	IEU Open GWAS Project	gwas.mrcieu.ac.uk/datasets/met-c-863/
Rosa et al. (2019)	Available in paper supplementary	www.nature.com/articles/s41525-019-0097- <u>4#Sec30</u>
Mahedy et al. (2021) (Working memory)	University of Bristol Open Repository	research- information.bris.ac.uk/en/datasets/genome- wide-association-of-working-memory
Mahedy et al. (2021) (Emotion recognition)	University of Bristol Open Repository	research- information.bris.ac.uk/en/datasets/genome- wide-association-study-of-emotion-recognitio
Mahedy et al. (2021) (Response inhibition)	University of Bristol Open Repository	research- information.bris.ac.uk/en/datasets/genome- wide-association-study-of-response-inhibitior
Lam et al. (2021)	Requested from authors	Corresponding author: Todd Lencz (email: <u>tlencz@northwell.edu</u>)

Table S10. Source of GWAS full summary statistics and instruments

GWAS taken from IEU Open GWAS Project were converted from Variant Call Format (VCF) to text files using BCF tools (33); OSF = Open Science Framework; * = error in effect alleles reported in paper, corrected version used instead.

GWAS	SNPs met <i>p</i> - value criteria	Independent SNPs	Quality check	Genome- wide	Cis
Ligthart et al. (2018)	3,950	78	78	78	6
Han et al. (2020)	60,177	552	552	552	20
Ahluwalia et al. (2021)	94	3	3	3	2
Borges et al. (2020)	15,328	88	87	87	N/A
Kettunen et al. (2016)	315	10	10	10	N/A
Mahedy et al. (2021) (Working memory)	6*	3	3	3	N/A
Mahedy et al. (2021) (Emotion recognition)	15*	6	6	6	N/A
Mahedy et al. (2021) (Response inhibition)	16*	6	6	6	N/A
Lam et al. (2021)	16,696	250	250	250	N/A

Table S11. Number of SNPs available from each GWAS after criterion applied.

Some instruments were not extracted from GWAS full summary statistics (i.e., already available instruments) and so they are not included here: Rosa et al. 2019, Swerdlow et al. 2012, Sarwar et al. 2012; SNPs met *p*-value criteria = SNPs with $p < 5 \times 10^{-8}$ (*except for cognitive GWAS where a less stringent criteria was applied: $p < 5 \times 10^{-6}$); Independent SNPs = SNPs met clumping criteria ($r^2 = 0.01$, kb = 1000); Quality check = SNPs with minor allele frequency > 0.01; *Cis* = SNPs located +/- 1-mB of protein coding gene; Genome-wide = SNPs that met statistical criteria. Location of protein coding gene is based on Genome Reference Consortium Human (GRCh) 37 for CRP (chr1:159,682,079-159,684,379; consistent with SNP base pair (BP) positions in CRP GWAS). As the IL-6 GWAS (Ahluwalia et al., 2021) SNP BP positions were based on GRCh36, the BP position for these SNPs were extracted from GRCh38 along with the corresponding location of the IL6R (chr1:154,405,193-154,469,450).

Exposure Instrument	SNPs that met criteria	SNPs available in ALSPAC	SNPs missing in ALSPAC	SNPs that met criteria (+ proxies)	SNPs (+ proxies) available in ALSPAC	Final N SNPs ir genetic risk score
Ligthart et al. (cis)	6	6	0	6	6	6
Ligthart et al. (genome-wide)	78	76	2	77	76	76
Han et al. (<i>cis</i>)	20	18	2	18	18	18
Han et al. (genome-wide)	552	509	43	529	520	520
Ahluwalia et al. (<i>cis</i>)	2	2	0	2	2	2
Ahluwalia et al. (genome-wide)	3	3	0	3	3	3
Borges et al.	87	78	9	84	82	82
Kettunen et al.	10	10	0	10	10	10
Rosa et al.	34	34	0	34	34	34
Swerdlow et al.	3	3	0	3	3	3
Sarwar et al.	1	1	0	1	1	1
Mahedy et al. (Working memory)	3	3	0	3	3	3
Mahedy et al. (Emotion recognition)	6	6	0	6	6	6
Mahedy et al. (Response inhibition)	6	6	0	6	6	6

Table S12. One-sample MR in ALSPAC: Number of SNPs with proxies included.

oosure Instrument	Potential Confounders	N	
Ligthart et al. (<i>cis</i>)	Sex (p = .47)	8,114	
	Ethnicity ($p = .89$)	7,172	
	BMI at age 24 (p = .34)	2,849	
	Maternal education $(p = .79)$	6,951	
	Maternal socioeconomic position (p = .63)	6,158	
	Smoking at age 24 ($p = .54$)	2,845	
	Alcohol use at age 24 ($p = .99$)	2,824	
Ligthart et al.	Sex (p = .98)	8,114	
(genome-wide)	Ethnicity (p = .80)	7,172	
	BMI at age 24 (p = .49)	2,849	
	Maternal education ($p = .075$)	6,951	
	Maternal socioeconomic position ($p = .13$)	6,158	
	Smoking at age 24 ($p = .22$)	2,845	
	Alcohol use at age 24 (p = .13)	2,824	
Han et al. (<i>cis</i>)	Sex (p = .82)	8,114	
	Ethnicity ($p = .58$)	7,172	
	BMI at age 24 ($p = .37$)	2,849	
	Maternal education $(p = .91)$	6,951	
	Maternal socioeconomic position ($p = .22$)	6,158	
	Smoking at age 24 ($p = .78$)	2,845	
	Alcohol use at age 24 ($p = .57$)	2,824	
Han et al.	Sex (p = .98)	8,114	
(genome-wide)	Ethnicity (p = .91)	7,172	
	BMI at age 24 (p = .064)	2,849	
	Maternal education ($p = .00006$)	6,951	
	Maternal socioeconomic position (p = .28)	6,158	
	Smoking at age 24 ($p = .51$)	2,845	
	Alcohol use at age 24 (p = .015)	2,824	
Ahluwalia et al. (<i>cis</i>)	Sex (p = .52)	8,114	
	Ethnicity ($p = .86$)	7,172	
	BMI at age 24 (p = .83)	2,849	
	Maternal education (p = .77)	6,951	
	Maternal socioeconomic position ($p = .57$)	6,158	
	Smoking at age 24 (p = .47)	2,845	
	Alcohol use at age 24 (p = .79)	2,824	
Ahluwalia et al.	Sex (p = .35)	8,114	
(genome-wide)	Ethnicity ($p = .55$)	7,172	
	BMI at age 24 (p = .99)	2,849	
	Maternal education ($p = .49$)	6,951	
	Maternal socioeconomic position ($p = .34$)	6,158	
	Smoking at age 24 ($p = .55$)	2,845	
	Alcohol use at age 24 (p = .69)	2,824	

Table S13. One-sample MR in ALSPAC: association between genetic risk scores and potentialconfounders in linear regression models.

