
S2 Appendix. Methods supplement: Description of the primary outcome model and estimands 

Model Description 

We fit a Bayesian proportional odds ordinal regression model for ordinal score measured between day 28 and day 35 post enrollment. 
For individuals with multiple measurements, the outcome was taken as the earliest measurement within the time window. Deaths 
recorded before the time window were carried forward. The following baseline covariates were included in the model: sex, age, 
number of comorbidities, body mass index, COVID ordinal scale). The coding and reference levels for the baseline variables are 
indicated in the table below. 
 
Covariate Coding Reference level Binned version 
Sex female = +1/2, male = -1/2 0 (midpoint) n/a 
Age (age in years – 60)/10 60 years old <18, 18-29, 30-49, 50-

69, 70-79, 80+ 
Number of baseline 
comorbidities 

raw count of the following 
baseline comorbidities 

0 0, 1, 2, 3, ≥4 

Body mass index (BMI – 25)/5 BMI of 25 ≤20, 20-25, 25-30, 30-
35, ≥35 

Baseline ordinal 
scale  

indicators for levels 2-5, as well 
as (5 – the numeric score) 

5 = hospitalized, not requiring 
supplemental oxygen (the highest 
possible value for inpatients) 

NA 

 
Missing baseline covariate data was imputed using multiple imputation via the R package mice (version 3.12) [1]. Treatment 
assignment and outcome were not used the imputation process. All posterior computations described below were pooled across the 
imputations. Individuals with missing outcome data were excluded from the model fitting; individuals with missing baseline data on a 
given covariate were excluded from the corresponding subgroup effect estimates. 
 
Let 𝑖𝑖 index an individual patient. Each patient has a vector of baseline covariates 𝑋𝑋𝑖𝑖 and a treatment assignment 𝑇𝑇𝑖𝑖 (1 for 
hydroxychloroquine or chloroquine or 0 for control). Let the primary outcome for individual 𝑖𝑖 be denoted by 𝑌𝑌𝑖𝑖  with levels l = 1, …, 
7. The proportional odds model takes the form: 

𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙 𝑃𝑃[𝑌𝑌𝑖𝑖 ≤ 𝑙𝑙 |𝑋𝑋𝑖𝑖 ,𝑇𝑇𝑖𝑖] = 𝜃𝜃𝑙𝑙 − 𝜂𝜂𝑖𝑖;  𝑙𝑙 = 1, … ,6 

where 𝜃𝜃1, . . , 𝜃𝜃6 are cutpoints that are common to all individuals (prior - ordered Student t prior with 3 degrees of freedom and scale 
parameter 2.5);  

𝜂𝜂𝑖𝑖 = 𝑍𝑍𝑖𝑖𝑇𝑇𝛽𝛽0 + 𝛼𝛼0,𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠 + 𝛿𝛿0,𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁 + 𝑇𝑇𝑖𝑖  (𝜏𝜏 + 𝑍𝑍𝑖𝑖𝑇𝑇𝛽𝛽1 + 𝛼𝛼1,𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠 + 𝛿𝛿1,𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁) 

is the linear predictor; 𝑍𝑍𝑖𝑖—a function of 𝑋𝑋𝑖𝑖—is a vector including sex, natural cubic splines (with 3 degrees of freedom) for age, BMI 
and number of comorbidities, and 5 minus ordinal score; 𝛽𝛽0 and 𝛽𝛽1 are fixed effects (prior - uniform); 𝜏𝜏 is a fixed effect (prior – 
uniform); 𝛿𝛿0 and 𝛿𝛿1 are independent normally distributed mean zero random effects (prior for standard deviation parameters — a half 
Student-t distribution with 3 degrees of freedom and scale parameter 10). 
 
The model was fit using R, and the library “brms” (version 2.15) [2,3]. 

 

Effect Estimates of Interest 

We produced two kinds of effect estimates: 
 

1. Standardized effect estimates. These represent the effect of the treatment, averaged over the empirical distribution of 
individual-level covariates.  
 
