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Abstract

The algorithm can be divided into three independent parts using different sensor setups:

1. The posture detection algorithm detects lying, sitting, and standing positions based on data
of the trunk and thigh sensors.

2. The wheeling detection algorithm detects wheeling periods with data of the wheelchair sensor
and discriminates between active and passive wheeling with data of the wrist sensor of the
dominant hand.

3. The walking detection algorithm detects walking periods and differentiates between level walk-
ing and stair climbing with data of a single ankle sensor. Further, the algorithm discriminates
between free and assisted walking with data of the sensor attached to a walking aid.

1. Raw data1

We used the data of inertial measurement units containing a 3-axis accelerometer, a 3-axis gyro-2

scope, and a barometric pressure sensor, as well as Bluetooth Low Energy for time synchronization3

(see Figure 1).[1] However, the algorithm can be applied to any measurement unit containing the4

required sensor modalities. The raw data needs to be resampled to 50 Hz, and the signals must be5

measured in or converted to the following units:6

• acceleration a⇒ m/s2
7

• angular rate ω ⇒ ◦/s8

• barometric pressure p⇒ Pa9

2. Posture detection algorithm10

This part of the algorithm detects lying, sitting, and standing positions based on data of the11

trunk and thigh sensors.12
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Figure 1: The ZurichMOVE sensor and its coordiante system (created by Rehabilitation Engineering Laboratory,
ETH Zurich).

2.1. Sensor placement13

The trunk sensor needs to be placed on the sternum with the x-axis facing toward the belly14

button. The thigh sensor needs to be placed mid-thigh on the lateral side of the less-affected leg.15

Here, the x-axis faces toward the knee (see Figure 2).16

2.2. Orientation estimation17

Before estimating the orientation of the sensor, the algorithm corrects the offset and drift of the18

gyroscope signal.[2] First, still phases are detected by applying a 2nd order high-pass filter (cut-off19

frequency = 0.5 Hz), a low-pass filter (cut-off frequency = 2 Hz), and a threshold of 1 ◦\s.[3] Then,20

the drift of the gyroscope signal is estimated by piecewise low-pass filtering of each axis, linearly21

interpolating between the still phases, and limiting the slew rate of the signal to 500 µ◦\s\s. And22

finally, this drift is subtracted from the raw gyroscope measurements.23

24

To estimate the orientation of the sensor, the acceleration and the corrected gyroscope signals25

are fused with the open-source algorithm of S. Madgwick.[4] The filter gain β was set to 0.03 which26

provided optimal performance in previous experiments.[4]. The output is a vector containing the27

quaternions of each sample ~q = [q0 q1 q2 q3]T . In the neutral position (~q = [1 0 0 0]T ), the z-axis28

points towards the floor.29

30

As the last step, the pitch angle of the sensor’s orientation is derived from the quaternions. The
pitch angle is defined as the deviation of the sensor’s orientation from its neutral position around a
new y-axis after rotating the sensor around its z-axis. It is calculated with the following equation:

ϕ = arcsin
(

2(q0q2 − q3q1)
)
∗ 180

π

This angle is filtered using a 5th order low-pass filter (cut-off frequency = 0.1 Hz). An angle of 0°31

represents a horizontal orientation, while an angle of ±90° represents a vertical orientation. Nega-32

tive values result when the x-axis of the sensor points downward, and positive values result when33

the x-axis points upward. The former corresponds to a standing position, while the latter would34

correspond to a handstand position. Signals of which the mean of the whole measurement period35

exceeds 0° are multiplied by -1 since we assume that the sensor was placed upside down rather than36
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Figure 2: Sensor placement of the posture detection algorithm (created by Rehabilitation Engineering Laboratory,
ETH Zurich).

the participant being in this position for a prolonged time.37

38

2.3. Classification of lying, sitting, and standing39

In lying, both sensors are horizontal while they are vertical during standing. In sitting, however,40

the thigh sensor is horizontal and the trunk sensor is vertical. A vertical thigh sensor and a hori-41

zontal trunk sensor is uncommon and probably reflects a standing position with bending forward.42

Hence, the algorithm classifies this scenario as standing. The thresholds to distinguish between a43

horizontal and vertical orientation were trained with labeled data of children with mobility impair-44

ments and a decision tree by minimizing the Gini’s Diversity Index. The resulting thresholds are45

Ttrunk = −35.9◦ and Tthigh = −48.4◦.46

2.4. Outcome measures47

After detecting lying, sitting, and standing positions, the algorithm determines the duration the48

participant spent in each position throughout the measurement period. Moreover, the number of49

transitions between a sitting and a standing position are counted. The minimal duration between50
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two consecutive sit-to-stand transitions was set to 2 min to avoid an overestimation in noisy data51

or during cycling periods.52

3. Wheeling detection algorithm53

This part of the algorithm detects wheeling periods with data of the wheelchair sensor and54

discriminates between active and passive wheeling with data of the wrist sensor of the dominant55

hand.56

3.1. Sensor placement57

The wheelchair sensor needs to be placed on the spokes of the wheelchair, with the z-axis being58

parallel to the axis of the wheel. The direction of the z-axis does not matter since the algorithm59

assumes that the participant more frequently wheels forward than backward. The wrist sensor is60

worn on the dominant hand as a watch. The x-axis faces toward the fingers (see Figure 3). The61

user selects the dominant hand by placing a single sensor on the corresponding wrist. If data of62

both wrist sensors are available, the algorithm uses the side which reveals a higher acceleration63

magnitude during wheeling periods.

