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One of the significant challenges, when a new virus circulates in a host popu-

lation, is to detect the outbreak as it arises in a timely fashion and implement

the appropriate preventive policies to effectively halt the spread of the disease.

The conventional computational epidemic models provide a state-space repre-

sentation of the dynamic changes of various sub-clusters of a society based on

their exposure to the virus and are mostly developed for small-size epidemics.

In this work, we reshape and reformulate the conventional computational epi-

demic modeling approach based on the complex temporal behavior of disease

propagation in host populations, inspired by the COVID-19 pandemic. Our

new proposed framework allows the construction of transmission rate (p) as

a probabilistic function of contributing factors such as virus mutation, immu-

nity waning, and immunity resilience. Our results unravel the interplay be-

tween transmission rate, vaccination, virus mutation, immunity loss, and their

indirect impacts on the endemic states and waves of the spread. The proposed
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model provides a robust mathematical framework that allows policy-makers

to improve preparedness for curtailing an infectious disease and unfolds the

optimal time-frame for vaccination given the available resources and the prob-

ability of virus mutation for the current and unforeseen outbreaks.

Introduction

The novel coronavirus disease, also known as COVID-19 has had a major impact on the health-

care system over the last 2 years. Series of new cases and hospitalization spikes, put intense

pressure on the health care staff and resources, resulting in an estimated total loss of $323.1B

and over 1 million deaths in the US alone (1).

Some of Coronavirus’s peculiar epidemiological traits and unavoidable delays in imple-

menting the mitigation strategies, make the prevention efforts to halt the spread of the disease

more challenging. In-apparent transmission through human-to-human contact when an infec-

tious person shows no to mild symptoms and high viral loads of virus in the upper respiratory

system makes Covid-19 more contagious compared to other strains such as SARS-CoV-1 and

MERS-CoV (2). Particularly, epidemiological studies indicate that a significant number of car-

riers are asymptomatic and are unaware that they are carrying the virus (3) (4) (5).

Ongoing disease transmission and a high number of actively infected individuals result in

SARS-CoV-2 virus mutation over time and new variants yet more contagious are introduced (6).

These lineages contain one or more genetic mutations that differentiate them from the virus vari-

ant that is already circulating in the host population and may cause the vaccination to become

less effective. For instance, in November 2021 studies shows B.1.1.529 variant also known

as omicron, which later resulted in unprecedented waves in many countries, has the ability to

escape antibody immunity induced by the existing vaccines (7) (8) (9). In addition, imperfect

implementation of control strategies and failure to diagnose the symptoms of the disease or its
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Figure 1: A simplified summary of the proposed model (SEIQRD) and the corresponding
spread chain: Infectious individuals become in contact with healthy individuals (S) with rate ω.
A fraction of exposed ones acquire the disease after incubating the disease for σ unit time and
move to infectious state (I) with rate pλEI . Other exposed individuals that do not contract the
disease return to the susceptible population with rate λES . Once an exposed individual becomes
infectious, they would have 3 possibilities: 1. they are identified and placed into isolation, state
Q, 2. they recover and enter state R, or 3. they pass away (state D) and get removed from the
spreading cycle. Similarly, infected individuals who are identified, either recover or pass away.
Finally, recovered individuals are recruited to the susceptible state due to waning immunity after
α unit time with rate λRS .

Description Parameter
Average contact rate per unit time ω
Disease transmission rate p
Lucky rate λES

Loss of immunity rate λRS

Exposure rate λEI

Identification rate λIQ

Mortality rate of the unidentified infectious λID

Recovery rate of the unidentified infectious λIR

Mortality rate of the identified infectious λQD

Recovery rate of the identified infectious λQR

Incubation period σ
Time elapsed between recovery and loss of immunity α
Time elapsed between infection and identification τ
Time elapsed between identification and recovery k
Time elapsed between identification and death z
Time elapsed between infection and death without being identified µ
Time elapsed between infection and recovery without being identified γ

Table 1: Parameters of SEIQRD model
3
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new variants, specifically at the early stage results in multiple surges in new cases (10), as has

been observed in the last two years. This would call for more holistic modeling that matches

the complex behavior of prolonged pandemic crises in a connected society, going beyond small-

scale epidemic modeling.