Borges et al.	Sex (p = .91)	8,114
	Ethnicity (p = .96)	7,172
	BMI at age 24 (p = .37)	2,849
	Maternal education (p = .17)	6,951
	Maternal socioeconomic position (p = .52)	6,158
	Smoking at age 24 (p = .28)	2,845
	Alcohol use at age 24 (p = .074)	2,824
Kettunen et al.	Sex (p = .96)	8,114
	Ethnicity (p = .19)	7,172
	BMI at age 24 (p = .69)	2,849
	Maternal education (p = .62)	6,951
	Maternal socioeconomic position (p = .79)	6,158
	Smoking at age 24 (p = .30)	2,845
	Alcohol use at age 24 (p = .76)	2,824
Rosa et al.	Sex (p = .90)	8,114
	Ethnicity (p = .90)	7,172
	BMI at age 24 (p = .49)	2,849
	Maternal education ($p = .51$)	6,951
	Maternal socioeconomic position (p = .86)	6,158
	Smoking at age 24 (p = .62)	2,845
	Alcohol use at age 24 (p = .52)	2,824
Swerdlow et al.	Sex (p = .35)	8,114
	Ethnicity (p = .25)	7,172
	BMI at age 24 (p = .81)	2,849
	Maternal education (p = .36)	6,951
	Maternal socioeconomic position (p = .66)	6,158
	Smoking at age 24 (p = .69)	2,845
	Alcohol use at age 24 (p = .98)	2,824
Sarwar et al.	Sex (p = .64)	8,114
	Ethnicity (p = .62)	7,172
	BMI at age 24 (p = .84)	2,849
	Maternal education (p = .52)	6,951
	Maternal socioeconomic position (p = .65)	6,158
	Smoking at age 24 (p = .37)	2,845
	Alcohol use at age 24 (p = .78)	2,824
Mahedy et al.	Sex (p = .45)	8,114
(Working memory)	Ethnicity (p = .31)	7,172
- ••	BMI at age 24 (p = .20)	2,849
	Maternal education ($p = .11$)	6,951
	Maternal education (p = .11)	
	Maternal socioeconomic position ($p = .60$)	6,158
		6,158 2,845

Mahedy et al.	Sex (p = .98)	8,114
(Emotion recognition)	Ethnicity (p = .70)	7,172
	BMI at age 24 (p = .061)	2,849
	Maternal education (p = .55)	6,951
	Maternal socioeconomic position (p = .013)	6,158
	Smoking at age 24 (p = .62)	2,845
	Alcohol use at age 24 (p = .84)	2,824
Mahedy et al.	Sex (p = .96)	8,114
(Response inhibition)	Ethnicity (p = .18)	7,172
	BMI at age 24 (p = .30)	2,849
	Maternal education (p = .99)	6,951
	Maternal socioeconomic position (p = .30)	6,158
	Smoking at age 24 (p = .30)	2,845
	Alcohol use at age 24 (p = .40)	2,824

All models include top 10 genetic principal components to adjust for population stratification.

Outcome	Exposure	Exposure GRS	Estimate	SE	p	N
		Primary analysis				
	Log CRP	Ligthart et al. (<i>cis</i>)	0.003	0.16	0.99	1963
		Han et al. (<i>cis</i>)	-0.22	0.21	0.29	1963
Working memory	Log IL-6	Ahluwalia et al. (cis)	0.19	0.20	0.35	1694
		Rosa et al.	-0.05	0.22	0.82	1694
-	GlycA	Borges et al.	-0.22	0.81	0.79	2122
	Log CRP	Ligthart et al. (<i>cis</i>)	-0.02	0.16	0.92	2029
Emotion		Han et al. (cis)	-0.31	0.22	0.15	2029
recognition	Log IL-6	Ahluwalia et al. (cis)	0.08	0.19	0.69	1751
	-	Rosa et al.	0.12	0.20	0.55	1751
-	GlycA	Borges et al.	0.21	0.83	0.80	2193
Response	Log CRP	Ligthart et al. (<i>cis</i>)	-0.27	0.19	0.16	1939
inhibition	U	Han et al. (<i>cis</i>)	-0.21	0.23	0.36	1939
-	Log IL-6	Ahluwalia et al. (<i>cis</i>)	0.01	0.20	0.94	1677
	0	Rosa et al.	-0.10	0.22	0.63	1677
-	GlycA	Borges et al.	-0.73	0.89	0.41	2098
	,	Secondary analysis				
Working memory	Log CRP	Ligthart et al.	0.10	0.10	0.31	1963
		(genome-wide)				
		Han et al. (genome-wide)	-0.06	0.10	0.55	1963
	Log IL-6	Ahluwalia et al.	0.28	0.21	0.18	1694
		(genome-wide)				
		Swerdlow et al.	0.15	0.19	0.42	1694
-		Sarwar et al.	0.20	0.20	0.33	1694
	GlycA	Kettunen et al.	1.54	0.96	0.11	2122
	Log CRP	Ligthart et al.	-0.001	0.09	0.99	2029
		(genome-wide)				
_		Han et al. (genome-wide)	-0.14	0.10	0.16	2029
Emotion	Log IL-6	Ahluwalia et al.	0.06	0.20	0.78	1751
recognition		(genome-wide)				
		Swerdlow et al.	-0.08	0.18	0.66	1751
_		Sarwar et al.	-0.03	0.19	0.87	1751
	GlycA	Kettunen et al.	0.37	0.94	0.69	2193
		Ligthart et al.	-0.18	0.10	0.073	1939
	Log CRP	(genome-wide)				
		Han et al. (genome-wide)	-0.08	0.10	0.43	1939
Response		Ahluwalia et al.	-0.05	0.20	0.80	1677
inhibition	Log IL-6	(genome-wide)				
		Swerdlow et al.	-0.02	0.19	0.94	1677
-		Sarwar et al.	-0.10	0.20	0.63	1677
	GlycA	Kettunen et al.	-0.73	0.99	0.46	2098

Table S14. One-sample MR in ALSPAC: effect of inflammatory markers on standard deviation change in cognition.

Two-stage least squares regression; GRS = genetic risk score; Log CRP = natural log transformed CRP at age 24; Log IL-6 = natural log transformed IL-6 at age 9; GlycA = GlycA at age 24. Outcome measures are standardised (i.e., estimates reflect per standard deviation change in outcome to enable comparison across cognitive domains). Models include top 10 genetic principal components.

Outcome	Exposure	Exposure GRS	Estimate	SE	p	N
Log CRP	Working memory	Mahedy et al.	-0.03	0.19	0.88	1963
	(age 24)	(Working memory)				
	Emotion	Mahedy et al.	-0.01	0.02	0.54	2029
	recognition	(Emotion				
	(age 24)	recognition)				
	Response	Mahedy et al.	0.0003	0.002	0.87	1939
	inhibition	(Response				
	(age 24)	inhibition)				
Log IL-6	Working memory	Mahedy et al.	0.30	0.25	0.22	1694
	(age 24)	(Working memory)				
	Emotion	Mahedy et al.	-0.02	0.02	0.33	1751
	recognition	(Emotion				
	(age 24)	recognition)				
	Response	Mahedy et al.	0.003	0.002	0.19	1677
	inhibition	(Response				
	(age 24)	inhibition)				
GlycA	Working memory	Mahedy et al.	0.14	0.20	0.47	2122
	(age 24)	(Working memory)				
	Emotion	Mahedy et al.	0.001	0.02	0.95	2193
	recognition	(Emotion				
	(age 24)	recognition)				
	Response	Mahedy et al.	-0.0005	0.002	0.81	2098
	inhibition	(Response				
	(age 24)	inhibition)				

Table S15. One-sample MR in ALSPAC: effect of cognitive functioning on standard deviation change in inflammatory markers.

Two stage least squares regression; GRS = genetic risk score; Log CRP = natural log transformed CRP at age 24; Log IL-6 = natural log transformed IL-6 at age 9; GlycA = GlycA at age 24. All outcome measures are standardised (i.e., estimates reflect standard deviation change in outcome to enable comparisons across outcomes). Models include top 10 genetic principal components.

Exposure Instrument	SNPs that met statistical criteria	SNPs missing in Outcome GWAS (Lam et al.)	Proxies for missing SNPs	Excluded SNPs	Final N SNPs used (proxies included)
Ligthart et al. (<i>cis</i>)	6	0	N/A	0	6
Ligthart et al. (genome-wide)	78	4	3	0	77
Han et al. (<i>cis</i>)	20	9	2	0	13
Han et al. (genome-wide)	552	108	50	0	494
Ahluwalia et al. (<i>cis</i>)	2	0	N/A	0	2
Ahluwalia et al. (genome-wide)	3	0	N/A	0	3
Borges et al.	87	14	9	0	82
Kettunen et al.	10	1	1	0	10
Rosa et al.	34	7	N/A	5	22
Swerdlow et al.	3	0	N/A	0	3
Sarwar et al.	1	0	N/A	0	1

 Table S16. Two-sample MR (inflammatory markers on general cognitive ability): Number of SNPs

 with proxies included.