Figure 3: Sensor placement of the wheeling detection algorithm (created by Rehabilitation Engineering Laboratory,
ETH Zurich).

64

3.2. Classification of non-wheeling activities, active wheeling and passive wheeling65

This part of the algorithm is an adapted version of a previously published algorithm that was66

developed for patients with a spinal cord injury.[5] The feature selection process was repeated with67

data of children with mobility impairments and the resulting algorithm is described in the following68

sections.69
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3.2.1. Detection of wheeling periods70

This part depends solely on the z-axis of the wheelchair sensor awheel,z and ωwheel,z. As a first71

step, it is verified if the z-axis of the sensor is in a horizontal orientation which is the case if the72

sensor is fixed to the spokes of the wheel. In this case, the acceleration signal due to gravity is close73

to zero. In contrast, the signal is close to 9.81 m/s2 if the sensor is lying around in neutral position.74

Therefore, periods in which awheel,z is > 0.5 ∗ 9.81 m/s2 for longer than 1 min are classified as75

non-wheeling activities and ignored during the following steps. Before applying this cut-off, the76

signal is processed with a low-pass filter (cut-off frequency = 0.05 Hz).77

78

Then, plateaus in the gyroscope signal of five samples in a row or longer are set to zero to79

remove gyroscope data with low quality. The resulting signal is used to detect wheeling periods in80

three steps: identifying preliminary wheeling periods, classifying them as valid and invalid wheeling81

periods, and fusing valid wheeling periods by analyzing the rest phases between two consecutive82

wheeling periods. First, a threshold (|ωwheel,z| > 0.4◦/s) is applied to identify preliminary wheeling83

periods. Second, for each period, the following heuristic rules are used to detect valid wheeling84

periods:85

• max |ωwheel,z| > 10◦/s86

• V ar(ωwheel,z) > 1◦/s87

•
∫
|ωwheel,z|dt > 80◦88

Third, valid wheeling periods that are less than 2 s apart are fused. In addition, rest phases between89

two valid wheeling periods that contain more than 80% of preliminary wheeling periods as well as90

those that are shorter than 0.8 s are also classified as a valid wheeling period. Finally, valid wheeling91

periods that are less than 2 s apart are fused again.92

3.2.2. Discrimination between active and passive wheeling93

As a first step, the raw data of the wrist sensor is filtered. The acceleration signal is passed94

through an infinite impulse response eight order elliptic low-pass filter with a cut-off frequency of95

0.3 Hz, a passband ripple of 0.02 dB, and a minimum stopband attenuation of 200 dB in order96

to separate the static acceleration component due to gravity astatic from the dynamic acceleration97

component resulting from wrist movement adynamic.[6]98

99

Wheeling periods lasting longer than 5.12 s are divided into segments with a window length of100

5.12 s and an overlap of 75%. Each segment in which the wrist sensor is not able to communicate101

with the wheelchair sensor via Bluetooth Low Energy is classified as non-wheeling activity. Here,102

it is assumed that the wheelchair is far away from the participant. The remaining segments are103

either classified as active or passive wheeling. The same features of the original publication of this104

algorithm [5] were calculated and the feature selection process was repeated with data of children105

with mobility impairments. It revealed just a single relevant feature: P10th(awrist,static,x). This106

feature is a surrogate for the orientation of the wrist. It is 9.81 m/s2 if the z-axis is parallel to107

gravity and zero if the z-axis is perpendicular to gravity. Movement related features did not improve108

classification accuracy since we encouraged children to do hand activities while they were pushed109

around in their wheelchair. The threshold to distinguish between active and passive wheeling was110

trained with a decision tree by minimizing the Gini’s Diversity Index. The resulting threshold111

is Twrist = −0.61 ∗ 9.81 m/s2. Wheeling periods with the hand facing down towards the wheel112
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are classified as active wheeling while periods with the hand facing more horizontal or upward are113

classified as passive wheeling.114

3.3. Outcome measures115

The algorithm derives the total duration of active and passive wheeling separately.116

4. Walking detection algorithm117

This part of the algorithm detects walking periods and differentiates between level walking and118

stair climbing with data of a single ankle sensor. Further, the algorithm discriminates between free119

and assisted walking with data of the sensor attached to a walking aid.120

4.1. Sensor placement121

The ankle sensor is worn on the less-affected ankle. The x-axis faces toward the floor and points122

to the lateral malleolus (see Figure 4). If applicable, a sensor is placed firmly on the walking aid of123

the participant. The position and orientation of this sensor are irrelevant.