The rapid advances in vaccine technology and the progress of medical sciences have dra-

matically enhanced our capabilities in combating viruses (11) (12). A recent study concluded

that since 1924, vaccination has eliminated a large part of the infectious diseases and vaccines

have successfully prevented more than 170 million cases of diphtheria, measles, and childhood

diseases in the United States (13). Yet, studies warn us about the emergence of new human

infectious diseases and outbreaks in the near future. Particularly, in the wake of climate change,

empirical evidence anticipate perturbation in the structure of ecosystems, food supplies, and the

distribution of biodiversity. Studies demonstrate that the major ecosystem shifts influence the

dynamics of infectious disease spreading and the omnipresence of outbreaks (14) (15) (16). In

fact, new pandemics may happen in the near future and COVID-19 might be one of the new

infectious diseases that we experience in the upcoming years.

The major challenge when a virus circulates in a host population is to detect the outbreaks

as they arise in a timely fashion and implement the appropriate preventive policies. A critical

question, however, is what type of management policies can be applied to effectively control

the spread of infectious disease and reduce the financial burden of emerging infectious diseases

on the healthcare system and subsequently reduce the mortality rate. For instance, despite the

worldwide efforts over the last two years to curtail Covid-19, it is still considered a public health

emergency. The ongoing transmission of the virus across the globe results in virus mutation and

the creation of more contagious variants. These new virus variants make it more challenging to

curtail the spread of the disease.

Contact tracing and isolation are two main strategies, proper implementation of which can
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slow down the chain of virus transmission when vaccination is not immediately accessible to

the mass population. However, implementation of those preventive strategies with no delays

is rarely achievable and it heavily depends on the socioeconomic status of the host population

and can be a major burden for societies with limited healthcare access (10) (17). During the

coronavirus pandemic, public and private health authorities utilize different mitigation strategies

such as contact tracing, isolation, and mass COVID-19 testing to curtail the outbreak.

In practice, implementation of control measures in a highly connected society with no de-

lays, detecting the most optimal strategies, large-scale optimal resource allocation, and enforc-

ing preventive protocols within an effective timeframe when patients outnumber the health care

staff and the first responders, have not been feasible in most regions worldwide. For instance,

nine months after the World Health Organization (WHO) announced COVID-19 as a pandemic,

only a few countries were utilizing contact tracing effectively (18). It is imperative to notice that

studies of other recent outbreaks such as Ebola epidemics in West Africa also indicate that the

spread of disease was effectively controlled once preventive protocols were improved and ade-

quate resources were allocated to reduce the time delay in identifying and tracing newly infected

individuals (19) (20).

In this regard, computational and probabilistic models that formulate the statistics of virus

spread propagating among various clusters of a networked society are playing an invaluable

role in providing insight into the stated problems and helping decision-makers, governments,

and stakeholders to implement appropriate strategies. A better understanding of the impact of

delays and efficacy of the conducted mitigation at different stages of disease propagation, in

addition to better prediction of the effects of potential future mutations and the changes in the

status of immunity resilience, are unmet needs for the control of a pandemic-level spread and

can be crucial to avoid the disabling socioeconomic pressure on many societies, caused by the

virus, for example, in future unforeseen outbreaks and pandemics.
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Motivated by the above-mentioned facts, in the literature, there has been a surge of efforts

in the development of various computational models. Such models provide a state-space repre-

sentation of the dynamic changes of various sub-clusters of a society based on their exposure to

the virus and are mostly developed for small-size epidemics. For example, the commonly used

method susceptible− infected− recovered, named SIR, models the connection and disease

transmission between susceptible, infected, and recovered groups in a host population. More

advanced models such as susceptible − exposed − infected − recovered (SEIR), include

an intermediate dynamical state for the exposed group to better model the interaction between

sub-population during the course of an epidemic. Specifically, individuals in the exposed state

(E) incubate the virus for a certain period of time before becomes infectious. They are con-

sidered non-symptomatic and non-infectious during this period. In some literature, additional

states are incorporated to the classical SEIR and SIR models to further enhance the modeling

of the complex nature of disease spreading (2) (21) (22) (23) (24).