N/A = not applicable. For Rosa et al., it was not possible to obtain proxy SNPs because GWAS full summary statistics were not used; Excluded SNPs = palindromic SNPs with intermediate effect allele frequencies excluded as it is not possible to infer strand.

Phenotype	Genetic Instrument	MR method	b	95% CI	p
Primary anal	ysis				
CRP	Ligthart (<i>cis</i>)	IVW	0.005	-0.04 to 0.05	0.82
	6 SNPs	MR-Egger	0.02	-0.06 to 0.10	0.63
		Weighted Median	0.01	-0.02 to 0.04	0.44
		Weighted Mode	0.01	-0.02 to 0.04	0.53
		MR-PRESSO	N/A	N/A	N/A
	Han (<i>cis</i>)	IVW	0.03	-0.01 to 0.07	0.19
	13 SNPs	MR-Egger	0.04	-0.04 to 0.12	0.36
		Weighted Median	0.03	-0.01 to 0.08	0.10
		Weighted Mode	0.04	-0.0005 to 0.08	0.077
		MR-PRESSO	N/A	N/A	N/A
IL-6	Ahluwalia (cis) 2 SNPs	IVW	0.03	-0.12 to 0.17	0.72
sIL6R	Rosa	IVW	0.003	-0.002 to 0.01	0.22
	22 SNPs	MR-Egger	0.002	-0.01 to 0.01	0.66
		Weighted Median	0.004	-0.0004 to 0.01	0.078
		Weighted Mode	0.004	-0.0001 to 0.01	0.069
		MR-PRESSO	0.003	-0.002 to 0.01	0.24
GlycA	Borges	IVW	-0.02	-0.05 to 0.01	0.12
	82 SNPs	MR-Egger	-0.01	-0.06 to 0.05	0.84
		Weighted Median	-0.04	-0.06 to -0.01	0.008
		Weighted Mode	-0.05	-0.07 to -0.02	0.001
		MR-PRESSO	-0.03	-0.06 to -0.01	0.01
Secondary a	nalysis		-		
CRP	Ligthart	IVW	0.01	-0.02 to 0.03	0.57
	(genome-wide)	MR-Egger	0.04	0.01 to 0.08	0.026
	77 SNPs	Weighted Median	0.04	0.02 to 0.06	0.0003
		Weighted Mode	0.03	0.02 to 0.05	0.000
		MR-PRESSO	0.01	-0.01 to 0.03	0.55
	Han	IVW	-0.03	-0.04 to -0.01	0.01
	(genome-wide)	MR-Egger	0.05	0.02 to 0.08	0.002
	494 SNPs	Weighted Median	0.02	-0.0004 to 0.05	0.054
		Weighted Mode	0.03	0.01 to 0.06	0.008
		MR-PRESSO	-0.02	-0.03 to 0.0001	0.053
IL-6	Ahluwalia	IVW	0.01	-0.12 to 0.14	0.91
	(genome-wide)	MR-Egger	0.20	0.09 to 0.31	0.18
	3 SNPs	Weighted Median	0.01	-0.04 to 0.06	0.63
		Weighted Mode	0.05	-0.01 to 0.11	0.23
	Swerdlow	IVW	0.05	0.02 to 0.09	0.006
	3 SNPs	MR-Egger	-0.02	-0.30 to 0.26	0.91
		Weighted Median	0.05	0.01 to 0.09	0.027
		Weighted Mode	0.05	-0.003 to 0.10	0.20
	Sarwar 1 SNP	Wald Ratio	0.01	-0.003 to 0.03	0.11
GlycA	Kettunen	IVW	-0.02	-0.07 to 0.03	0.51
,	10 SNPs		-		

 Table S17. Two-sample MR: effect of inflammatory markers on general cognitive ability.

Weighted Median	-0.04	-0.07 to -0.002	0.037
Weighted Mode	-0.05	-0.09 to -0.02	0.013
MR-PRESSO	-0.04	-0.08 to 0.004	0.13

Exposure	Exposure Instrument	Method	Estimate	p
Primary				
CRP	Ligthart (<i>cis</i>)	Q statistic (IVW)	14.13	0.01
		Egger intercept	-0.002	0.65
		MR-PRESSO global test	20.95	0.23
	Han (<i>cis</i>)	Q statistic (IVW)	21.70	0.04
		Egger intercept	-0.001	0.75
		MR-PRESSO global test	26.51	0.08
IL-6	Ahluwalia (<i>cis</i>)	Q statistic (IVW)	8.10	0.004
		Egger intercept	NA	NA
		MR-PRESSO global test	NA	NA
	Rosa	Q statistic (IVW)	52.13	0.0002
		Egger intercept	0.0005	0.87
		MR-PRESSO global test	54.82	0.001
GlycA	Borges	Q statistic (IVW)	356.01	<0.0001
		Egger intercept	-0.001	0.42
		MR-PRESSO global test	366.65	<0.0001
Secondary				
CRP	Ligthart (genome-wide)	Q statistic (IVW)	301.07	<0.0001
		Egger intercept	-0.002	0.015
		MR-PRESSO global test	310.91	<0.0001
	Han (genome-wide)	Q statistic (IVW)	1576.31	<0.0001
		Egger intercept	-0.002	<0.0001
		MR-PRESSO global test	1585.37	<0.0001
IL-6	Ahluwalia (genome-wide)	Q statistic (IVW)	14.05	0.0009
		Egger intercept	-0.01	0.17
		MR-PRESSO global test	NA	NA
	Swerdlow	Q statistic (IVW)	0.37	0.83
		Egger intercept	0.006	0.70
		MR-PRESSO global test	NA	NA
GlycA	Kettunen	Q statistic (IVW)	51.15	<0.0001
		Egger intercept	-0.002	0.88
		MR-PRESSO global test	68.36	< 0.0001

Table S18. Two-sample MR (inflammatory markers on general cognitive ability): test of heterogeneity and pleiotropy.

Exposure Instrument (general cognitive ability)	Outcome GWAS (inflammation)	SNPs missing in outcome GWAS	Proxies for missing SNPs	Excluded SNPs	Final N SNPs used (proxies included)
Lam et al. (250 SNPs)	Ligthart et al.	121	90	0	219
(250 511 5)	Han et al.	1	0	0	249
-	Ahluwalia et al.	113	85	0	222
-	Borges et al.	0	0	0	250
-	Kettunen et al.	2	2	1	249

Table S19. Two-sample MR (general cognitive ability on inflammatory markers): Number of SNPs with proxies included.

Excluded SNPs = palindromic SNPs with intermediate effect allele frequencies (minor allele frequency > 0.42) excluded as it is not possible to infer strand.

Phenotype	Outcome GWAS	MR method	b	95% CI	р
CRP	Ligthart	IVW	-0.11	-0.16 to -0.07	<0.0001
	(219 SNPs)	MR-Egger	-0.06	-0.27 to 0.14	0.55
		Weighted Median	-0.09	-0.14 to -0.04	0.0006
		Weighted Mode	-0.04	-0.21 to 0.12	0.60
		MR-PRESSO	-0.10	-0.14 to -0.06	<0.0001
	Han	IVW	-0.02	-0.04 to -0.01	0.005
	(249 SNPs)	MR-Egger	-0.09	-0.22 to 0.04	0.16
		Weighted Median	-0.001	-0.01 to 0.01	0.77
		Weighted Mode	-0.01	-0.02 to 0.01	0.34
		MR-PRESSO	-0.03	-0.04 to -0.01	0.0004
IL-6	Ahluwalia	IVW	-0.05	-0.09 to -0.002	0.039
	(222 SNPs)	MR-Egger	0.10	-0.10 to 0.31	0.33
		Weighted Median	-0.05	-0.11 to 0.01	0.098
		Weighted Mode	-0.11	-0.30 to 0.09	0.28
		MR-PRESSO	N/A	N/A	N/A
GlycA	Borges	IVW	-0.21	-0.27 to -0.16	<0.0001
	(250 SNPs)	MR-Egger	-0.25	-0.48 to -0.01	0.040
		Weighted Median	-0.18	-0.23 to -0.13	<0.0001
		Weighted Mode	-0.17	-0.35 to 0.01	0.061
		MR-PRESSO	-0.19	-0.23 to -0.15	<0.0001
	Kettunen	IVW	-0.04	-0.13 to 0.06	0.45
	(249 SNPs)	MR-Egger	0.40	-0.04 to 0.83	0.078
		Weighted Median	-0.08	-0.20 to 0.05	0.22
		Weighted Mode	-0.11	-0.50 to 0.27	0.57
		MR-PRESSO	-0.03	-0.12 to 0.07	0.58

Table S20. Two-sample MR: effect of general cognitive ability on inflammatory markers.

