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Abstract 

Whilst many with SARS-CoV-2 infection have mild disease, managed in the community, individuals with 

cardiovascular risk factors experienced often more severe acute disease, requiring hospitalisation. 

Increasing concern has also developed over long symptom duration in many individuals, including the 

majority who managed acutely in the community. Risk factors for long symptom duration, including 

biological variables, are still poorly defined.  

We examine post-illness metabolomic and gut-microbiome profiles, in community-dwelling participants 

with SARS-CoV-2, ranging from asymptomatic illness to Post-COVID Syndrome, and participants with 

prolonged non-COVID-19 illnesses. We also assess a pre-established metabolomic biomarker score for 

its association with illness duration.  

We found an atherogenic-dyslipidaemic metabolic profile, and greater biomarker scores, associated 

with longer illness, both in individuals with and without SARS-CoV-2 infection. We found no association 

between illness duration and gut microbiome in convalescence.  

Findings highlight the potential role of cardiometabolic dysfunction to the experience of long illness 

duration, including after COVID-19.  
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Introduction 

The devastation caused by the COVID-19 pandemic is unprecedented in recent memory, with >6.3 

million deaths and 543 million cases worldwide in just over two years 1 .  SARS-CoV-2 infection can cause 

a wide spectrum of illness, even in individuals who do not require acute hospital management: many 

individuals are asymptomatic (35.1% to 40.5% in meta-analyses 2,3 ) while others report prolonged 

symptom duration (2.3% to 37.7% 4).  Post-COVID syndrome (PCS84) 5 6 is defined by the National 

Institute for Health and Care Excellence (NICE) as: “signs and symptoms that develop during or after an 

infection consistent with COVIDK19, continue for more than 12 weeks (84 days) and are not explained 

by an alternative diagnosis” 5. A further category Ongoing Symptomatic COVID (OSC28) is defined by 

NICE as symptoms for between 4 weeks and 12 weeks (28-83 days).  Together, OSC28 and PCS84 are 

known colloquially as ‘Long COVID’. The strongest predictors of PCS84 are age (with those aged 35-69 

years having highest risk), female sex, and greater severity of acute infection 7,8  Whilst vaccination 

against SARS-CoV-2 reduces the risk and duration of PCS849–11, prolonged post-infection 

symptomatology remains common. The United Kingdom Office for National Statistics report 2 million 

affected individuals in the United Kingdom by 01 May 2022, and 71% of individuals report that this 

affects normal daily activities12. The understanding of the pathophysiology and risk factors for these 

differing phenotypes – from asymptomatic infection to prolonged illness - is still evolving.  

Early in the pandemic, it was noted that individuals with cardiovascular disease were  at greater risk of 

severe illness 13,14. Metabolomic profiles, particularly lipidomics, can  identify risk of cardiovascular 

disease, with known associations of particular profiles with cardiovascular disease15 and Type 2 

diabetes16,17. Such pre-pandemic lipidomics profiles have been associated with risk of hospitalisation for 

both COVID-19, and pneumonia caused by other pathogens, enabling the generation of an Infectious 

Diseases risk score (ID-score) for hospitalisation due to COVID-1918. Disturbances to the same group of 

metabolites have also been observed in samples from hospitalised individuals when acutely unwell with 

COVID-19 19 20.  What is less clear is whether such metabolomic profiles are associated with disease 

duration, and/or Long-COVID, with the published studies focusing on specific metabolites in hospitalised 

individuals21.  

However, most cases of COVID-19 are managed in the community rather than hospital, and we aimed to 

assess whether metabolomic profiles differed in community-dwelling individuals with different 
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symptom durations, comparing samples from asymptomatic individuals, those with short duration, 

OSC28 and PCS84.  In parallel, we analysed samples taken from individuals with acute illness of varying 

duration prompting a test which was negative, and later antibodies also indicated no evidence of prior 

SARS-CoV-2 infection.  We examined metabolites individually and assessed the previously published ID-

score. 

Metabolism has been related to the gut microbiome composition, with reports that the gut microbiome 

may separate individuals with PCS84 from healthy controls22,23. Therefore, we further explored whether 

stool microbiome composition, taken after acute illness, was different between individuals with disease 

of different symptom duration with and without previous, confirmed SARS-CoV-2 infection. Finally, we 

tested whether there was any relationship between metabolomic profiles and gut metagenomic 

composition.  
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Materials and Methods 

Cohort description 

Study participants were volunteers from the COVID Symptom Study Biobank (CSSB, approved by 

Yorkshire & Humber NHS Research Ethics Committee Ref: 20/YH/0298). Individuals were recruited to 

the CSSB via the ZOE COVID Study24 (ZCS) using a smartphone-based app developed by Zoe Ltd, King’s 

College London, the Massachusetts General Hospital, Lund University, and Uppsala University, launched 

in the UK on 24 March 2020 (approved by the Kings College London Ethics Committee LRS-19/20-

18210). Via the app, participants self-report demographic information, symptoms potentially indicative 

of COVID-19 disease (both closed/polar questions, and free text), any SARS-CoV-2 testing, and SARS-

CoV-2 and influenza vaccinations. Participants can be invited via email to participate in other studies, 

according to eligibility.  