Going beyond the above-mentioned classical models, researchers tried to incorporate the

mitigation strategies, immunity loss, and demographic effects into the mathematical infectious

disease modeling and assess the effects on the disease transmission rate. In this regard, Rad-

ulescu et al. have enhanced the SEIR model by assembling an age-compartmental design and

incorporating social mobility dynamics, to numerically study the disease progression in a small

college community scenario when social mobility restrictions are enforced (25). In another

effort, Bjørnstad et al. incorporate demographics and immunity loss into the classical SEIR

model to assess endemic states in the presence of continuous recruitment into susceptible pop-

ulations (26). However, the physics of transmission rate and average contact rate with respect

to the model dynamics are disregarded in the proposed models. In a homogeneous population,

we define the transmission rate (β), as β = pω (27) (15). p is the probability of disease trans-

mission and an individual makes contact with the infected population (I) with the rate of ω.
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In reality, social mobility restrictions, mortality, and demographics features directly impact the

average contact rate (ω), p, and subsequently β and thus the number of new cases. The models

designed in the literature often oversimplify the interdependent effects among ω, p, and model

states (see in (26) and (25) ). Thus, such models often fail to take into account adequate factors

that contribute to the magnitude of the epidemics and as a result, they cannot provide the needed

accuracy in the estimation of disease spread, especially at the large scale such as a pandemic.

In addition to the above, there are limited works to realistically incorporate the delays cor-

responding to the implementation of mitigation strategies and lack of identifiability, as part of

the state-space infectious disease modeling (28) (29) (10) (30). In an effort to assess the conse-

quences of delays and incomplete identification of infectious individuals, Young et al. proposed

a mathematical framework that considers the average transition time from one state to another

as a form of a constant delay (10). However, the proposed model fails to capture the proba-

bilistic nature of transition when an exposed individual incubates the virus for σ unit-time. For

example, the work presented in (10) assumes that all of the susceptible individuals that contact

with infectious individuals at time t− σ acquire the disease at time t, and therefore, the proba-

bilistic effect of intermediate dynamical state E (which directly impacts the spread of disease)

is not observed in the model.

in this paper, to bridge the gap between the observed reality of large-scale and long-term

disease progression in a host population and currently utilized infectious disease frameworks,

we redefine the computational representation of transmission rate when the exposed individuals

incubate the disease for a period of time before becoming infectious. Particularly, we formulate

a new dynamical interaction behavior among S, E, and I states, inspired by the observations

made during the course of COVID-19 pandemic. We introduced a novel state-space model

called Susceptible–exposed–infected–quarantine–recovered − dead (SEIQRD), which

takes into account both temporal event-based, and probabilistic features of transitions across
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various states. Specifically, we model the physics of transition across the various state using

the homogeneous Poisson point process concept, using which arrival and departure into/from

a state are considered random events that occur during a given time interval. In this work, we

shed light on the critical questions pertaining evolution of transmission rate when control mea-

sures, such as mass vaccination are implemented. Our simulations unravel the interplay between

transmission rate, vaccination, virus mutation, and their indirect impacts on the endemic states

and waves of the spread. Our unique mathematical framework allows us to objectively evalu-

ate and identify the optimal management policies required to effectively curtail the spread of

infectious diseases. Furthermore, our novel model provides a robust mathematical framework

that allows policy-makers to improve preparedness for curtailing an infectious disease and un-

folds the optimal time-frame for vaccination given the available resources and the probability of

virus mutation for the current and unforeseen outbreaks. Also, it enables the policymaker and

health organizations to predict and extrapolate the outcome of the different mitigation strategies.

Using the proposed method, health authorities will have a powerful and flexible framework to

objectively conceptualize and predict the endemic state in the context of mitigation intervention

and deployment of vaccination.

Background on Modeling and Outstanding Research Questions

Over the years, various methods have been developed to address fundamental questions per-

taining to the evolution of the infectious disease in a host population and the associated risks

related to reactive and proactive management policies. Computational infectious disease mod-

els allow detecting the surge of new cases and the emergence of outbreaks at an early stage. To

this end, several mathematical approaches have been introduced in the literature which can be

categorized into two general classes (11): statistical approaches and state-space methods.
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Conventional Statistical Models At A Glance

Statistical approaches, such as regression models and Bayesian methods are utilized to predict

the emergence of outbreaks by elucidating the hidden patterns and extrapolating the observed

historical data. In this regard, regression-based models have been commonly used for example

to predict the emergence of influenza outbreaks at early stages. One of the known models de-

veloped to estimate the average influenza mortality using the regression method is proposed by

Serfling (31). The model proposed by Serfling, given in (1), incorporates the seasonal behav-

ior, historical data on influenza, and reported cases in order to predict the emergence of new

outbreaks (32).

