Supplemental Material

Mercury exposure and health risks associated with use of skin-lightening products:

A systematic review

Ashley Bastiansz, Jessica Ewald, Verónica Rodríguez Saldaña, Andrea Santa Rios, and Niladri Basu

Table of Contents

Table S1. Measurement instruments and abbreviations used for skin-lightening products analysis.

Table S2. Measurement instruments and abbreviations used for human biomarker analysis.

Table S3. Different toxic chemicals assessed in papers in the "Hg in products" data group.

Table S4. Case reports of individuals that experienced an adverse reaction following exposure to a mercury-added skin-lightening product.

References Cited List

Additional File – "Supplemental Excel File" with:

Excel Table S1. Database of mercury levels in skin-lightening products Excel Table S2. Database of usage of skin-lightening products (application, frequency, duration, quantity)

Measurement instrument used for testing skin-lightening cosmetics	No. of samples (%)	
Atomic absorption spectroscopy (AAS)	94 (11.94%)	
Screen-printed silver electrode (AgSPE)	3 (0.38%)	
Cold vapor atomic absorption spectrometry (CVAAS)	466 (59.21%)	
Flame atomic absorption spectrometry (FAAS)	6 (0.76%)	
Inductively coupled plasma mass spectrometry (ICP-MS)	38 (4.83%)	
Inductively coupled plasma-optical emission spectrometry (ICP-OES)	78 (9.91%)	
Inductively coupled plasma atomic emission spectrometry (ICP-AES)	49 (6.23%)	
Particle Induced X-Ray Emission (PIXE)	27 (3.43%)	
Unknown	26 (3.30%)	

Table S1. Measurement instruments and abbreviations used for skin-lightening product analysis.

Measurement instrument used for testing human biomarkers	No. of samples (%)	
Atomic absorption spectroscopy (AAS)	40 (3.8%)	
Advanced mercury analyzer (AMA)	62 (6.0%)	
Cold vapor atomic absorption spectrometry (CVAAS)	11 (1.1%)	
Inductively coupled plasma mass spectrometry (ICP-MS)	13 (1.3%)	
Particle Induced X-Ray Emission (PIXE)	148 (3.4%)	
Unknown	768 (73.7%)	

Table S2. Measurement instruments and abbreviations used for human biomarker analysis.

No.	Reference	Toxic metals assessed
1	(Agorku et al., 2016)	Mercury, Hydroquinone
2	(Murphy et al., 2009)	Mercury
3	(Ho et al., 2017)	Mercury
4	(Zainy, 2015)	Mercury, Cadmium, Bismuth, Palladium, Arsenic, Titanium,
		Titanium dioxide, Thallium
5	(Harada et al., 2001)	Mercury
6	(Peregrino et al., 2011)	Mercury
7	(Gbetoh & Amyot, 2016)	Mercury, hydroquinone and clobetasol propionate
8	(Al-Saleh et al., 2012)	Mercury, Titanium dioxide, Hydroquinone, Corticosteroids,
9	(Yang et al., 2014)	Mercury
10		Lead, Mercury, Cadmium, Arsenic, Copper, Nickel, Cobalt,
	(Salama, 2016)	Manganese, Chromium, Aluminum
11	(Wang & Zhang, 2015)	Mercury
12	(McKelvey et al., 2011)	Mercury
13		Mercury, Cadmium, Lead, Arsenic, Chromium, Nickel, Cobalt,
	(Ashraf et al., 2020)	Copper, Zinc, Iron
14	(Selvaraju et al., 2020)	Mercury, Arsenic, Cadmium, Lead
15	(Abbas et al., 2020)	Mercury
16	(Kanwal et al., 2019)	Mercury
17	(Kinabo, 2009)	Mercury
18	(Voegborlo et al., 2008)	Mercury
19	(Alqadami et al., 2017)	Mercury, Arsenic, Bismuth, Cadmium, Lead, Titanium
20	(Alqadami et al., 2013)	Mercury, Arsenic, Bismuth, Cadmium, Lead, Titanium
21		Mercury, Betamethasone, Clobetasol propionate, Hydroquinone;
	(Maneli et al., 2016)	Kojic acid
22	(Ababneh & Al-Momani,	
	2018)	Mercury, Lead, Cadmium, Nickel
23	(Mohammed et al., 2017)	Mercury, Arsenic
24	(Amponsah et al., 2014)	Mercury
25	(Cristaudo et al., 2013)	Mercury, Cadmium, Cobalt, Chromium, Nickel, Lead

Table S3. Different toxic chemicals assessed in papers in the "Hg in products" data group.