In October 2020, prior to UK vaccination roll-out, 15,564 adult participants from the ZCS were invited to 

join the CSSB. Invited participants had: (a) a self-reported SARS-CoV-2 test result: RT-PCR at the start of 

illness, or a subsequent antibody test, whether positive or negative; and (b) logged at least once every 

14 days since start of illness, or since the start of logging if asymptomatic.  

Initially, individuals were recruited in four groups based on understanding of Long COVID at that time, 

and prior to definitions being published: (1) Asymptomatic, with confirmed infection; (2) Short illness 

(≤14 days) after confirmed infection; (3) Long illness (≥28 days) 5 after confirmed infection; and (4) Long 

symptom duration (≥28 days) but with a negative test for SARS-CoV-2 infection (Table 1). Invited 

individuals were matched across these four groups by Euclidian distance for age, sex and BMI9.  

Participants were invited by email, and consented separately into the CSSB.  Participants were sent 

home sampling kits in November 2020 via post, and returned capillary blood samples for metabolomic 

analysis. This also enabled antibody testing using an ELISA method 25 to confirm prior infection status of 

all participants, the current standard for retrospective ascertainment26. A subgroup also consented to 

send in stool samples for analysis of their gut microbiome. 

Study participants were subsequently aligned using symptoms ascertained up to sample collection date, 

and the permissible gap in logging was further tightened to 7 days to increase accuracy of classification. 

Long-COVID groups were reshaped to match definitions published in November 2020 5(see Table 1) 

corresponding to OCS (28-83 days, OSC28) and Post-COVID-19 Syndrome (>84 days, PCS84). The same 

duration parameters were applied to those reporting symptoms with the same timeframe parameters 
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around a negative test for SARS-CoV-2, who were presumed to have a non-COVID-19 illness.  This 

yielded six groups for comparison - four SARS-CoV-2 positive groups: Asymptomatic, Acute COVID-19 (≤7 

days), OSC28, PCS84; and two SARS-CoV-2 negative groups: Non-COVID-19 illness 28-83 days (NC28), 

Non-COVID-19 illness ≥84 days (NC84).  

To check that groupings assigned by the recruitment algorithm were clinically accurate, symptom 

logging maps were scrutinised in a subsample (n=115) by two researchers (MFÖ, CJS), independently 

and blind to algorithmic phenotype classification, before analysis. Final categories are detailed in Table 

1.  

Due to changes in logging stringency criteria, some participants also fell into additional, shorter 

categories of illness duration, detailed in Supplementary Table 1. These additional phenotypes have 

been reported in supplementary data tables, but not included in primary analysis as they were not 

recruited for this purpose, and their classification is less certain.  

Metabolomics 

Capillary blood samples were obtained , between November 2020 and January 2021, when the majority 

of participants had recovered. Samples were returned in plasma collection tubes with initial processing 

of 20µL used for serology with  the remainder frozen. Samples were processed in March/April 2021 by 

Nightingale Health Oyj (Helsinki, Finland) using high-throughput nuclear magnetic resonance 

metabolomics, measuring  249 metabolites including lipids, lipoprotein subclasses with lipid 

concentrations within fourteen subclasses, lipoprotein size, fatty acid composition, and various low-

molecular weight metabolites including amino acids, ketone bodies and glycolysis metabolites27. Of 

these, 37 are certified for clinical diagnostic use and formed the focus of our analysis (referred to herein 

as “Clinically Validated”)28. Quality control was performed and reported by Nightingale Health. Due to 

postal transit time, glucose, lactate, and pyruvate could not be assessed and have been excluded from 

analyses, and creatinine was unavailable. There were no concerns raised with other biomarkers. 

Metabolites measured using this panel have been associated with the risk of hospitalisation for COVID-

19 in the UK Biobank previously 18, including 25 of the clinically validated biomarkers used in an 

Infectious Diseases risk prediction score (ID Score) derived using Lasso regression 18. 
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Gut Microbiome 

Sample Collection and Faecal Sample Processing  

Two faecal samples per individual were collected and returned by post: faecal material from both 

collection tubes were homogenised in a Stomacher® bag, aliquoted out and stored at -80 degrees 

Celsius. The first 301 samples that would maintain a balance for BMI, age, and sex, were selected to 

undertake a pilot investigation of microbiome differences. 

DNA extraction and sequencing  

Genomic DNA (gDNA) was isolated from 1g faecal sample, using a modified protocol of the MagMax 

Core Nucleic Acid Purification Kit and MagMax Core Mechanical Lysis Module29. Libraries were prepared 

using the Illumina DNA Prep (Illumina Inc., San Diego, CA, USA) following the manufacturer’s protocol. 

Libraries were sequenced (2K×K150Kbp reads) using the S4 flow cell on the Illumina NovaSeq 6000 

system. 

Metagenome quality control and pre-processing 

All metagenomes were quality controlled using the pre-processing pipeline (available at 

https://github.com/SegataLab/preprocessing). Briefly, pre-processing consisted of three main steps: (i) 

read-level quality control, (ii) removal of host sequence contaminants, and (iii) splitting and sorting of 

cleaned reads. Read-level quality control removes low-quality reads (quality score <Q20), fragmented 

short reads (<75Kbp), and reads with ambiguous nucleotides (>2 Ns), using trim-galore 

(https://www.bioinformatics.babraham.ac.uk/projects/trim_galore/). Host sequences contaminant DNA 

were identified using Bowtie 230 with the “--sensitive-local” parameter to remove both the phiX 174 

Illumina spike-in and human-associated reads. Splitting and sorting allowed for creation of standard 

forward, reverse, and unpaired reads output files for each metagenome. 