We estimated two effects: a proportional odds ratio and risk difference for mortality. We produced these estimates as follows. 
 



Let 𝜋𝜋𝑖𝑖𝑙𝑙(𝑡𝑡) denote the predicted probability that an individual with covariates Xi has outcome level l under treatment t. Let 𝜋𝜋𝑙𝑙(𝑡𝑡) =
 1
𝑛𝑛
∑ 𝜋𝜋𝑖𝑖𝑙𝑙(𝑡𝑡)𝑛𝑛
𝑖𝑖=1  be the predicted probability of outcome level l under treatment t in a population with the same covariate distribution 

as in our study. 
 
Proportional Odds: For each iteration of the MCMC algorithm, our estimation of the standardized effect is tantamount to 
estimation by simulation with the following three repetitive steps: (1) draw a vector of covariates from the empirical distribution; 
(2) compute the predicted outcome probabilities under treatment and under control; and (3) use these predicted probabilities to 
draw outcomes under treatment and control (independently). Repeat steps (1) to (3) to generate a very large dataset and fit a 
proportional odds model with treatment indicator as the sole covariate. The resulting regression coefficient (i.e., log proportional 
odds ratio) is our standardized treatment effect on this iteration of the MCMC. In practice, for each iteration of the MCMC we fit a 
weighted proportional odds model with treatment as the sole covariates to a dataset with seven outcome levels crossed with two 
treatment levels; the weights for outcome level 𝑙𝑙 and treatment level 𝑡𝑡 are proportional to 𝜋𝜋𝑙𝑙(𝑡𝑡). 
 
The associated estimand is the odds ratio from the closest fitting proportional odds model (with treatment as the sole covariate) to 
the true outcome probabilities under treatment and under control for a population with same distribution of covariates as in our 
pooled dataset. 
 
Risk Difference: We utilize the procedure above with the exception that there is no need to fit the proportional odds model; we 
simply utilize the predicted probabilities of death under treatment and control and compute the difference. The estimand is the true 
risk difference under treatment versus control for a population with same distribution of covariates as in our pooled dataset.  
 
Subgroup effects: We apply the above estimation procedure where we restrict the covariate distribution to the specific subgroup of 
interest. The estimands are subgroup specific. 
 

2. Conditional effect estimates. For each level of a given covariate of interest and within iteration of the MCMC, we compute (1) 
predicted probabilities of mechanical ventilation or death under treatment and under control as well as the associated relative risk 
and (2) difference in the values of the linear predictor under treatment and under control, with all other covariates set to their 
reference values. In these computations, the quantities are marginalized over the study random effects. Posterior summaries of 
these quantities are plotted. 

 

Model Diagnostics and Sensitivity Analysis 

To assess the within-sample fit of our model, we compared the observed outcome data with draws from the posterior predictive 
distribution and examined Dunn-Smyth randomized quantile residuals [4]. 
 
To assess the sensitivity of our conclusions to modeling choices, we: 
 

• repeated the analysis with weakly informative N(0, 52) priors on the fixed effect coefficients, and more conservative half 
Student-t (df = 3, scale = 5) priors on the group-level standard deviations, 

• explored the impact of adding to the model the additional variables (1) randomization to treatment with azithromycin and (2) 
time between symptom onset and enrollment, and 

• (post-hoc) fit a version of the model without individual-level treatment interaction terms. 
 
To compare the model fits, we recomputed the primary outcome and mortality estimates as well as estimated leave-one-out predictive 
(log) densities (LOO-ELPD) using the R package “loo” [5,6]. The results are as follows: 
 

 Relative 
LOO-ELPD 

Standard 
error 

Prespecified model minus interaction terms  0.0 0.0 
Prespecified model with weakly informative priors -4.2 4.0 
Prespecified model -6.1 4.6 
Prespecified model with azithromycin and days since symptom onset terms -9.6 4.8 
Prespecified model fit only to the ORCHID data, and without site effects -54.2 11.6 

 
These results indicate that the model without interaction provides the lowest cross-validated error. See main manuscript for our 
interpretation of these findings. 
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