Table S4. Case reports of individuals that experienced an adverse reaction following exposure to a mercury-added skin-lightening product.

	Ethnicity/		WHO	
Authors, year	Race	Country	Region	Clinical Details
(Drescher et al., 2013)	Barbadian	Barbados	РАНО	In 2010, high mercury exposure was discovered in four Barbadian women of African ancestry (aged 39-54) during a study analyzing mercury body-burden amongst individuals working in the fishing industry. All four women were using or had used skin bleaching creams, and had hair inorganic mercury concentrations 361-5617ug/g and spot urine inorganic mercury samples 7-135 ug/L.
(Soo et al., 2003)	Indonesian	China	WPRO	A 34-year-old Indonesian woman working as a domestic helper in Hong Kong for a year and had two weeks of frothy urine and ankle swelling. She had been using a skin whitening cream from Indonesia on her face every day for five years and had elevated blood mercury levels of 163nmol/L (59.09ug/L) and a 24-hour urinary mercury excretion rate of 754.6nmol/day, and the mercury concentration of the cream was 1762 ppm.
(Sun et al., 2017)	Chinese	China	WPRO	From 2009 to 2017, 16 female patients (aged 19-50 years) were diagnosed with chronic mercury intoxication at the First Affiliated Hospital of Zhengzhou University. All patients had a history of using skin lightening creams and one cream sample product contained $19,742 \pm 379$ ppm of mercury. The 24-hour urine mercury content of these patients was within 0.037-0.170mg/L (37ug/L to 170ug/L), and patients complained about body pain, tremors, and had differing levels of insomnia, irritability, and depression.
(Dickenson et al., 2013)	Mexican	USA	РАНО	During a research study looking at environmental chemical exposure in pregnant women and their infants, 1 participant out of 77 had elevated levels of mercury - whole blood mercury level: 15.16 ug/L, umbilical cord blood: 5.8 ug/L and urine mercury level 40ug/L. The participant had been using two skin lightening creams purchased in Mexico, which contained 21,000 and 30,000 ppm of mercury.
(Bwomda et al., 2005)	African	Belgium	EURO	A 24-year-old African woman presented at the emergency department six months after developing glucocorticosteroid induced arterial hypertension, weight gain, amenorrhea, and a deep cutaneous ulcer on the right foot, swollen erythematous right leg, and thin skin with deep red striae over her abdomen, and signs of Cushing's syndrome. She admitted to using skin bleaching cream for at least 10 years and applied over full body.
(Chakera et al., 2011)	Pakistani	United Kingdom	EURO	Two cases of Pakistani women (aged 44 and 26 years), they were referred for investigation of the nephrotic syndrome, renal biopsies showed that they had membranous glomerulonephritis associated to skin lightening creams. Their serum and urinary mercury-creatinine ratio was 150nmol/L and 16.5nnmol/mmol, and 233 nmol/l and 77.5nmol/mmol, respectively.