Figure 4: Sensor placement of the walking detection algorithm (created by Rehabilitation Engineering Laboratory,
ETH Zurich).

124
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4.2. Detection of walking bouts125

4.2.1. Preprocessing I126

As a first step, the algorithm verifies the placement of the ankle sensor. If the average accel-127

eration signal of the x-axis is greater than zero, it is assumed that the sensor was placed upside128

down. In this case, the sensor is rotated 180° around its z-axis by multiplying the acceleration and129

gyroscope signals of the x- and y-axis by −1. Then, the bias and drift of the gyroscope signal are130

corrected as described in chapter 2.2131

4.2.2. Segmentation and preprocessing II132

A 5th order low-pass filter (cut-off frequency = 3 Hz) is applied to the gyroscope signal. Then,
the signal is segmented into windows of 30 s and an overlap of 15 s. In each segment, the angular
rate around the mediolateral axis ωml is determined by correcting for misalignment around the
x-axis of the ankle sensor and by the assumption that the majority of leg movement occurs in the
sagittal plane: (

.
ωml

)
= v

(
ωy

ωz

)
,

with v being the eigenvector of cov(ωy, ωz) with the largest eigenvalue. Since the eigenvector can133

point in both directions, the signal ωml has to be multiplied with −1 whenever it is upside down.134

To verify this, the algorithm uses the fact that the angular rate is larger during the swing phase135

compared to the stance phase. It compares the means of the upper and lower envelops of the signal136

and multiplies ωml with −1 whenever the mean of the lower envelop is larger than the the mean of137

the upper envelop. Consequently, positive values of ωml correspond to a backward rotation of the138

shank as during the swing phase and vice versa. An exemplary signal is shown in Figure 5139

4.2.3. Step detection140

The algorithm detects steps by finding local maxima in ωml, corresponding to the peak angular
rate during mid-swing of each step (see Figure 5). The amplitude of these maxima, as well as the
duration between two consecutive maxima, must exceed the thresholds Tpeakheight and Tpeakdistance,
respectively. These thresholds are adapted to the underlying data of each segment and, thus, to
individual gait patterns.

Tpeakheight = max(50◦/s, 0.2P99th(ωml))

A minimum of 50◦/s was chosen to exclude maxima of non-walking data.[7]

Tpeakdistance =
0.5

f̃walking

with f̃walking being the median estimated step frequency (steps per second) of each segment. An141

initial step frequency finitial is estimated for the whole segment by applying a fast Fourier trans-142

formation to ωml and taking the first main frequency component. An adapted step frequency is143

estimated by repeating this step in a sliding window of 3
finitial

and an overlap of 2
finitial

. Eventu-144

ally, a moving average filter with a span of 9
finitial

is applied to determine the time-dependent step145

frequency fwalking. Eventually, only steps of the middle 15 s of each segment are considered to146

avoid duplicates in overlapping segments.147
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Figure 5: Exemplary illustration of the gyroscope signal of two steps as well as the corresponding gait phases and
gait events detection.

Removing unreasonable steps The swing phase of each step is defined as the time tswing be-148

tween the first zero-crossings of ωml before and after mid-swing. The stance phase is defined149

as the time tstance between the first zero-crossing of ωml after the preceding mid-swing and150

the beginning of the current swing phase. Steps with tswing < 100 ms or tstance < 200 ms151

are not considered valid steps.[8]152

4.2.4. Mid-stance detection and classification of walking periods153

The algorithm detects the mid-stance before and after each mid-swing detected above, and the154

period between the two mid-stance is classified as walking. During continuous gait, the mid-stance155

after one mid-swing is equal to the mid-stance before the subsequent mid-swing and the whole156

period is classified as walking. During interrupted gait, the two mid-stance do not overlap, and the157

period between is classified as non-walking (see Figure 6). Mid-stance is defined as the time of the158

largest local maximum in ωml during the stance phase (see Figure 5 and Figure 6). The occurrence159

of local maxima is a typical characteristic of gait. If there is no local maximum (e.g., during cycling160

periods), the algorithm removes the corresponding step. Moreover, the angular rate of the local161

maxima is usually negative which corresponds to a forward progression of the shank. However, the162

angular rate can reach positive values during walking on uneven surfaces or stair climbing. Still,163

the local maxima during the stance phases are considerably smaller than those during the swing164

phases. Therefore, the algorithm removes steps whenever the local maximum during the stance165

phase exceeds half of the maximum during the swing phase. Eventually, tstance needs to be smaller166

than 3
f̃walking

. Otherwise, the mid-stance after the preceding step is set to the end of the preceding167

swing phase, and the mid-stance before the subsequent step is set to the beginning of the subsequent168
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step. Consequently, the stance phase will be classified as a non-walking period.
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Figure 6: Exemplary illustration of the gyroscope signal of interrupted gait as well as the corresponding gait events
detection and the resulting walking classification. t1/2 represents half of the mean step duration of each walking
period to determine the corresponding start and end points