E[y(t)] = µ+ α.t+ Σ(βisin(ωit) + γicos(ωit)) (1)

. In (1), µ represents the expected value of the reported cases based on the historical data and

Σ(βisin(ωit) + γicos(ωit)) accounts for cyclical trends of the influenza virus. The simplified

version of Serfling’s approach is currently utilized by the Centers of Disease Control (CDC) in

the US, Australia, France, and Italy for the identification of influenza outbreaks (11). Over the

years, there have been major efforts to enhance Serfling’s model by incorporating the noise into

the predictions and accounting for uncertainties (33). For example, researchers conduct several

approaches such as generalized additive models (GAMs) (34) and wavelet transform (35) to

address discontinuity in the historical data for computing the mean and standard deviations in

1. In another line of research related to statistical methods, researchers implement the hidden

Markov model (HMM) (36) and Markov Chain Monte Carlo (MCMC) (37) to incorporate the

hidden patterns (states) of the disease spread and forecast the outbreak. In this method, the

observed cases, y(t), is associated with a set of hidden variables, x(t), which it determines the

conditional probability of y(t)|x(t) ∼ fi(y(t); θi). It should be noted that some of the proposed

statistical models for influenza are utilized to predict the emergence of other infectious disease

outbreaks (38) (39) (40) (41).
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State-Space Model
State-space models are used to predict the evolution of outbreaks over time and assess the ef-

fectiveness of mitigation strategies. The conventional state-space model that allows for the

incorporation of the relevant contributing factors of infectious disease spread was proposed by

Kermack and McKendrick (42). The state-space SIR (susceptible − infected − recovered)

model proposed by Kermack and McKendrick has been widely used to predict new outbreaks

and model infectious disease spread (43). In this context, the host population is divided into

different groups based on the state of their health and their interactional status with the in-

fected sub-population. (2) represents, SIR state-space model proposed by Kermack and McK-

endrick (42).

dS

dt
= −pωS(t)I(t),

dI

dt
= pωS(t)I(t)− γI(t),

dR

dt
= γI(t)

(2)

In the SIR model, given above, at time t, infected sub-population (I(t)) make contacts with sus-

ceptible sub-population (S(t)) with rate ω and a susceptible individual contract the disease with

probability p. Thus, an infected person transmits the disease to pωS susceptible individuals at a

unit of time. −pωSI term indicates the number of susceptible individuals who enter the infec-

tious group I . Then, infected individuals move to the recovered/dead sub-population (R) within

γ−1 unit time (44). In this framework, the R compartment is considered the sub-population that

cannot get reinfected. In addition, the size of the host population (N ) is assumed to remain

constant throughout the outbreak and the host population is considered to be homogeneous, i.e.

individuals in the host populations have an equal probability to make contact with others and

every susceptible individual has the same probability of becoming infected.

Over the last few decades, the SIR model is enhanced by adding another state named ex-

posed, E. The model is also known as susceptible − exposed − infected − recovered or in
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short SEIR. This model is widely used in the literature when exposed individuals incubate the

virus for σ−1 unit time. (3) represents the state-space model of SEIR and formulates transitions

across various states mathematically.

dS

dt
= −pωS(t)I(t),

dE

dt
= pωS(t)I(t)− σE(t),

dI

dt
= σE(t)− γI(t),

dR

dt
= γI(t)

(3)

In the SEIR model, presented above, it is assumed that susceptible individuals leave the S

group when they become in contact with infectious individuals (I), and contract the disease with

a transmission probability of p. The exposed individuals (E) are considered non-symptomatic

and non-infectious during the incubation period. Exposed individuals incubate the disease for

σ−1 unit time before moving to the infectious state at rate σ. Then, infected individuals enter

the recovered/dead state (R) after γ−1 unit time.