(Ori et al., 2018)	Mexican?	USA	РАНО	A 17-month-old toddler, had 3 weeks of fussiness, constipation, and decreased appetite, developed a limp with tenderness in the right knee, whole blood mercury, 26 ug/L, and random spot mercury level of 243 ug/g creatinine. Mother and grandmother had been using skin lightening creams, neither of them complained about symptoms but had elevated first void urine mercury levels of 197ug/g creatinine (mother) and 222 ug/g creatinine (grandmother), and cream contained mercury between 27,000 and 34,000 ug/g.
(Copan et al., 2015)	Mexican?	USA	РАНО	Three cases between 2010-2014 of a 20-month-old, and a 39- year-old and her 4-year-old child. The three individuals had elevated mercury levels between 52 ug/g to 482ug/g creatinine, all associated with creams that were between 20,000-57,000 ug/g.
(Zhang et al., 2014)	Chinese	China	WPRO	A 28-year-old woman patient was admitted to the hospital in January 2010, after complaining of pain in both limbs and facial edema for two weeks. She was diagnosed with nephrotic syndrome. The patient used a homemade skin lightening cream for 11 months that contained 6.80 ug/g, and her blood and urinary mercury concentration was 220 umol/L and 469 umol/L, respectively.
(Tlacuilo-Parra et al., 2001)	Mexican?	Mexico	РАНО	A 30-year-old woman in 1996 experienced burning face pain and excessive perspiration after using a daily facial skin lightening cleanser for five years with listed calomel. Her urine mercury was 150ug/L and whole blood mercury was 30 ug/L.
(Tang et al., 2006) Tang 2006	Chinese	Hong Kong	WPRO	A 34-year-old Chinese woman developed nephrotic syndrome, minimal change disease and increased mercury concentrations in blood (24.8 μ g/L) and urine (57.4 μ g/L) after using a skin- lightening cream contain 30,000 ug/g of mercury daily for 4 months. Her proteinuria returned to normal after 9 months, and her blood and urine became normal after 1 and 9 months respectively after cessation of usage.
Choi 2002	Chinese	Hong Kong	WPRO	A 32-year-old woman developed nephrotic syndrome, minimal change nephropathy and a raised blood mercury concentration (48.6 μ g/L) after using a cosmetic cream (3.4% Mercury) for 3 months. After penicillamine therapy, her blood mercury concentration dropped to 10.8 μ g/L, and her renal function returned to normal within 3 months. The skin-lightening cream she used was found to contain 0.07 – 0.21% mercury.
(Chan et al., 2001)	Chinese	Hong Kong	WPRO	A 38-year-old woman had an asymptomatic increase in blood mercury concentration (18.8 μ g/L) and a urine mercury excretion (69 μ g/day) after daily use of a cosmetic cream for several months. The cream contained 6.5% mercury.
(Barit et al., 2020)	Filipino	Philippines	WPRO	A 27-year-old Filipino female presented pruritic erythematous papules and plaques on the bilateral axillae after using a whitening cream containing 6400 ppm of mercury. Positive reactions to mercury ammonium chloride and thiomersal were shown in patch test results.

(Kuehn, 2020)	Mexican American	USA	РАНО	According to a CDC report, a 47-year-old Mexican American female developed dysesthesias and upper extremity weakness, and later hospitalized for two weeks with slurred speech, blurry vision, an unsteady gait after using two skin-lightening creams on her face twice daily for 7 years. She had blood mercury levels of 2620 μ g/L and urinary mercury levels of 110 μ g/L and underwent chelation therapy. Skin-lightening creams were purchased in Mexico and contained 12,000 ppm of mercury; further testing of creams detected methyl mercury iodide.
(Kamani et al., 2019)	Mexican American?	USA	РАНО	A ten-month-old male was admitted to hospital with a one-month history of a progressive desquamative papular rash, anorexia, weight loss, hypertension, and regression in neuro-motor milestones. The patient had whole blood mercury levels at 251 nmol/L and underwent empiric succimer chelation therapy for three weeks. The patient's mother purchased a locally made skin cream in Mexico containing elemental mercury at 56,000 ppm and had been using it on her face/neck twice daily for 6 weeks before onset of patient's symptoms.