Taxonomic and functional profiling 

The metagenomic analysis was performed using the bioBakery 3 suite of tools31. Taxonomic profiling and 

estimation of species’ relative abundances were performed with MetaPhlAn 3 (v. 3.0.7 with “--stat_q 

0.1” parameter)31,32. MetaPhlAn 3 taxonomic profiles were used to compute three alpha diversity 

measures: (i) the number of species with positive relative abundance in the microbiome (‘Richness’), (ii) 

the Shannon diversity index, independent of richness, which measures how evenly microbes are 

distributed (‘Shannon’)33 , and (iii) the Simpson diversity index, which accounts for the proportion of 

species in a sample (‘Simpson’)34. Similarly, species-level relative abundances were used to estimate 
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microbiome dissimilarity between participants (beta diversity) using the Bray-Curtis dissimilarity metric, 

which accounts for the shared fraction of the microbiome between two individuals and their relative 

abundance values 35. Functional potential profiling of metagenomes was performed with HUMAnN 3 (v. 

3.0.0.alpha.3 and UniRef database release 2019_01) 31,36 that produced pathway profiles and gene 

family abundances. We assessed beta diversity by computing a Principal Coordinates Analysis (PCoA) 

based on the pairwise Bray-Curtis dissimilarity metric. 

Additional Covariates 

 BMI was derived from self-reported weight and height. Other self-reported information (obtained from 

ZCS app-reported data) included smoking; and co-morbid illness (‘heart disease’ (otherwise unspecified), 

‘diabetes’ (and type of diabetes), ‘lung disease’ (including asthma), hay fever, eczema, ‘kidney disease’ 

(otherwise unspecified) and current cancer (type, and cancer treatment, unspecified). Address data was 

linked to the UK Index of Multiple Deprivation (IMD), with the IMD rank decile used as a categorical 

variable measuring local area deprivation37–40. Frailty was assessed using the Prisma-7 scale, with a score 

>2 indicating frailty41. 

A subset of participants had participated in a dietary assessment during the COVID-19 pandemic, also 

recruited through the ZCS (published previously 42,43). This included detailed information on vitamin 

supplementation (including omega-3 oils), physical activity, alcohol consumption, dietary habits and a 

food frequency questionnaire. These data were used to derive a diet quality score42, and a plant-based 

diet index42, analysed as continuous variables. Both have previously been associated with cardiovascular 

disease44, Type 2 Diabetes45 , a lower risk of COVID-19 illness, and a lower risk of hospitalisation for 

COVID-19 during the early waves of the pandemic42.  

Statistical analysis 

The statistical analyses were performed using R software (v. 4.0.5) and Stata (v.17, StataCorp).  

Baseline characteristics were described by frequency and percentages. Descriptive data on those invited 

and those enrolled, are presented in Supplementary Table 2 + 3. Metabolites were all log-transformed 

and standardised (mean 0, standard deviation 1) as per protocol18. To account for 0 values, prior to log 

transformation, a pseudo-count of 1 was added to all values. 

Initial analysis examined association between COVID-19 phenotypes and each metabolite individually, 

and the ID score18, using multinomial logistic regression (all adjusted for age, sex, and BMI), with the 
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Asymptomatic group as the reference category of the outcome variable. The Benjamini-Hochberg False 

discovery rate method was used to correct p-values for multiple testing46. 

To assess potential confounders, we performed eight sensitivity analyses additionally adjusting for: (1) 

self-reported co-morbidities (cardiovascular disease and diabetes), (2) Frailty, (3) IMD rank decile, (4) 

lifestyle variables (smoking status, frequency of alcohol consumption, frequency of physical activity), (5) 

self-reported use of any health supplement, (6) self-reported use of Omega-3 containing supplements, 

(7) Diet quality score, and (8) Healthy plant-based diet index (hPDI). 

Differences between the alpha diversity distributions of the groups were assessed using the Wilcoxon 

rank-sum test within the ‘RClimMAWGEN’ package (p-value≤0.05 considered significant). With a sample 

size of 300 individuals , we have 79% power at 0.05 significance level, assuming a low effect size of 0.20.  

PERMANOVA from the ‘adonis2’ function of the ‘vegan’ package, was used to test for differences 

between groups based on the beta diversity computed from the PCoA of the pairwise Bray-Curtis 

dissimilarities. A generalized linear model was built using the ‘glm’ function of the ‘stats’ package, 

controlling for confounding factors, including age, sex,and BMI. Only species with minimum 20% 

prevalence were used in this statistical analysis47. P-values were corrected using the Benjamini-

Hochberg method46. 

Spearman correlation analyses were conducted to associate microbiome profiles of 301 individuals with 

their metabolome profiles, adjusting for confounding factors (age, sex, BMI). Correlation analyses were 

conducted using R version 3.6.0. The package ‘corrplot_0.90' was used to compute the variance and the 

covariance or correlation, ‘pheatmap_1.0.12’ and ‘cor.mtest' were used to visualise the heatmap, 

calculate associated p values, and ‘p.adjust’ was used to perform Benjamini-Hochberg multiple testing 

correction46.  