The classic SEIR model is suitable to simulate and predict small-size outbreaks. However,

there are 3 major issues with the conventional SEIR models concerning outlining a realistic

realization of large-scale epidemics or pandemics.

• Problem (1) In the classic SEIR model, it is assumed that individuals who contact an

infectious person contract the disease with the probability of p and leave the S state with the

rate of pω. However, this assumption does not take into account that a portion of the exposed

population would not contract the disease and they return to the S population. In reality, the

interactional status between the E and the S states is directly controlled by the health author-

ities and policymakers for curtailing the disease spread through tracing the detected exposed

individuals (also known as ”contact tracing”). Recruitment of exposed individuals who do not

contract the disease to susceptible sub-population after the incubation period is an important
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dynamic pattern that plays an integral part in the spread of disease and has been disregarded in

the literature.

• Problem (2) Over the last three years, it has been shown that implementation of preven-

tive protocols and vaccination are associated with delays. The delays pertaining to mitigation

strategies are another important dynamic that directly impacts the behavior of the system at

endemic state. There has been limited work to incorporate the delays corresponding to the

implementation of mitigation strategies, as part of the state-space infectious disease modeling,

e.g., (28) (29) (10) (45) (46). However, the proposed models oversimplify the probabilistic

nature of transition and the temporal inter-dependency between p, ω, S, and I when an exposed

individual incubates the virus for σ unit-time.

• Problem (3) Virus mutation and vaccination directly impact the probability of transmis-

sion, p, and subsequently the number of new cases in the host populations. However, mutation

and development of immunity resilience against the virus are overlooked as contributing factors

in the literature when modeling the disease spread.

Results and Discussion

In this paper, we propose a new computational model, going beyond classic SEIR modeling,

using a homogeneous Poisson point process for the first time that addresses the previously men-

tioned issues. The proposed model in this paper takes into account,(a) the interactional status

between the E and the S states when exposed individuals do not contract the disease, (b) the

inter-dependency between p, ω, S and I states and (c) the effects of mutation and development

of immunity resilience in the society. Such a model can be imperative when controlling a long

pandemic in a mega population that echoes waves of mutation and spread.
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Figure 2: (a) Simulated realization for vaccination function (v(t)) which represents the host
population’s immunity against virus. (b) Simulated realization of mutation function (m(t)). (7)
is utilized with parameters η1 = 9e−1 and η2 = 1e−4 to generate v(t) function. (8) is utilized
to generate a realization of virus mutation (m(t)) due to ongoing disease transmission results.

Reformulating SEIR model

To address critical issues with the conventional SEIR model such as oversimplification of the

interplay between exposed, susceptible and infectious states, and the inter-dependency between

p, ω, S, and I , we propose a novel framework for the SEIR model which utilizes the Poisson

point process to define transition across various states. We consider the transitions between

E → I and I → R as an arrival Poisson point process, meaning an individual in the host

population arrives at a new state (given the health status) within a predefined period. We can

utilize the Poisson point process concept to model this behavior because the average transition

period is known but the exact arrival time to a new state is random. Therefore, we can formulate

the transition rate as the average number of arrivals (events) given the transition period using

(13).

We assume a susceptible individual who becomes in contact with an infectious person leaves

the susceptible group (S) with rate ω. The newly exposed individuals (E), ωS(t)I(t), at time t,

are considered non-symptomatic and non-infectious. Notably, only a fraction of exposed indi-

viduals become infectious. The exposed individuals who contract the disease with probability

p move to the infectious state I with rate λEI after incubating the disease for σ unit time. λEI
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represents the average number of arrivals to state I given the transition period of σ. The exposed

individuals who do not contract the disease after σ unit time, return to the susceptible popula-

tion with rate λES . Specifically, λES represents the average number of individuals who return

to state S given the transition period of σ. Then, infected individuals enter the recovered/dead

state (R) with rate λIR after γ unit time. Similar to the previously introduced rates, λIR repre-

sents the average number of individuals moving to R state given γ unit time. (4) represents the

computational framework for the proposed model.

dS

dt
= −ωS(t)I(t) + λESE(t− σ),

dE

dt
= ωS(t)I(t)− pλEIσE(t− σ)− λESE(t− σ),

dI

dt
= pλEIσE(t− σ)− λIRI(t− γ),

dR

dt
= λIRI(t− γ)