- Ababneh, F. A., & Al-Momani, I. F. (2018). Assessments of toxic heavy metals contamination in cosmetic products. *ENVIRONMENTAL FORENSICS*, 19(2), 134–142. https://doi.org/10.1080/15275922.2018.1448908
- Abbas, H. H., Sakakibara, M., Sera, K., Nurgahayu, & Andayanie, E. (2020). Mercury exposure and health problems of the students using skin-lightening cosmetic products in Makassar, South Sulawesi, Indonesia. *Cosmetics*, 7(3). https://doi.org/10.3390/COSMETICS7030058
- Agorku, E. S., Kwaansa-Ansah, E. E., Voegborlo, R. B., Amegbletor, P., & Opoku, F. (2016). Mercury and hydroquinone content of skin toning creams and cosmetic soaps, and the potential risks to the health of Ghanaian women. *SPRINGERPLUS*, *5*. https://doi.org/10.1186/s40064-016-1967-1
- Al-Saleh, I., Elkhatib, R., Al-Rouqi, R., Al-Enazi, S., & Shinwari, N. (2012). The dangers of skinlightening creams. *TOXICOLOGICAL AND ENVIRONMENTAL CHEMISTRY*, 94(1), 195–219. https://doi.org/10.1080/02772248.2011.631925
- Alqadami, A. A., Abdalla, M. A., AlOthman, Z. A., & Omer, K. (2013). Application of solid phase extraction on multiwalled carbon nanotubes of some heavy metal ions to analysis of skin whitening cosmetics using ICP-AES. In *Int J Environ Res Public Health*. (Vol. 10, Issue 1, pp. 361–74. [International journal of environmental re).
- Alqadami, A. A., Naushad, M., Abdalla, M. A., Khan, M. R., Alothman, Z. A., Wabaidur, S. M., &
 Ghfar, A. A. (2017). Determination of heavy metals in skin-whitening cosmetics using microwave digestion and inductively coupled plasma atomic emission spectrometry. *IET*NANOBIOTECHNOLOGY, 11(5), 597–603. https://doi.org/10.1049/iet-nbt.2016.0212
- Amponsah, D., Voegborlo, R., & Sebiawu, G. E. (2014). Determination of Amount of Mercury in Some Selected Skin-Lightening Creams Sold in the Ghanaian Market. 5(6), 544–550.
- Ashraf, T., Taneez, M., Kalsoom, S., Irfan, T., & Shafique, M. A. (2020). Experimental Calculations of Metals Content in Skin-Whitening Creams and Theoretical Investigation for Their Biological Effect Against Tyrosinase Enzyme. *BIOLOGICAL TRACE ELEMENT RESEARCH*.

https://doi.org/10.1007/s12011-020-02441-z

- Barit, J.-V. J. G., Chamberlin, C. V. S., Young, P. S., Obbus, S. F. V, Abalos-Babaran, S., Lucero-Orillaza, H. E., Encarnacion, L. A., & Ramirez-Quizon, M. N. (2020). Excessive Mercury Levels in an Unregistered Cosmetic Whitening Product Causing Allergic Contact Dermatitis. *Dermatitis*, 31(3), 228. https://doi.org/10.1097/DER.00000000000615
- Bwomda, P., Sermijn, E., Lacor, P., & Velkeniers, B. (2005). Glucocorticoid hypertension due to the use of bleaching skin cream, a case report. *Acta Clinica Belgica*, *60*(3), 146–149. https://www.scopus.com/inward/record.uri?eid=2-s2.0-26044473688&partnerID=40&md5=77a10485f1be1937db76c9304a1749b8
- Chakera, A., Lasserson, D., Beck, L. H., Roberts, I. S. D., & Winearls, C. G. (2011). Membranous nephropathy after use of UK-manufactured skin creams containing mercury. *QJM*, *104*(10), 893–896. https://doi.org/10.1093/qjmed/hcq209
- Chan, M. M., Cheung, R. C., Chan, I. H., & Lam, C. W. (2001). An unusual case of mercury intoxication. *Br J Dermatol.*, *144*(1), 192-4. [The British journal of dermatology].
- Copan, L., Fowles, J., Barreau, T., & McGee, N. (2015). Mercury Toxicity and Contamination of Households from the Use of Skin Creams Adulterated with Mercurous Chloride (Calomel). *International Journal of Environmental Research and Public Health*, *12*(9), 10943–10954. https://doi.org/10.3390/ijerph120910943
- Cristaudo, A., D'Ilio, S., Gallinella, B., Mosca, A., Majorani, C., Violante, N., Senofonte, O., Morrone,
 A., & Petrucci, F. (2013). Use of potentially harmful skin-lightening products among immigrant
 women in Rome, Italy: a pilot study. *Dermatology*, 226(3), 200–206.
- Dickenson, C. A., Woodruff, T. J., Stotland, N. E., Dobraca, D., & Das, R. (2013). Elevated mercury levels in pregnant woman linked to skin cream from Mexico. *American Journal of Obstetrics and Gynecology*, 209(2), e4-5. https://doi.org/10.1016/j.ajog.2013.05.030
- Drescher, O., Dewailly, E., Krimholtz, M., & Rutchik, J. (2013). Fishy Make-up on the Hook for Mercury Exposure: A Case Series. *West Indian Med J.*, *62*(8), 770-2. [The West Indian medical journal].