Exposure Instrument	Outcome GWAS	Method	Estimate	p
Lam et al. (2021)	Ligthart et al.	Q statistic (IVW)	437.23	<0.0001
		Egger intercept	-0.0009	0.63
		MR-PRESSO global test	442.01	<0.0001
	Han et al.	Q statistic (IVW)	1633.52	<0.0001
		Egger intercept	0.001	0.27
		MR-PRESSO global test	1740.46	<0.0001
	Ahluwalia et al.	Q statistic (IVW)	285.07	0.002
		Egger intercept	-0.003	0.15
		MR-PRESSO global test	287.84	0.003
	Borges et al.	Q statistic (IVW)	728.38	<0.0001
		Egger intercept	0.0006	0.78
		MR-PRESSO global test	735.04	<0.0001
	Kettunen et al.	Q statistic (IVW)	339.46	0.0001
		Egger intercept	-0.008	0.048
		MR-PRESSO global test	342.22	0.0002

Table S21. Two-sample MR (general cognitive ability on inflammatory markers): test of heterogeneity and pleiotropy.

Phenotype	Outcome GWAS	MR method	b	95% CI	р
CRP	Ligthart (218 SNPs)	IVW	-0.11	-0.15 to -0.06	<0.0001
		MR-Egger	-0.09	-0.29 to 0.11	0.38
		Weighted Median	-0.09	-0.13 to -0.04	0.0004
		Weighted Mode	-0.05	-0.21 to 0.12	0.60
	Han (246 SNPs)	IVW	-0.02	-0.03 to -0.01	0.005
		MR-Egger	-0.12	-0.23 to -0.0001	0.051
		Weighted Median	-0.001	-0.01 to 0.01	0.77
		Weighted Mode	-0.001	-0.01 to 0.01	0.84
IL-6	Ahluwalia (215 SNPs)	IVW	-0.03	-0.07 to 0.01	0.14
		MR-Egger	0.09	-0.11 to 0.28	0.38
		Weighted Median	-0.04	-0.10 to 0.02	0.15
		Weighted Mode	-0.11	-0.32 to 0.10	0.29
GlycA	Borges (239 SNPs)	IVW	-0.17	-0.21 to -0.13	<0.0001
		MR-Egger	-0.20	-0.37 to -0.04	0.014
		Weighted Median	-0.16	-0.21 to -0.11	<0.0001
		Weighted Mode	-0.17	-0.37 to 0.03	0.10
	Kettunen (191 SNPs)	IVW	0.006	-0.09 to 0.10	0.91
		MR-Egger	0.19	-0.23 to 0.62	0.37
		Weighted Median	-0.05	-0.18 to 0.08	0.46
		Weighted Mode	-0.14	-0.55 to 0.27	0.51

Table S22. Two-sample MR: effect of general cognitive ability on inflammatory markers followingSteiger filtering.

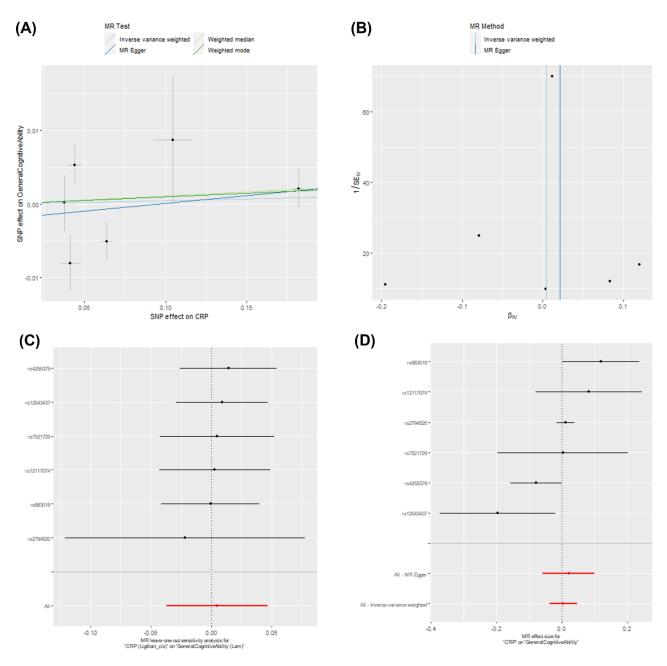
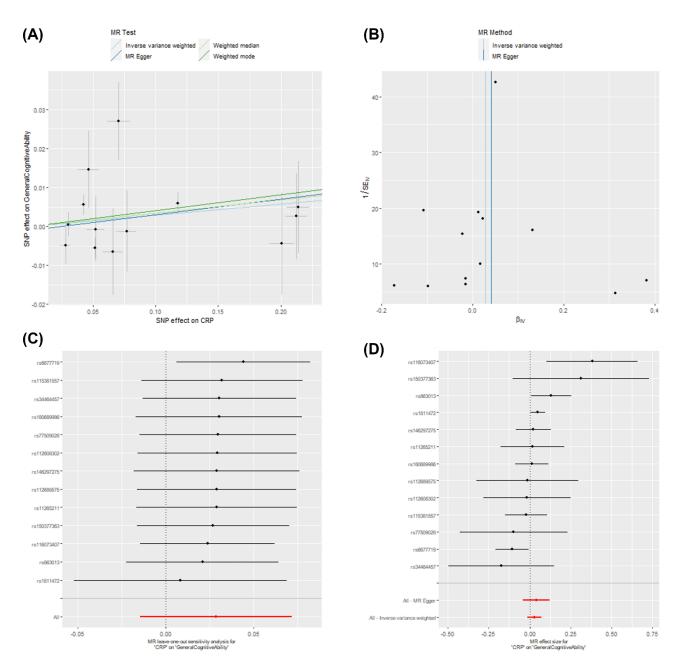
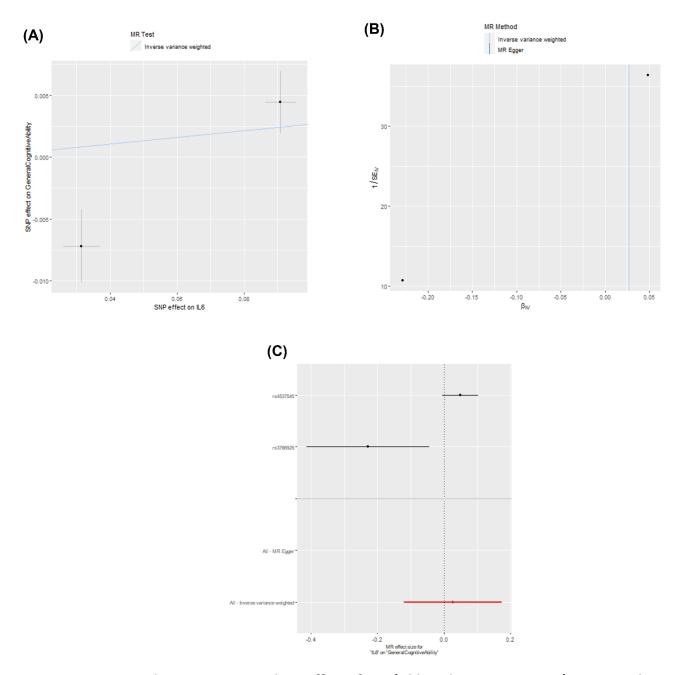
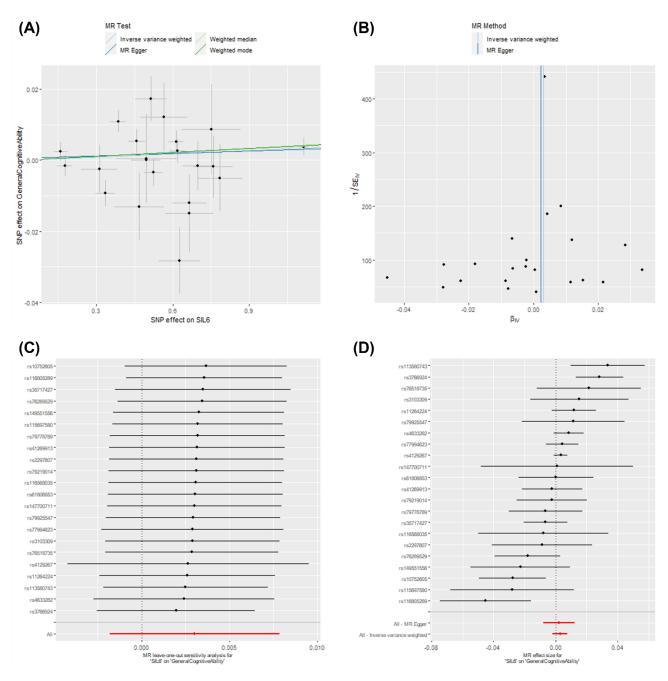