 

Results 

Baseline Characteristics of Cohort 

Of 15 564 individuals invited to the CSSB, 5694 (36.6%) consented and were enrolled. Of these, 

4787/5694 individuals (84.1%) returned samples suitable for metabolomic analysis. Participant mean 

age was 52.5 years (SD 11.8), 78.7% were female, and 94.8% identified as White British, (Table 2a and 

Supplementary Table 2).  
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Metabolomic Analysis 

In total, 3718/4787 (77.7%) participants had adequate logging and metabolomic data s, of whom 

2561/3178 (80.6%) fell into the defined phenotype groups (see Table 1). Baseline characteristics of the 

groups were broadly similar to the population from which they were recruited and to each other, 

although the final asymptomatic group was slightly older than the average for the cohort (mean 58.1 

years (SD 10.2) vs. 52.7 (SD 11.7) p<0.001) (Table 2a, Supplementary Table 2 + 3).  

Regression analysis, adjusting for age, sex, and BMI, showed 90 of 249 (36%) metabolites differed in 

participants with OSC28 (28-83 days of COVID-19 symptoms) compared to Asymptomatic SARS-CoV-2-

positive individuals (Figure 1, Supplementary Table 4). 39 of these 90 (43%) also differed in participants 

with NC28 (Non-COVID-19 illness 28-83 days) compared to Asymptomatic SARS-CoV-2 infection, with 

the same direction of effect (Figure 1, Supplementary Table 4).  

Amongst the subset of metabolites validated for clinical use (37 of 249 measurements)18, fatty acids 

differed in asymptomatic cases compared to both positive and negative symptomatic individuals. A 

higher ratio of polyunsaturated fatty acids (PUFA) compared to monounsaturated fatty acids (MUFA) 

was associated with a lower odds of prolonged COVID-19 (OR= 0.73 FDR-P=0.01 for OSC28 vs. 

asymptomatic), and non-COVID-19 illness (OR=0.68, FDR-P=0.01 for NC28 vs. asymptomatic). (Figure 1 

and Supplementary Table 5). We also noted an association of absolute MUFA levels with increased 

length of illness (OR=1.28 [FDR-P=0.04] for OSC28 vs. asymptomatic COVID-19). Similarly, in 

combination, raised triglycerides and VLDL lipids were associated with an increased risk of prolonged 

illness in both test-positive and test-negative individuals, as was the ratio of triglycerides to 

phosphoglycerides (Supplementary Table 4 + 5). In contrast, higher HDL lipoprotein levels and larger 

HDL particles were associated with Asymptomatic cases. Neither amino acids nor glycoprotein acetyls 

were associated with COVID symptom duration. 

In both the clinically validated variables, and the entire metabolomics dataset, only 7/249 (2.8%)  

variables were significantly different in Long COVID (OSC28 or PCS84 combined, Supplementary Table 6) 

compared to Non-COVID illness (NC28 and NC84 combined) as the reference group. These 6 of these 7 

metabolites were not altered in asymptomatic and short COVID-19, and so may reflect differences 

specific to prolonged COVID illness. However, HDL-Cholesterol was also raised in Acute COVID-19 Illness 

(OR 1.24 [FDR P-value 0.005] for ACI vs Non-COVID illness) and further raised in Asymptomatic illness 

(OR 1.44 [FDR P-value 0.007] for Asymptomatic vs. Non-COVID illness). 
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The Infectious diseases score 

The multi-biomarker infectious diseases score (ID Score) was calculated, whereby higher values were 

previously associated with hospitalization for COVID-1918. In our cohort, higher values of the ID Score 

were generally associated with longer duration of symptoms of all illnesses, but notably not Post-COVID 

Syndrome (Table 3). 

Sensitivity Analyses adjusting for additional variables 

The direction of effect and significance of results were unchanged for most sensitivity analyses; 

however,  the effect of the ID Score was marginally stronger after adjusting for Healthy Plant-based diet 

index (OR=1.61 with hPDI, OR=1.53 without hPDI: for OSC28 compared to asymptomatic COVID-19) 

(Supplementary Figure 1). 

Microbiome demographics 

A subset (n=301) of the metabolomic cohort had corresponding microbiome data (Table 2b). The 

median time between symptom onset and microbiome assessment was 223 (IQR 50 days), with the 

minimum time between symptom onset and microbiome assessment of 33 days (implications 

considered further in Discussion). 

Quality control of gut microbiome sequence data for these 301 individuals revealed good breadth of 

coverage of MetaPhlAn markers. In addition, depth of coverage of MetaPhlAn markers was high for 

most abundant species (~3X), with large areas of <0.5X coverage (Supplementary Figure 2).  

For this subset analysis, individuals were grouped into categories as follows: 1) Asymptomatic: n=35; 2) 

ACI: n=109; 3a) OSC28 n=52; 3b) Post COVID-19 syndrome (≥84 days): n=20; 4) Negative symptomatic 

(≥28 days, including ≥ 84 days): n=85. 

Alpha- diversity analysis 

Microbial richness did not differ between groups (Wilcoxon signed-rank test p-value>0.25 for all 

comparisons, Figure 2). There were no differences in Alpha-diversity (Simpson or Shannon) between 

groups, whether they were test positive or negative, symptomatic or asymptomatic, or with long or 

short symptom duration (Figure 2).  
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Beta-diversity analysis  

Similarly, beta-diversity analysis showed no large-scale shifts in microbial profiles between groups 

(Figure 3).Ongoing symptomatic COVID-19 and Post COVID-19 syndrome groups were amalgamated and 

beta-diversity analysis repeated; there remained no significant difference  (data not shown).  