(4)

This framework formulates the dynamic changes of various sub-clusters of the host population

based on their exposure to the virus when the exposed group is an intermediate step between

the susceptible and the infectious states. The proposed model reconstructs the S → E → I

transition, by considering the fact that changes in the susceptible population occur only when

individuals get exposed to the virus and not when they contract the disease. Furthermore, the

proposed model allows for construction p as a function of contributing factors. We propose a

unique model for p by taking into account the relevant factors such as virus mutation, vaccina-

tion, and immunity loss in section.. Such a model can be utilized to simulate the future waves

of pandemics depending on an assumed temporal expectation of the mutation. Also, the new

formulation allows for the evaluation of the disease spread in various societies and sub-societies

with different immunity responses and vaccination profiles.
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Figure 3: Evolution of transmission rate, p(t), over time with respect to performance of vacci-
nation implementation (ζ3) when average contact rate, ω, is 0.7 (Figure.3a) and when ω = 0.5
(Figure.3b). ζ3 plays an input control role which defines how effective mass vaccination efforts
are implemented in the host population.

Probabilistic temporal event-based disease progression model

To address the critical questions mentioned in section and assess the impact of vaccination ob-

jectively, we proposed a novel mathematical framework that (a) takes into account the interde-

pendent relations between transmission rate (p), contact rate (ω) and immunity loss (λRSR(t−

α)), and (b) formulates the dynamical temporal event-base interactional status across various

states. The proposed model, Susceptible-exposed-infected–quarantine–recovered-dead (SEIRQD)

divides the host population into six groups, depending on the state of an individual’s health and
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whether or not they are exposed to the virus through an infected person. Figure.1 depicts the

summary of state transitions in the SEIQRD model.

Infectious individuals (I) become in contact with healthy individuals (S) at rate ω. A frac-

tion of exposed ones (E) acquires the disease after incubating the disease for σ unit of time and

move to an infectious state (I) with rate pλEI . In this paradigm, the term ωS(t)I(t) represents

the number of individuals who become in contact with infected individuals at time t. A fraction

of those who are exposed to the virus at time t − σ (i.e. E(t − σ)) contract the disease after

incubating the virus for a period of σ unit time. During this period they are considered non-

symptomatic and non-infectious. Once an exposed individual becomes infectious, they would

have 3 possibilities: (1) they are identified and placed into isolation, state Q, (2) they recover

and enter state R, or (3) they pass away (state D) and get removed from the spreading cycle.

The exposed individuals who do not contract the disease after σ unit time, return to the suscep-

tible population with rate λES . Infected individuals who are identified, either recover or pass

away. Finally, recovered individuals are recruited to the susceptible state after α unit time with

rate λRS .

dS

dt
= −ωS(t)I(t) + λRSR(t− α) + λESE(t− σ),

dE

dt
= ωS(t)I(t)− pλEIE(t− σ)− λESE(t− σ),

dI

dt
= pλEIE(t− σ)− λIRI(t− γ)

− λIQI(t− τ)− λIDI(t− µ),

dQ

dt
= λIQI(t− τ)− λQRQ(t− k)− λQDQ(t− z)

dR

dt
= λIRI(t− γ) + λQRQ(t− k)− λRSR(t− α)

dD

dt
= λQDQ(t− z) + λIDI(t− µ)

(5)

(5) represents the proposed SEIQRD mathematical model and Table.1 delineates the model’s
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parameters. Individuals move to a new group (e.g. arrival to a new group) after staying in

the current group for y unit time. We formulate this behavior using the homogeneous Poisson

process because the average transition time is known but the exact arrival time to the new state

is random. Per (12) and (13), the average inter-arrival duration between i−1th and ith moments

in a Poisson point process with rate λ forms an exponential distribution, with the expected value

of λ−1. Therefore, we define the E → I , E → S, I → D, I → Q, I → R, Q → R, Q → D

transitions as follows:

• E → I: During σ unit time, on average λ−1
EI exposed individuals who contracted the virus

with probability p undergo a transition to state E. This implies that exposed individuals

who become infectious enter state I with σ unit time delay with the average rate of λEI

which is reflected as pλEIE(t− σ) in (5).