Deviation	Justification					
Cross-sectional analysis						
Regression models weighted by	We did not run this analysis as we do not believe this would					
missingness were not applied.	add to the current findings.					
	One-sample MR					
One instrument for CRP (CCGC) replaced	During instrument acquisition and prior to analysis, we					
with more recent GWAS for CRP.	decided not to include the CCGC GWAS due to the					
	availability of larger more recent GWAS (13). To increase					
	statistical power, this GWAS was used instead.					
	Two-sample MR					
Sensitivity analysis (Generalised summary-	Based on the primary results, we did not run this analysis as					
based MR, MR-Raps) not applied. Instead,	we did not feel this would add to the current findings.					
we applied Steiger filtering.						

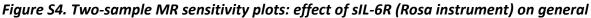
Table S23. Deviations from pre-registration with justifications

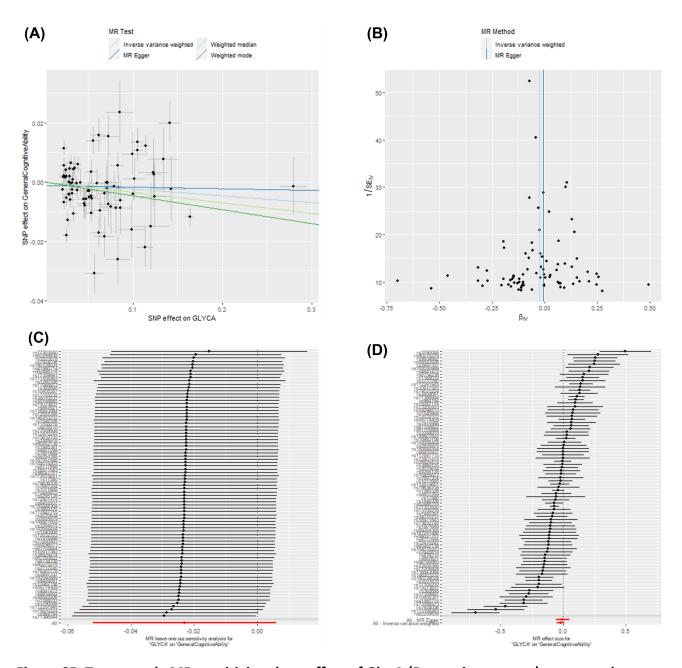

Table S24. Code used for analysis in this paper.

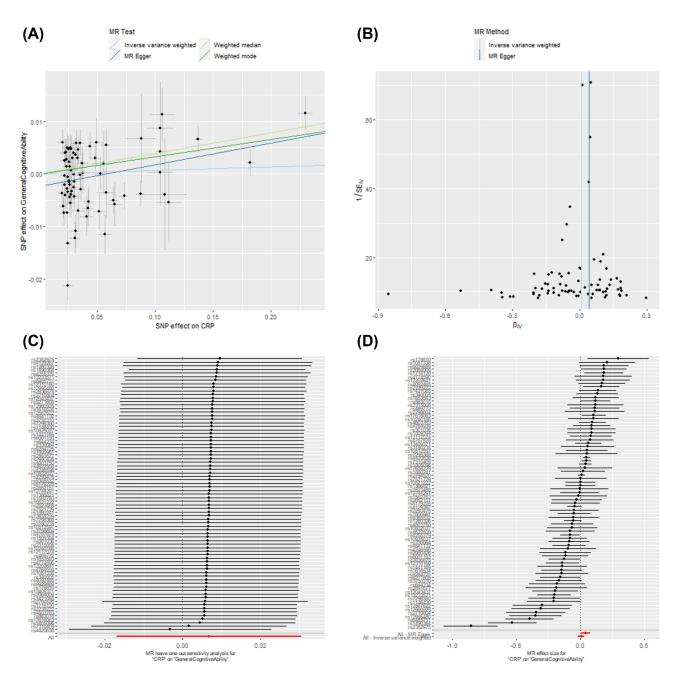
Study	Description	Language/ Operating system	File Name
Cross-sectional analysis (ALSPAC)	Cleans variables, runs multiple regression models, and creates dataset for multiple imputation.	Stata (16)	"InfCog_CrossSection_ALSPAC_OA.do"
	Runs multiple imputation, and imputed regression models.	Stata (16)	"InfCog_CrossSection_MI_ALSPAC_OA.do"
One-sample MR (ALSPAC)	Extracts inflammation SNPs	R (4.1.1)	"InfCog_1SMR_InflammationInstruments_OA.R"
(Extracts cognition SNPs	R (4.1.1)	"InfCog_1SMR_CognitionInstruments_OA.R"
	Checks for allele mismatches and palindromic SNPs	R (4.1.1)	"InfCog_1SMR_QC_AmbigSNPs_Strand_OA.R"
	Bash scripts create genetic risk scores using Plink	Linux	"InfCog_1SMR_PRS _Script1_OA.sh" "InfCog_1SMR_PRS _Script2_OA.sh" "InfCog_1SMR_PRS_ Script3_OA.sh"
	One-sample MR analysis	R (4.1.1)	"InfCog_1SMR_Analysis_ALSPAC_OA.R"
Two-sample MR	Prepares data for MR	R (4.1.1)	Inflammation on Cognition: "InfCog_2SMR_Prep_OA.R" Cognition on Inflammation: "InfCog_2SMR_Prep_ReverseDir_OA.R"
	Two-sample MR analysis	R (4.1.1)	Inflammation on Cognition: "InfCog_2SMR_Analysis_OA.R" Cognition on Inflammation: "InfCog_2SMR_Analysis_Reversedir_OA.R"
Downloading GWAS results	Code to convert VCF to txt file and download online GWAS files	Linux	"InfCog_ConvertVCF.R"