Biomarkers Asymptomatic 

Kruskal-Wallis and Dunn’s post-hoc test identified three species with differences between groups - 

specifically, Firmicutes bacterium CAG 94, Ruminococcus callidus and Streptococcus vestibularis. 

Firmicutes bacterium CAG 94 differed between Asymptomatic SARS-CoV-2 infection (ref) and Acute 

COVID-19 (FDR P-Value = 0.03), OSC28 (FDR P-Value = 0.01) and PCS84 (FDR P-Value = 0.04). 

Ruminococcus callidus, also a Firmicute, differed between Asymptomatic and Non-COVID-19 illness (≥28 

days) (FDR P-Value = 0.01) (See Table 4).  

Correlation Between Metabolomic and Microbiome Analysis 

Correlations between the metabolites and microbial taxa were assessed using Spearman’s rank 

coefficient.  We found no evidence that microbiome taxa were associated with differences in those 

metabolites associated with symptom duration in this dataset (See Figure 4). 
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Discussion 

Summary of Results + Results in Context 

We observed a metabolic profile, particularly in lipid components, that differentiated individuals with 

longer symptom duration compared with individuals with asymptomatic infection.  This profile was 

evident for individuals with long symptom duration regardless of SARS-CoV-2 test status, compared with 

asymptomatic infected individuals.  

The specific differences identified in association with long-duration illness were small in magnitude and 

related to atherogenic dyslipidaemia (Supplementary Figure 3); in particular, blood fatty acid 

concentrations, including higher absolute and relative concentrations of MUFA, lower relative 

concentrations of PUFA, and a lower PUFA/MUFA ratios. In humans, circulating PUFA is derived from 

dietary sources, and blood levels correlate both to dietary intake and to levels in adipose tissue stores. 

MUFA, on the other hand, is synthesised in significant quantities in vivo and circulating concentrations 

(but not dietary intakes) are associated with increased risk of cardiometabolic disease48. Elevated serum 

MUFA and low serum PUFA have been identified in many studies as associated with ill health, including 

cardiovascular risk49, metabolic syndrome50, and mortality from infections51.  Although our study 

assayed blood levels up to 9 months after initial COVID illness, these measures, particularly MUFA, are 

relatively stable over time 18,52 and may reflect long-term blood concentrations. Moreover, our results 

concord with previous work in the UK Biobank, using the same platform, which demonstrated a similar 

direction of association  with the same metabolites with increased risk of acute severe COVID-19 and 

with pneumonia, using blood samples collected many years beforehand18. Recent studies have 

reminded clinicians of the increased risk of vascular diagnoses after both COVID-19 and similar 

respiratory infections 53–55 and while the risk reduces dramatically after the acute period, there is excess 

risk which remains many months afterwards. It is possible that our findings may reflect un-detected 

prior cardiovascular risk in symptomatic COVID-19 cases or vascular changes as a consequence of 

disease.  

Higher levels of VLDL-particles/lipids and TG-enriched lipoproteins were associated with longer illness 

duration, although again effects were relatively small in absolute terms. Both components have also 

been associated with ill-health in other (pre-pandemic) studies - in particular, cardiovascular disease, 

diabetes, renal disease, obesity and depression27,56, although studies did not always adjust for diet 57.  In 

our study, adjusting for dietary intakes or co-morbidities did not change the findings. We also 
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demonstrate similar findings to previous work associating peripheral vascular disease with metabolic 

profiles representing atherogenic dyslipidaemia (Supplementary Figure 3)15,58.  

We did not find metabolomic profiles specific to Long COVID comparing individuals with long-duration 

illness who were positive vs. negative for SARS CoV-2 infection.  Thus, our findings do not support a 

specific underlying metabolic alteration underlying long COVID per se; rather our work suggests that 

metabolic alteration is a risk factor for long symptom duration, regardless of the cause of illness. This is 

supported by a growing body of literature identifying “conventional” risk factors such as high BMI, 

diabetes and cardiovascular disease, as risk factors for long COVID, as well as age7,59 all of which are 

associated with adverse metabolic changes49,56,60. There was no meaningful change in our results with 

inclusion of self-reported cardiovascular disease and diabetes as co-variates (Supplementary Figure 1). 

There were some unexpected negative findings. Others have associated GlycA with increased COVID-19 

mortality61, and it is often increased in other conditions such as diabetes56. It was the biomarker showing 

the greatest association with hospitalisation for COVID-19 using pre-pandemic UK Biobank samples18. 

However, we found no association of GlycA with illness duration in our community-based sample. GlycA 

is considered a marker of inflammation, and our participants were sampled many months after the 

onset of symptoms and SARS-CoV-2, and were no longer reporting symptoms. It is possible that 

prolonged symptoms after COVID-19 may not always be related to ongoing inflammation, but previous 

damage that has not been repaired. There was also no association between any of the amino acid 

metabolites and length of illness, although some amino acids have previously been associated with 

hospitalisation for COVID-1918 and were included in the ID Score. 

Looking at the ID score, previously associated with hospitalisation for acute pneumonia and acute 

COVID-19 illness18, we also demonstrated an increased score was associated with increased length of 

illness. This was replicated for both COVID-19 and those reporting ongoing symptoms without COVID-19. 

This suggests that there are shared associations which link severe acute illness and prolonged illness.  