- Gbetoh, M. H., & Amyot, M. (2016). Mercury, hydroquinone and clobetasol propionate in skin lightening products in West Africa and Canada. *ENVIRONMENTAL RESEARCH*, 150, 403–410. https://doi.org/10.1016/j.envres.2016.06.030
- Harada, M., Nakachi, S., Tasaka, K., Sakashita, S., Muta, K., Yanagida, K., Doi, R., Kizaki, T., & Ohno,
 H. (2001). Wide use of skin-lightening soap may cause mercury poisoning in Kenya. *Science of The Total Environment*, 269(1–3), 183–187. https://doi.org/10.1016/S0048-9697(00)00812-3
- Ho, Y. Bin, Abdullah, N. H., Hamsan, H., & Tan, E. S. S. (2017). Mercury contamination in facial skin lightening creams and its health risks to user. *REGULATORY TOXICOLOGY AND PHARMACOLOGY*, 88, 72–76. https://doi.org/10.1016/j.yrtph.2017.05.018
- Kamani, A., Au, H., Copes, R., Thompson, M., & Ito, S. (2019). Pediatric Mercury Poisoning from Indirect Exposure to Skin Cream. *CLINICAL TOXICOLOGY*, 57(10), 1011.

Kanwal, S., Yamakawa, A., Narukawa, T., & Yoshinaga, J. (2019). Speciation and isotopic characterization of mercury detected at high concentration in Pakistani hair samples. *CHEMOSPHERE*, 233, 705–710. https://doi.org/10.1016/j.chemosphere.2019.05.275

- Kinabo, C. (2009). Comparative analysis of mercury content in human hair and cosmetic products used in Dar es Salaam, Tanzania. *Tanzania Journal of Science*, 31(1). https://doi.org/10.4314/tjs.v31i1.18412
- Kuehn, B. (2020). Mercury Poisoning From Skin Cream. JAMA-JOURNAL OF THE AMERICAN MEDICAL ASSOCIATION, 323(6), 500. https://doi.org/10.1001/jama.2020.0292
- Maneli, M. H., Wiesner, L., Tinguely, C., Davids, L. M., Spengane, Z., Smith, P., van Wyk, J. C., Jardine, A., & Khumalo, N. P. (2016). Combinations of potent topical steroids, mercury and hydroquinone are common in internationally manufactured skin-lightening products: a spectroscopic study. *Clin Exp Dermatol.*, 41(2), 196–201. [Clinical and experimental dermatology].
- McKelvey, W., Jeffery, N., Clark, N., Kass, D., & Parsons, P. J. (2011). Population-based inorganic mercury biomonitoring and the identification of skin care products as a source of exposure in New York City. *Environmental Health Perspectives*, 119(2), 203–209.

https://doi.org/10.1289/ehp.1002396

- Mohammed, T., Mohammed, E., & Bascombe, S. (2017). The evaluation of total mercury and arsenic in skin bleaching creams commonly used in Trinidad and Tobago and their potential risk to the people of the Caribbean. *J Public Health Res.*, *6*(3), 1097. [Journal of public health research].
- Murphy, T., Slotton, D. G., Irvine, K., Sukontason, K., & Goldman, C. R. (2009). Mercury Contamination of Skin Whiteners in Cambodia. *HUMAN AND ECOLOGICAL RISK ASSESSMENT*, 15(6), 1286–1303. https://doi.org/10.1080/10807030903306877
- Ori, M. R., Larsen, J. B., & Shirazi, F. M. (2018). Mercury Poisoning in a Toddler from Home Contamination due to Skin- Lightening Cream. JOURNAL OF PEDIATRICS, 196, 314+. https://doi.org/10.1016/j.jpeds.2017.12.023
- Peregrino, C. P., Moreno, M. V., Miranda, S. V., Rubio, A. D., & Leal, L. O. (2011). Mercury Levels in Locally Manufactured Mexican Skin-Lightening Creams. *International Journal of Environmental Research and Public Health*, 8(6), 2516–2523. https://doi.org/10.3390/ijerph8062516