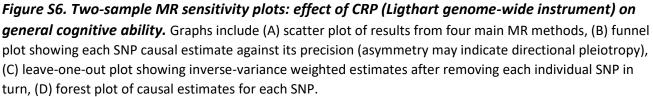

SUPPLEMENTARY FIGURES

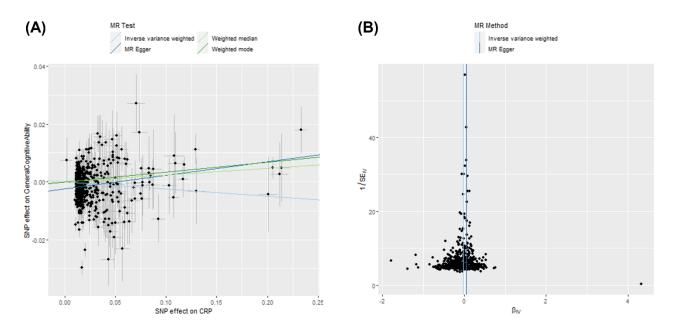


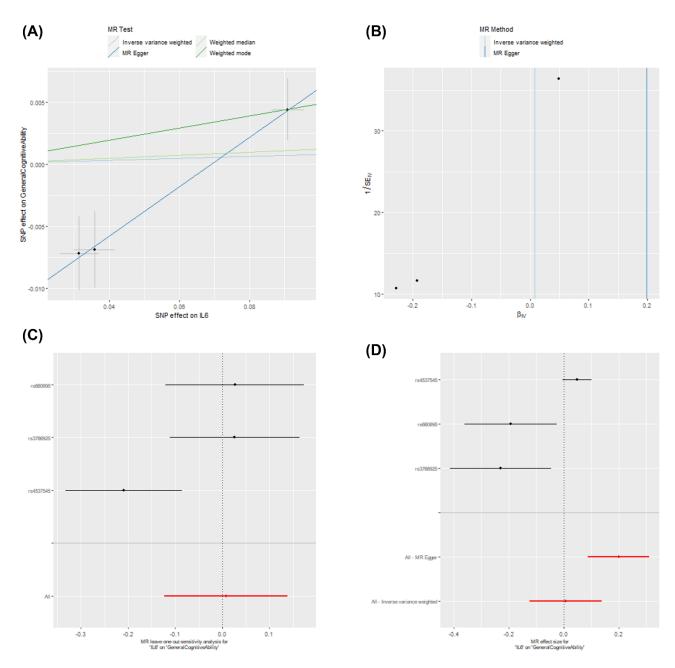


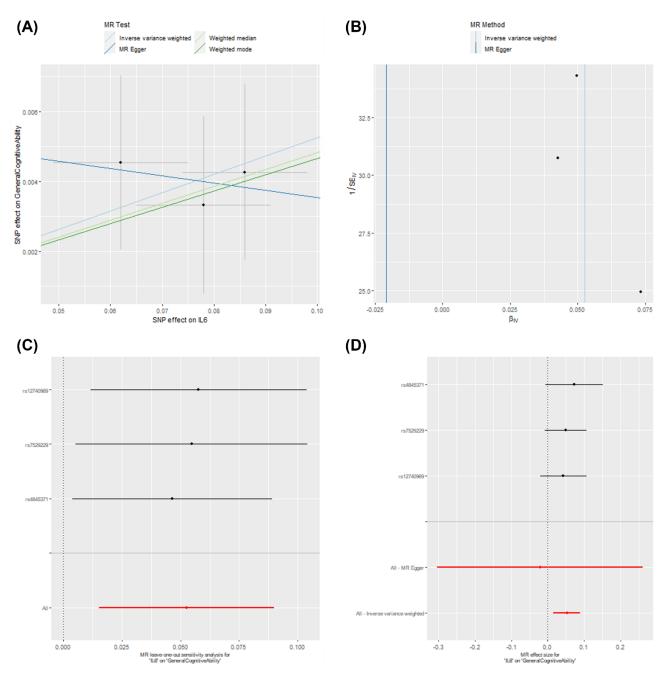

Figure S2. Two-sample MR sensitivity plots: effect of CRP (Han cis instrument) on general

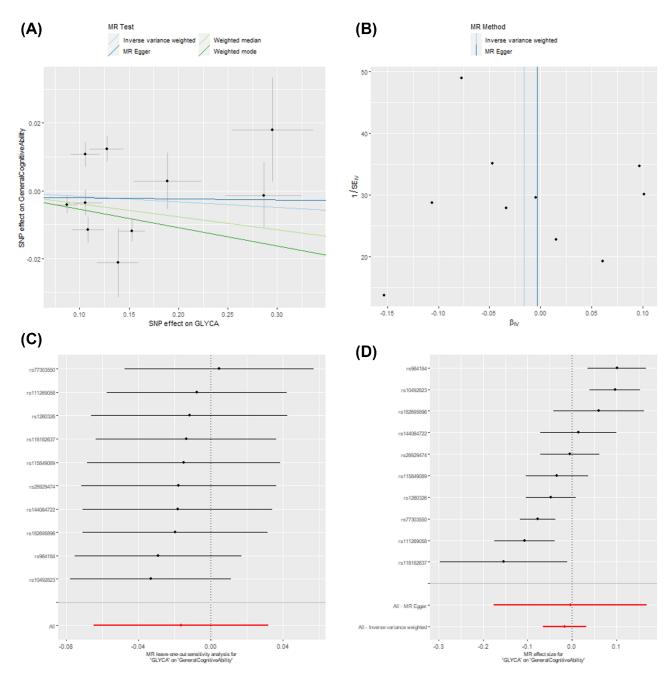

Figure S3. Two-sample MR sensitivity plots: effect of IL-6 (Ahluwalia cis instrument) on general cognitive ability. Graphs include (A) scatter plot of results from inverse-variance weighted methods, (B) funnel plot showing each SNP causal estimate against its precision (asymmetry may indicate directional pleiotropy), (C) forest plot of causal estimates for each SNP. Leave-one-out plot not shown due to too few SNPs in this instrument.