This tallies with our previous observation that participants with a high acute symptom burden early in 

their illness were at greater risk of Long COVID7. 

Although 97 metabolites and the ID score were associated with Ongoing Symptomatic COVID-19 illness, 

only 16 of these were still associated with Post-COVID-19 syndrome. The PCS84 group is much smaller, 

and may be heterogeneous. Further work is needed to see whether certain subgroups within PCS84  

display similar associations to OSC28, whilst other subgroups do not. However, it is of note that those 
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most at risk for PCS84, women in mid-life4,62, are less at risk for some conditions associated with 

metabolic derangement, such as cardiovascular disease63,64. Our results might suggest that truly 

persistent symptoms in PCS84 represent a different type of disease to OSC28, NC28 and NC84, with 

different risk factors, pathophysiology, and may therefore need different interventions to prevent or 

treat.  

There was little change in the effect of the ID score on length of illness in our sensitivity analyses 

including pre-morbid cardiovascular disease and diabetes, frailty, lifestyle, IMD, the use of any 

supplements and the Diet Quality Score, suggesting that our metabolite associations with length of 

illness are independent of their associations with these variables. Models controlling for whether 

individuals took omega-3 supplements showed a diminished relationship between ID score and length of 

illness in non-COVID disease but were unchanged in COVID-19 illness. This finding which might suggest 

that omega-3 supplementation is a marker explaining this relationship in non-COVID illness only.  The 

addition of the healthy plant-based diet index to the model increased the effect size of the ID score for 

each length of illness. Further work on hPDI and other correlated variables, such as socio-economic 

status, might help explore this finding.  

We found no large-scale shift in gut microbe profile, assessed 9 months post symptom onset, in relation 

to illness duration after SARS CoV-2 infection, and notably, no difference between COVID-19 positive 

and negative individuals with long-duration symptoms. Analysis of both taxonomic and functional 

microbial profiles showed increases in relative abundance of some Firmicutes in asymptomatic 

individuals, for example Firmicutes bacterium CAG:94, an uncharacterized taxon requiring further study 

to determine its functions. This finding should be interpreted with caution, and we did not find evidence 

that it related to metabolite alterations.  Here, timing of our sampling is highly relevant to the 

interpretation of our results.  Alterations in an individual’s microbiome may occur in the context of 

acute disease, 65 whether from infection, dietary changes, medication, usage, and/or immune function; 

however, an individual’s microbiome regresses over time 66  to reflect a stable baseline microbiome67,68.  

Thus, faecal microbiome samples collected 9 months after the start of illness may represent baseline 

individual microbiome, which, in our study, did not relate to symptom duration. In any case, our findings 

would suggest no long-term alterations in microbial profile in individuals who experienced ‘long COVID’. 

Our results contrast to one small previous study of 106 hospitalised individuals, of whom 76% had 

ongoing symptoms 6 months after acute SARS-CoV-2 infection. In this study, altered gut microbiome 

composition was reported in individuals with persistent symptoms in patients with COVID-19 compared 
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to healthy historical pre-pandemic controls 69. However, cases were hospitalised for an average of 17 

days, received amoxicillin-clavulanic acid among other interventions (including Ribavirin, Interferon and 

Remdesivir), and changes seen could have been a consequence these treatments, illness severity and/or 

altered diet in these individuals. Two other studies noted changes in immune-modulating commensal 

bacteria 70,71 potentially specific to COVID-19, but again in hospitalised cohorts, where additional 

treatments, and illness severity, differ from our community-dwelling participants. 

Strengths + Limitations 

Our study benefits from large size, with a long duration of prospective symptom reporting, and 

availability of both metabolite and microbiome data on the same community-based participants. These 

platforms are well validated, including for clinical use of the metabolomics data. Our participants also 

reflect the spectrum of COVID cases in the community. As participants were recruited prior to 

vaccination in the wild-type era, this reduces complexity by variance attributable to virus variant, and 

type and timing of vaccination72. Infection status was reconfirmed at enrolment, ensuring accuracy of 

classification by gold standard methodology. During this period, there were also relatively few acute 

COVID-19 specific treatments available, and none routinely used in UK community-managed individuals 

allowing our study to reflect the natural history of COVID-19.  

We have also been able to conduct sensitivity analyses including variables such as frailty, lifestyle, 

deprivation, and diet, often not extensively accounted for in metabolomics studies, in addition to more 

traditional medical co-morbidities. We also have analysed participants who report ongoing symptoms 

not attributable to SARS-CoV-2, and therefore able to test the specificity of our findings. 

Limitations include the cross-sectional nature of the metabolites and microbiome assayed up to 9 

months after illness onset. Time of sampling, for both the metabolomics and microbiome analysis is 

both a strength and a limitation. Post convalescence sampling means that acute perturbations are likely 

to have resolved, but without pre-pandemic sampling we cannot assess whether changes found were 

consequential or pre-existing. Longitudinal data from cohorts sampled before and after pandemic are 

needed to address this issue. 

Conclusion 

Metabolic profiles of community cases with asymptomatic COVID-19 were notably different to those 

with longer illnesses, displaying an atherogenic lipoprotein phenotype, and this difference was apparent 

regardless of whether the illness was due to COVID-19 or another acute phenomenon. Those with 
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COVID-19 symptoms for ≥28 days could not be clearly distinguished from those with non-COVID-19 

illnesses of prolonged duration. A biomarker score previously predictive of severe COVID-19 was overall 

predictive of prolonged illness, although not all individual components were. In contrast, gut 

microbiome diversity did not differ by length of illness, suggesting no significant gut microbiome 

dysbiosis post COVID-19 infection. 