Salama, A. K. (2016). Assessment of metals in cosmetics commonly used in Saudi Arabia. ENVIRONMENTAL MONITORING AND ASSESSMENT, 188(10), 553. https://doi.org/10.1007/s10661-016-5550-6

- Selvaraju, A., Abdul Halim, A. N. S., & Keyon, A. S. A. (2020). Determination of selected heavy metal concentrations in unregistered face whitening creams sold in Johor Bahru, Johor, Malaysia by using inductively coupled plasma optical emission spectroscopy and their health risk assessment
 [Penentuan kepekatan logam b. *Malaysian Journal of Analytical Sciences*, 24(5), 670–681. https://www.scopus.com/inward/record.uri?eid=2-s2.085092532894&partnerID=40&md5=9cd4c3eefd13ee08e06e34245026a504
- Soo, Y. O.-Y., Chow, K.-M., Lam, C. W.-K., Lai, F. M.-M., Szeto, C.-C., Chan, M. H.-M., & Li, P. K.-T. (2003). A whitened face woman with nephrotic syndrome. *American Journal of Kidney Diseases : The Official Journal of the National Kidney Foundation*, 41(1), 250–253. https://doi.org/10.1053/ajkd.2003.50017

- Sun, G.-F., Hu, W.-T., Yuan, Z.-H., Zhang, B.-A., & Lu, H. (2017). Characteristics of Mercury Intoxication Induced by Skin-lightening Products. *CHINESE MEDICAL JOURNAL*, 130(24), 3003+. https://doi.org/10.4103/0366-6999.220312
- Tang, H. L., Chu, K. H., Mak, Y. F., Lee, W., Cheuk, A., Yim, K. F., Fung, K. S., Chan, H. W. H., & Tong, K. L. (2006). Minimal change disease following exposure to mercury-containing skin lightening cream. *Hong Kong Medical Journal*, 12(4), 316–318.
- Tlacuilo-Parra, A., Guevara-GutiÈrrez, E., & Luna-Encinas, J. A. (2001). Percutaneous mercury poisoning with a beauty cream in Mexico. *J Am Acad Dermatol.*, 45(6), 966–7. [Journal of the American Academy of Dermato.
- Voegborlo, R., Voegborlo, S., Buabeng-Acheampong, B., & Zogli, E. (2008). Total Mercury Content of Skin Toning Creams and the Potential Risk to the Health of Women In Ghana. *Journal of Science* and Technology (Ghana), 28(1), 88–96. https://doi.org/10.4314/just.v28i1.33081
- Wang, L., & Zhang, H. (2015). Mercury content in marketed cosmetics: analytical survey in Shijiazhuang, China. *Cutan Ocul Toxicol*, 34(4), 322–326.
- Yang, H.-H., Chen, P.-Y., Ho, P.-H., & Shih, Y. (2014). Direct Analysis of Mercury in Cosmetics Using Screen-Printed Silver Electrodes and Flow Injection Analysis. *JOURNAL OF THE ELECTROCHEMICAL SOCIETY*, 161(6), B137–B142. https://doi.org/10.1149/2.057406jes
- Zainy, F. M. (2015). Determination of Heavy Metals in 16 Bleaching Creams and 3 Mixtures of Bleaching Creams from Local Market of Jeddah. EGYPTIAN JOURNAL OF CHEMISTRY, 58(3), 377–386.
- Zhang, L., Liu, F., Peng, Y., Sun, L., & Chen, C. (2014). Nephrotic syndrome of minimal change disease following exposure to mercury-containing skin-lightening cream. *Ann Saudi Med.*, 34(3), 257-61. [Annals of Saudi medicine].