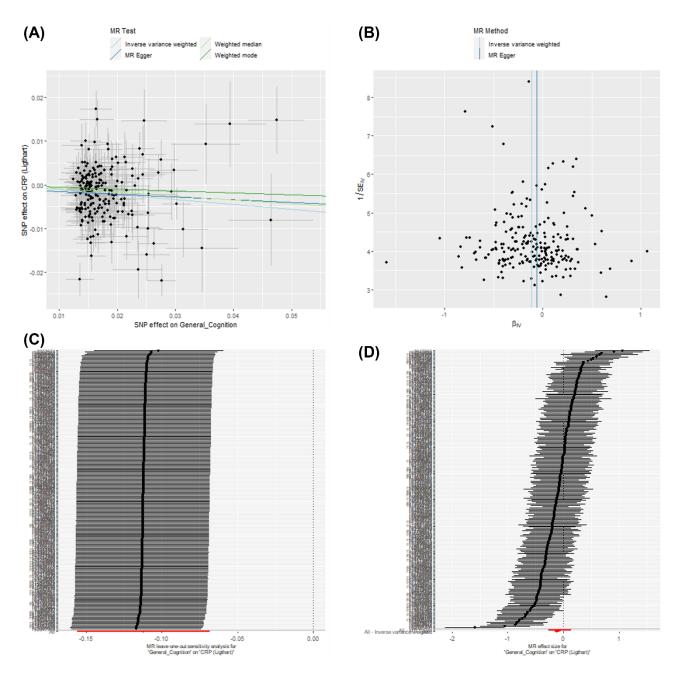


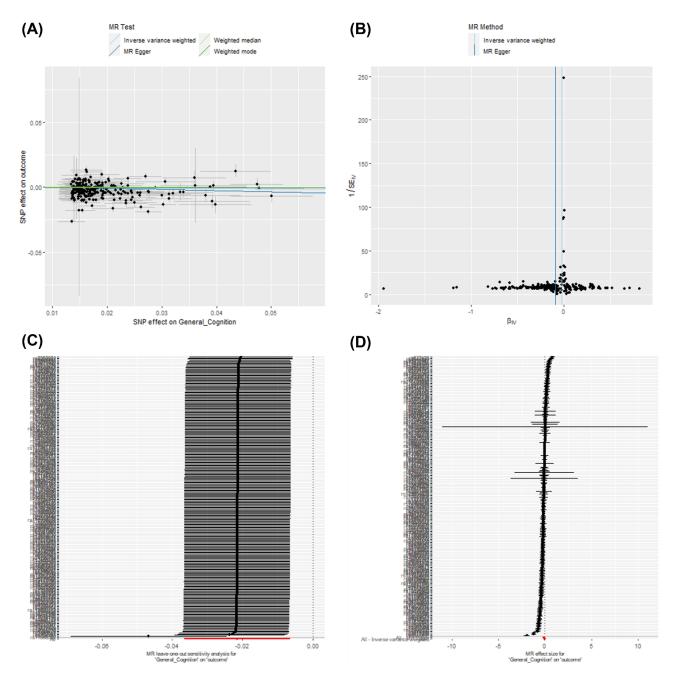


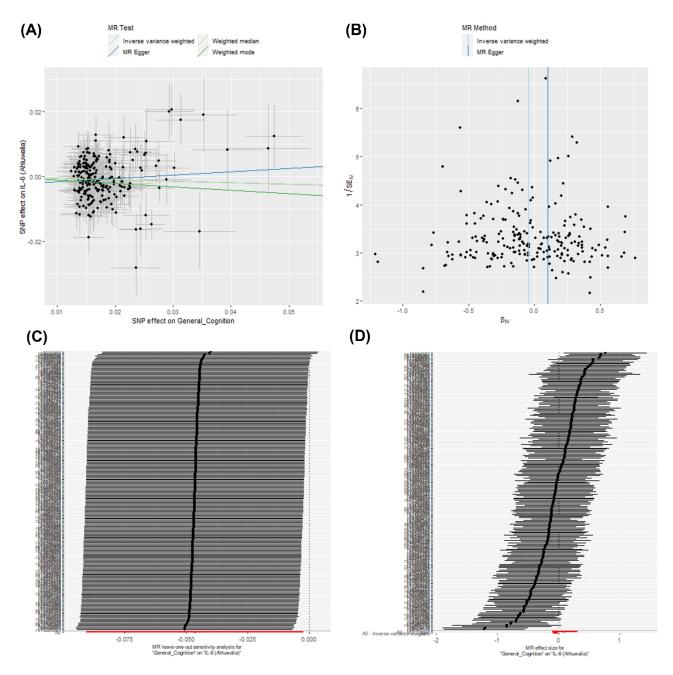

Figure S5. Two-sample MR sensitivity plots: effect of GlycA (Borges instrument) on general cognitive ability. Graphs include (A) scatter plot of results from four main MR methods, (B) funnel plot showing each SNP causal estimate against its precision (asymmetry may indicate directional pleiotropy), (C) leave-one-out plot showing inverse-variance weighted estimates after removing each individual SNP in turn, (D) forest plot of causal estimates for each SNP.

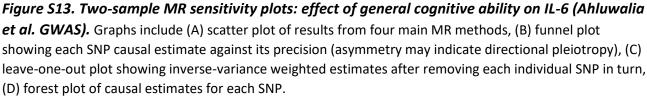


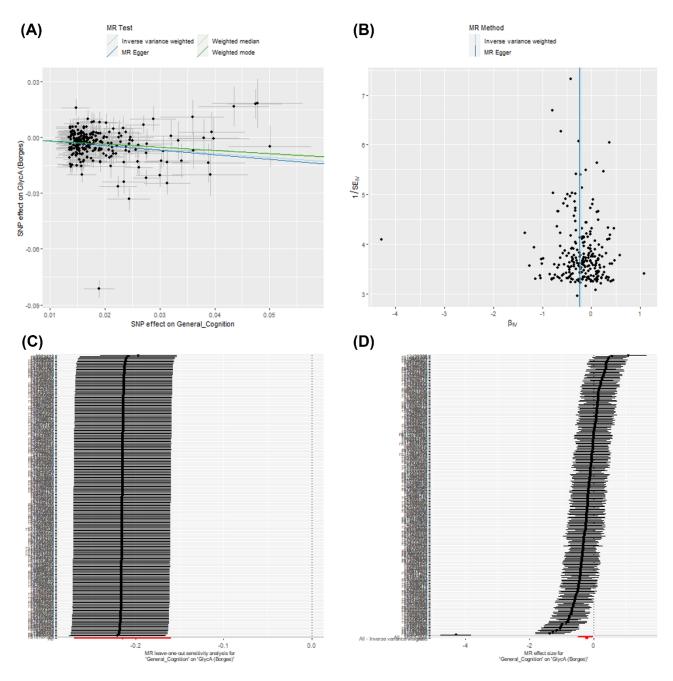

Figure S7. Two-sample MR sensitivity plots: effect of CRP (Han genome-wide instrument) on general cognitive ability. Graphs include (A) scatter plot of results from four main MR methods, (B) funnel plot showing each SNP causal estimate against its precision (asymmetry may indicate directional pleiotropy). Due to a large number of SNPs being used, leave-one-out plot and forest plot are not shown due to poor visibility visualising all SNPs.

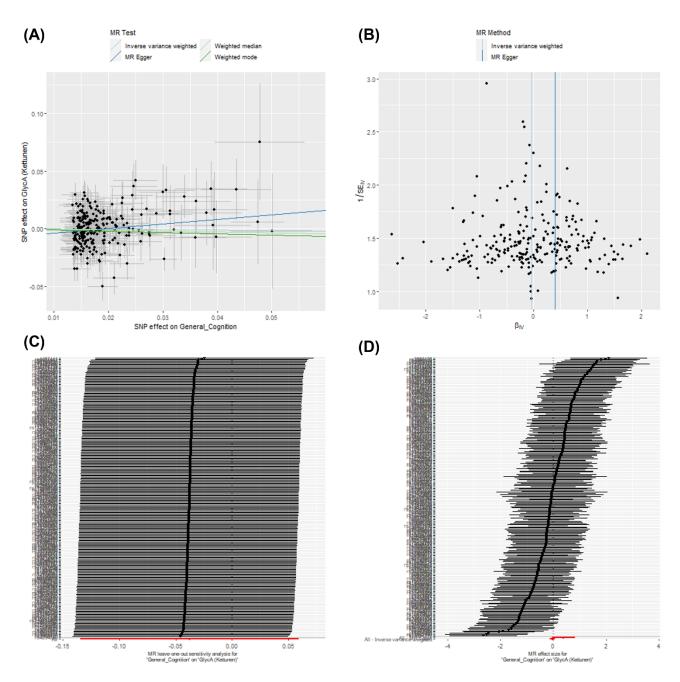

Figure S8. Two-sample MR sensitivity plots: effect of IL-6 (Ahluwalia genome-wide instrument) on general cognitive ability. Graphs include (A) scatter plot of results from four main MR methods, (B) funnel plot showing each SNP causal estimate against its precision (asymmetry may indicate directional pleiotropy), (C) leave-one-out plot showing inverse-variance weighted estimates after removing each individual SNP in turn, (D) forest plot of causal estimates for each SNP.




Figure S10. Two-sample MR sensitivity plots: effect of GlycA (Kettunen instrument) on general cognitive ability. Graphs include (A) scatter plot of results from four main MR methods, (B) funnel plot showing each SNP causal estimate against its precision (asymmetry may indicate directional pleiotropy), (C) leave-one-out plot showing inverse-variance weighted estimates after removing each individual SNP in turn, (D) forest plot of causal estimates for each SNP.




Figure S11. Two-sample MR sensitivity plots: effect of general cognitive ability on CRP (Ligthart et al. GWAS). Graphs include (A) scatter plot of results from four main MR methods, (B) funnel plot showing each SNP causal estimate against its precision (asymmetry may indicate directional pleiotropy), (C) leave-one-out plot showing inverse-variance weighted estimates after removing each individual SNP in turn, (D) forest plot of causal estimates for each SNP.


Figure S12. Two-sample MR sensitivity plots: effect of general cognitive ability on CRP (Han et al. GWAS). Graphs include (A) scatter plot of results from four main MR methods, (B) funnel plot showing each SNP causal estimate against its precision (asymmetry may indicate directional pleiotropy), (C) leave-one-out plot showing inverse-variance weighted estimates after removing each individual SNP in turn, (D) forest plot of causal estimates for each SNP.

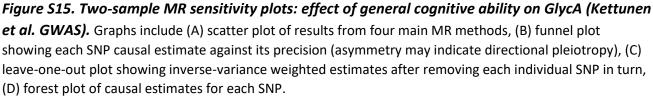


Figure S14. Two-sample MR sensitivity plots: effect of general cognitive ability on GlycA (Borges et al. GWAS). Graphs include (A) scatter plot of results from four main MR methods, (B) funnel plot showing each SNP causal estimate against its precision (asymmetry may indicate directional pleiotropy), (C) leave-one-out plot showing inverse-variance weighted estimates after removing each individual SNP in turn, (D) forest plot of causal estimates for each SNP.