Further research with longitudinal sampling pre- and post-illness is warranted, to determine if the 

observed metabolomic associations with longer illness are pre-existing risk factors, or consequential. 
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Tables 

Group For Swab test For Antibody Test - If no appropriate swab available 

Asymptomatic  COVID-19 

Positive swab with no symptoms around test (14 

days before to 7 days after inclusive), with logging 

at least every 7 days  

Positive antibodies with no symptoms before test 

including in "past symptoms", with logging at least 

every 7 days 

Acute COVID-19 illness (ACI)  
Positive swab test with swab taken up to 7 days 

prior, or 14 days after onset of symptoms.  

Positive antibody test, with symptomatic symptoms 

lasting 7 days or less, starting >14 days before 

testing 

Ongoing symptomatic COVID-19 

(OSC28) 

Positive swab, around onset of symptoms (as 

above). Symptoms lasting over 28 days up to 84 

days. 

Positive antibody test, with symptoms lasting over 

28 up to 84 days, starting >14 days before testing  

Post COVID-19 syndrome (PCS84) Positive swab test with symptoms lasting ≥84 days 
Positive antibody test, with symptoms lasting ≥84 

days starting >14 days before testing. 

Negative Non-COVID-19 illness 28-

83 days (NC28) 

Negative swab test in first 2 weeks of symptoms, 

and symptoms lasting 28 to 83 days inclusive. No 

other positive test during logging, including a 

negative antibody test at enrolment 

Negative antibody test >14 days after onset of 

symptoms, with symptoms lasting 28 to 83 days 

inclusive 

Negative Non-COVID-19 illness ≥84 

days (NC84) 

Negative swab test in first 2 weeks of symptoms, 

and symptoms lasting ≥ 84-days. No other positive 

test during logging, including a negative antibody 

test at enrolment. 

Negative antibody test >14 days after onset of 

symptoms, with symptoms lasting ≥ 84 days 

 

Table 1: Table describing definitions used to group individuals based on their swab RT-PCR/antibody test status and duration of symptoms, as 
logged in ZOE COVID Symptom Study app. Intermediate groups show in S Table 1.  
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  Asymptomatic Acute COVID-19      

(≤ 7 days) 

Ongoing Symptomatic 

COVID-19 (28-83 days) 

Post COVID-19 

Syndrome (≥84 days) 

Non-COVID-19  

illness (28-83 days) 

Non-COVID-19 illness  

(≥84 days) 

  n Col % n Col % n Col % n Col % n Col % n Col % 

Total 307   1147   652   180   239   48   

                          

Age (mean, sd) 58.1 (10.2) 53.2 (12.0) 53.1 (11.2) 53.6 (11.5) 53.7 (11.0) 58.1 (9.2) 

Age Groups                         

    <30 5 1.6% 41 3.6% 19 2.9% 7 3.9% 5 2.1% 0 0.0% 

    30-39 9 2.9% 130 11.3% 65 10.0% 16 8.9% 26 10.9% 1 2.1% 

    40-49 47 15.3% 219 19.1% 133 20.4% 36 20.0% 42 17.6% 7 14.6% 

    50-59 92 30.0% 401 35.0% 247 37.9% 67 37.2% 88 36.8% 18 37.5% 

    60-69 122 39.7% 259 22.6% 151 23.2% 41 22.8% 63 26.4% 17 35.4% 

    70+ 32 10.4% 95 8.3% 37 5.7% 13 7.2% 14 5.9% 5 10.4% 

Sex                         

    Male 68 22.1% 251 21.9% 144 22.1% 35 19.4% 39 16.3% 12 25.0% 

    Female 238 77.5% 892 77.8% 505 77.5% 141 78.3% 200 83.7% 36 75.0% 

    Other/PFNTS 1 0.3% 4 0.3% 3 0.5% 4 2.2% 0 0.0% 0 0.0% 

                          

BMI (median, IQR) 25.3 (25.6-28.4) 25.2 (22.7-28.6) 25.5 (22.9-29.4) 26.3 (23.4-31.9) 25.7 (22.7-30.3) 26.2 (22.5-29.7) 

    <18.5 1 0.3% 10 0.9% 5 0.8% 5 2.8% 6 2.5% 1 2.1% 

    18.5-24.9 141 45.9% 547 47.7% 287 44.0% 59 32.8% 103 43.1% 18 37.5% 

    25-29.9 111 36.2% 369 32.2% 210 32.2% 62 34.4% 65 27.2% 18 37.5% 

    30.0-34.9 36 11.7% 139 12.1% 95 14.6% 33 18.3% 42 17.6% 7 14.6% 

    35+ 13 4.2% 75 6.5% 49 7.5% 21 11.7% 21 8.8% 4 8.3% 

    Missing 5 1.6% 7 0.6% 6 0.9% 0 0.0% 2 0.8% 0 0.0% 

                          

Test (n, % confirmed 

by PCR) 

15 4.9% 567 49.4% 315 48.3% 84 46.7% 163 68.2% 28 58.3% 

Table 2a:  Baseline characteristics of each illness category. n: number; sd: standard deviation; IQR: Inter-quartile range. 
 