169

Removing unreasonable steps The algorithm determines the orientation of the ankle sensor
ϕankle (see chapter 2.2) between the mid-stance before and after each step. Then, steps with
unreasonable orientation and range of motion are classified as non-walking periods if one of
the following criteria is fulfilled:

min(ϕankle) > −45◦

max(ϕankle) > 0◦

max(ϕankle)−min(ϕankle) < 5◦

max(ϕankle)−min(ϕankle) > 90◦

4.2.5. Break detection170

This part of the algorithm detects breaks within each walking period and classifies them as171

non-walking. It is assumed that the step duration between two consecutive mid-swings remains172

relatively constant during continuous gait. Therefore, breaks are detected with long and irregular173

step durations. The specific criteria depend on the number of steps within each walking period and174

are defined as follows:175

≥4 steps First, the algorithm calculates the median step duration of four consecutive steps. If176

the step duration of one of these steps is greater than one and a half times the median step177

duration, the corresponding stance phase is classified as non-walking. This part is repeated178

for each set of four consecutive steps.179
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3 steps If one of the two step durations is more than twice as long as the other, the whole period180

is classified as non-walking.181

2 steps If the step duration is longer than 5 s, the whole period is classified as non-walking.182

1 step Walking periods with a single step are ignored and classified as non-walking.183

4.2.6. Start and end point184

At the beginning and end of each walking period, there is no typical mid-stance. Hence, each185

walking period begins half of the mean step duration before the mid-swing of the first step and186

ends at half of the mean step duration t1/2 after the mid-swing of the last step (see Figure 6).187

4.3. Use of walking aids188

The algorithm classifies each walking period as either free walking or assisted walking. If the
participant does not use a walking aid and there is no data available, all walking periods are
classified as free walking. Walking periods in which the ankle sensor is not able to communicate
with the sensor on the aid via Bluetooth Low Energy are classified as free walking, too. Here, it is
assumed that the walking aid is far away from the participant. To determine whether the walking
aid was used or not, the acceleration signal of the sensor placed on the walking aid is processed with
a high-pass filter and a cut-off frequency of 0.3 Hz to remove the gravity component in the signal.
Then, for each walking period, the algorithm verifies if the 95th percentile of the magnitude of the
filtered signal aaid is above a predefined threshold Taid = 0.05 ∗ 9.81 m/s2 to determine whether
the walking aid was moved around or not:

P95th

(√
a2
aid,x + a2

aid,y + a2
aid,z

) ≤ Taid =⇒ free walking

> Taid =⇒ assisted walking

4.4. Detection of stair climbing189

The algorithm detects stair climbing periods based on the altitude change per step. Previously190

detected walking periods (independent of the use of walking aids) are classified as level walking,191

going upstairs, or going downstairs.192

4.4.1. Altitude estimation193

The pressure signal p is transformed to the altitude above sea level h with the following formula1:

h = log
1013

p
∗ 7990

Then, a median filter with a window length of five samples is applied. The resulting signal is filtered194

with an 8th order decomposition, heuristic, automatic 1-D de-noising filter using a soft threshold195

and symlet8 wavelet.[9]196

1a simplification of the international barometric formula
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4.4.2. Expected altitude change per step197

to 42 cm since data of a single ankle sensor is used and participants can walk in a step-by-step198

or a step-over-step pattern. The algorithm adds a margin of 7 cm, which corresponds to the half199

of the smallest expected step height. Therefore, the lower border for discriminating between level200

walking and stair climbing was set to 7 cm/step, and the upper border was set to 49 cm/step. An201

upper border is needed as large altitude changes can occur when the environmental temperature202

changes rapidly (e.g., when walking out of a heated building).203

4.4.3. Classification of going upstairs and going downstairs204

Walking periods containing less than four steps are always classified as level walking. The
remaining walking periods are segmented into windows of four consecutive steps and an overlap of
three steps. For each window, the algorithm determines the altitude change and compares it to the
expected altitude change described above:

7 cm/step < ∆h
4 steps < 49 cm/step =⇒ going upstairs

−49 cm/step < ∆h
4 steps < −7 cm/step =⇒ going downstairs

4.5. Outcome measures205

Eventually, the algorithm derives the free and assisted walking duration and estimates the206

covered altitude change during stair climbing periods.207
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