References

- 1. Babor T, Higgins-Biddle JC, Saunders JB, Monteiro MG (2001): *The Alcohol Use Disorders Identification Test: Guidelines for Use in Primary Care.* Geneva: World Health Organization.
- 2. Heatherton TF, Kozlowski LT, Frecker RC, Fagerstrom K-O (1991): The Fagerström Test for Nicotine Dependence: a revision of the Fagerstrom Tolerance Questionnaire. *Br J Addict* 86: 1119–1127.
- 3. Wechsler D, Golombok S, Rust J (1992): Wechsler Intelligence Scale for Children Third Edition UK. *The Psychological Corporation*.
- 4. Nguyen CD, Carlin JB, Lee KJ (2017): Model checking in multiple imputation: An overview and case study. *Emerg Themes Epidemiol* 14: 1–12.
- 5. Hughes RA, Heron J, Sterne JAC, Tilling K (2019): Accounting for missing data in statistical analyses: multiple imputation is not always the answer. *Int J Epidemiol* 48: 1294–1304.
- 6. Sterne JAC, White IR, Carlin JB, Spratt M, Royston P, Kenward MG, *et al.* (2009): Multiple imputation for missing data in epidemiological and clinical research: potential and pitfalls. *BMJ* 338:b2393.
- 7. Sanderson E, Glymour MM, Holmes M V., Kang H, Morrison J, Munafò MR, *et al.* (2022): Mendelian randomization. *Nat Rev Methods Prim 2022 21* 2: 1–21.
- 8. Davey Smith G, Ebrahim S (2003): "Mendelian randomization": Can genetic epidemiology contribute to understanding environmental determinants of disease? *Int J Epidemiol* 32: 1–22.
- 9. Lawlor DA (2016): Commentary: Two-sample Mendelian randomization: opportunities and challenges. *Int J Epidemiol* 45: 908.
- 10. Davies NM, Holmes M V., Davey Smith G (2018): Reading Mendelian randomisation studies: a guide, glossary, and checklist for clinicians. *BMJ* 362. https://doi.org/10.1136/BMJ.K601
- 11. Haycock PC, Burgess S, Wade KH, Bowden J, Relton C, Davey Smith G (2016): Best (but oft-forgotten) practices: the design, analysis, and interpretation of Mendelian randomization studies. *Am J Clin Nutr* 103: 965–978.
- 12. Ligthart S, Vaez A, Võsa U, Stathopoulou MG, de Vries PS, Prins BP, *et al.* (2018): Genome Analyses of >200,000 Individuals Identify 58 Loci for Chronic Inflammation and Highlight Pathways that Link Inflammation and Complex Disorders. *Am J Hum Genet* 103: 691–706.
- 13. Han X, Ong JS, An J, Hewitt AW, Gharahkhani P, MacGregor S (2020): Using Mendelian randomization to evaluate the causal relationship between serum C-reactive protein levels and age-related macular degeneration. *Eur J Epidemiol* 35: 139–146.
- 14. Ahluwalia TS, Prins BP, Abdollahi M, Armstrong NJ, Aslibekyan S, Bain L, *et al.* (2021): Genome-wide association study of circulating interleukin 6 levels identifies novel loci. *Hum Mol Genet* 30: 393–409.
- 15. Kettunen J, Demirkan A, Würtz P, Draisma HHM, Haller T, Rawal R, *et al.* (2016): Genome-wide study for circulating metabolites identifies 62 loci and reveals novel systemic effects of LPA. *Nat Commun* 7: 1–9.
- 16. Rosa M, Chignon A, Li Z, Boulanger MC, Arsenault BJ, Bossé Y, *et al.* (2019): A Mendelian randomization study of IL6 signaling in cardiovascular diseases, immune-related disorders and longevity. *npj Genomic Med* 4: 1–10.
- 17. Sun BB, Maranville JC, Peters JE, Stacey D, Staley JR, Blackshaw J, *et al.* (2018): Genomic atlas of the human plasma proteome. *Nat 2018 5587708* 558: 73–79.
- 18. Swerdlow DI, Holmes M V., Kuchenbaecker KB, Engmann JEL, Shah T, Sofat R, *et al.* (2012): The interleukin-6 receptor as a target for prevention of coronary heart disease: A mendelian randomisation

analysis. Lancet 379: 1214–1224.

- 19. Sarwar N, Butterworth AS, Freitag DF, Gregson J, Willeit P, Gorman DN, *et al.* (2012): Interleukin-6 receptor pathways in coronary heart disease: A collaborative meta-analysis of 82 studies. *Lancet* 379: 1205–1213.
- 20. Mahedy L, Suddell S, Skirrow C, Fernandes GS, Field M, Heron J, *et al.* (2021): Alcohol use and cognitive functioning in young adults: improving causal inference. *Addiction* 116: 292–302.
- 21. Lam M, Chen C-Y, Ge T, Xia Y, Hill DW, Trampush JW, *et al.* (2021): Identifying nootropic drug targets via large-scale cognitive GWAS and transcriptomics. *Neuropsychopharmacology* 17: 47.
- 22. Davies G, Lam M, Harris SE, Trampush JW, Luciano M, Hill WD, *et al.* (2018): Study of 300,486 individuals identifies 148 independent genetic loci influencing general cognitive function. *Nat Commun* 9: 1–16.
- 23. Savage JE, Jansen PR, Stringer S, Watanabe K, Bryois J, De Leeuw CA, *et al.* (2018): Genome-wide association meta-analysis in 269,867 individuals identifies new genetic and functional links to intelligence. *Nat Genet* 50: 912–919.
- 24. Purcell S, Neale B, Todd-Brown K, Thomas L, Ferreira MAR, Bender D, *et al.* (2007): PLINK: A Tool Set for Whole-Genome Association and Population-Based Linkage Analyses. *Am J Hum Genet* 81: 559.
- 25. Brion MJA, Shakhbazov K, Visscher PM (2013): Calculating statistical power in Mendelian randomization studies. *Int J Epidemiol* 42: 1497–1501.
- 26. Burgess S, Foley CN, Allara E, Staley JR, Howson JMM (2020): A robust and efficient method for Mendelian randomization with hundreds of genetic variants. *Nat Commun 2020 111* 11: 1–11.
- 27. Burgess S, Butterworth A, Thompson SG (2013): Mendelian randomization analysis with multiple genetic variants using summarized data. *Genet Epidemiol* 37: 658–665.
- 28. Bowden J, Davey Smith G, Burgess S (2015): Mendelian randomization with invalid instruments: Effect estimation and bias detection through Egger regression. *Int J Epidemiol* 44: 512–525.
- 29. Bowden J, Davey Smith G, Haycock PC, Burgess S (2016): Consistent Estimation in Mendelian Randomization with Some Invalid Instruments Using a Weighted Median Estimator. *Genet Epidemiol* 40: 304–314.
- 30. Hartwig FP, Davey Smith G, Bowden J (2017): Robust inference in summary data Mendelian randomization via the zero modal pleiotropy assumption. *Int J Epidemiol* 46: 1985–1998.
- 31. Verbanck M, Chen C-Y, Neale B, Do R (2018): Detection of widespread horizontal pleiotropy in causal relationships inferred from Mendelian randomization between complex traits and diseases. *Nat Genet* 2018 505 50: 693–698.
- 32. Sun BB, Maranville JC, Peters JE, Stacey D, Staley JR, Blackshaw J, *et al.* (2018): Genomic atlas of the human plasma proteome. *Nat 2018 5587708* 558: 73–79.
- 33. Danecek P, Bonfield JK, Liddle J, Marshall J, Ohan V, Pollard MO, *et al.* (2021): Twelve years of SAMtools and BCFtools. *Gigascience* 10: 1–4.