 Asymptomatic Acute COVID-19   Ongoing Symptomatic Post COVID-19 Non-COVID-19  
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(≤ 7 days) COVID-19 (28-83 days) Syndrome (≥84 days) illness (≥28 days) 

 n  n  n  n  n   

Total  35  109  52  20  85  

Age (Median, IQR) 57  (4.75) 57  (4.86) 57  (5.67) 53  (3.63) 55  (5.42) 

Sex            

   Male 5 14% 28 26% 14 27% 8 40% 15 18% 

   Female 30 86% 81 74% 38 73% 12 60% 70 82% 

BMI (Median, IQR) 24.3  (4.75) 24.9  (4.86) 24.5 (5.67) 26.5 (3.63) 24.0  (5.42) 

Table 2b: Microbiome cohort demographics (Age, Sex, BMI) per COVID group. 
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Group RRR for 

ID Score 

P-Value 95% CI 

Asymptomatic 1.00 (ref) (ref) 

Acute COVID-19  Illness (≤ 7 days) 1.37 0.0032 (1.11 -1.68) 

Acute Non-COVID-19 Illness (≤7 days) 1.31 0.0377 (1.02 -1.68) 

Intermediate COVID (8-27 days) 1.35 0.0143 (1.06 -1.72) 

Negative Intermediate Illness (8-27 days) 1.48 0.0013 (1.17 -1.88) 

Ongoing Symptomatic Covid (28-83 days) 1.52 0.0002 (1.22 -1.90) 

Non-COVID-19 Illness (28-83 days) 1.53 0.0022 (1.16 -2.00) 

Post COVID-19 Syndrome (≥84 days) 1.24 0.1508 (0.92 -1.67) 

Non-COVID-19 illness (≥84 days) 2.12 0.0006 (1.38 -3.27) 

 

Table 3: Relative risk-ratios (RRR) for a 1 SD increased in ID Score, for each illness phenotype compared to asymptomatic COVID-19. 
Groups in bold are those for primary analysis.  
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Group Comparison Z P-

Value 

FDR P-

Value 

Streptococcus vestibularis    

Asymptomatic - PCS84 2.115 0.034 0.114 

OSC28 - NC -2.439 0.014 0.073 

PCS84 - NC -2.549 0.010 0.107 

    

Ruminococcus callidus    

Asymptomatic - ACI 2.557 0.011 0.052 

Asymptomatic - PCS84 1.991 0.046 0.154 

Asymptomatic - NC 3.254 0.001 0.011 

    

Firmicutes bacterium_CAG_94    

Asymptomatic - ACI 2.712 0.006 0.033 

Asymptomatic - OSC28 3.186 0.001 0.014 

Asymptomatic - PCS84 2.498 0.012 0.041 

Asymptomatic - NC 2.058 0.039 0.098 

Table 4: Potential biomarkers most divergent between COVID groups. FDR corrected p-values <0.1 were considered significant.                           
OSC28: Ongoing symptomatic COVID-19; PCS84: Post-COVID-19 syndrome; NC: Non-COVID illness ≥28 days (including 28-83 
days and ≥84 days) 
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Figure 1: 
Relative risk 

ratio for each 

illness 

phenotype, per 

1-SD increase in

biomarker.  
Red indicates 

p≤0.05 after FDR

correction  

Reference group

(OR 1.0): 

Asymptomatic  

 

ACI: Acute 

COVID-19 illness

OSC28: Ongoing

symptomatic 

COVID-19 (28-83

days) 

PCS84: Post 

COVID-19 

syndrome (≥84 

days) 

NC28: Non-

COVID-19 illness

28-83 days 

NC84: Non-

COVID-19 illness

≥84 days 

 

DHA - Docosahexaenoic acid                       SFA – Saturated Fatty Acids 

MUFA – Monounsaturated Fatty Acids     PUFA – Polyunsaturated Fatty Acids 
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LDL-C: Low 

density 

lipoprotein 

cholesterol 

 

HDL-C: High 

density 

Lipoprotein 

cholesterol 

 

Total-C: Total 

cholesterol 

 

Total-Tg: Total 

Triglycerides 

 

VLDL-C: Very low 

desnity 

lipoprotein 

cholesterol 

 

ApoA1: 

Apolipoprotein 

A1 

 

ApoB: 

Apolipoprotein B  
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Figure 2: A) Simpson alpha-diversity and B) Shannon alpha-diversity 

Simpson and Shannon alpha-diversity analysis showed no significant differences between groups. 

Species richness (Y-axis) was relatively high in COVID groups (X-axis). Wilcoxon signed-rank test with 

Dunn’s post hoc correction for multiple testing P-values are shown.   
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Figure 3: 
Principle 

Coordinate 

Analysis (PCoA) 

based on Bray 

Curtis 

dissimilarity 

metrics, showing 

the dissimilarity 

between five 

groups.  

Principal 

coordinate 

analysis (PCoA) 

ordination based 

on Bray-Curtis 

dissimilarity was 

used to visualize 

the dispersion of 

microbial 

community 

among groups. Elipses represent 95% Confidence Intervals. 
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Figure 4: Spearman correlation of microbiome profiles and metabolomic profiles. 

Single microbial taxa correlated with clinically validated metabolomic data using Spearman’s rank sum 

non-parametric test. FDR p-values are displayed. Rows and columns are hierarchically clustered 

(Euclidean distance). 
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