• E → S: During σ unit time, on average λ−1
ES exposed individuals that do not contract the

virus undergo a transition to state S. This implies that exposed individuals who are not

infectious return to state S with σ unit time delay with the average rate of λES which is

reflected as λESE(t− σ) in (5).

• I → D: The infected individuals at time t − µ pass away with the average rate of λID

after remaining contagious for µ unit time. Particularly, the arrival at state D between

the (i − 1)th and (i)th moments is an exponential random variable with rate λ−1
ID. This

transition is indicated in (5) as λIDI(t− µ).

• I → Q: The average number of infectious who are identified during τ unit time is λ−1
IQ.

Therefore, the infectious individuals at time t− τ undergo a transition to state Q with the

average rate of λIQ at time t. This behavior is modeled as λIQI(t− τ) in (5).

• I → R: During γ unit time, the average number of unidentified infected individuals who
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are recovered is λ−1
IR. As a result, infectious individuals at time t−γ move to state R with

the average rate of λIR at time t. This behavior is modeled as λIRI(t− γ) in (5).

• Q → R: Term λQRQ(t− k) in (5) indicates the number of identified infected individuals

at time t− k who are recovered with the average rate of λQR at time t.

• Q → D: Term λQDQ(t−z) defines the changes in quarantine population at time t. These

individuals enter group Q at time t− z and pass away at the average rate of λQD.

• R → S: Individuals who are recovered at time t − α maintain the immunity against the

disease for α unit time and immunity wanes with the average rate of λRS .

The proposed model in this section maps out the interplay between various states by taking

into account the complex temporal interaction and inherent dynamics. However, to assess the

impact of vaccination on the transmission rate and ultimately the disease propagation, we need

to define p as a function of relevant factors i.e. virus mutation, vaccination, and immunity loss.

In the next section, we propose a framework that can be integrated with the proposed model to

represent the response of the system to mutation, vaccination, and immunity loss. Such a model

can be utilized to simulate the future waves of pandemics depending on an assumed temporal

expectation of the mutation. Also, this allows for the evaluation of the disease spread in various

societies and sub-societies with different immunity responses and vaccination profiles.

Disease transmission rate

We formulate p(t) by incorporating virus mutation, waning immunity, and population’s immu-

nity resilience against virus as given below:

ṗ = −ζ1p(t) + ζ2m(t)− ζ3v(t) (6)
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Figure 4: Simulation Results of the proposed temporal event-based probabilistic SEIQRD
model (5), designed in this paper for various states when ζ3 ∈ [0.4, 0.5, 0.6, 0.7, 0.8] and ω ∈
[0.5, 0.7]. Figure.4a, 4c, 4b, 4d, 4e, 4f represents the evolution for infectious (I), susceptible (S),
exposed (E), recovered (R), quarantined (Q) and dead states (D) in 2000 unit time span. Our
simulation shows that the disease spreading is halted entirely when transmission rate, p → 0.
Figure.3b, 3a and figure.4a show that disease continues to circulate in the host population while
p(t) > 0.
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(6) represents the mathematical expression of p(t). In this model, v(t) reflects the host pop-

ulation’s immunity resilience against virus boosted by vaccination efforts, and m(t) indicates

the communication of virus variants from one person to another. ζ1 represents the overall rate

at which natural immunity is produced against the virus in the host population. ζ2 is the rate

at which the virus spreads given the circulating variant at time t, and ζ3 represents how well

the vaccination efforts are implemented. We use (7) to generate a sigmoid shape curve for

v(t). Particularly, this function generates an S-shape growth curve in which immunity resilience

boosted by vaccination increases slowly initially, and when mass vaccination becomes available

approaches an exponential growth rate.

v(t) = η1(1− e−η2t2) (7)

Virus variant’s contagion rate is modeled using (8). We utilize multi-step functions as indicated

in (8) to take into account virus mutation occurrence and model the corresponding contagion

rate.

m(t) =
n∑

i=1

∆iΦi(t)

Φi(t) = ci, t ∈ [ti−1, ti],

(8)

Infected individuals who are recovered develop natural immunity against the virus which results

in a reduction of p(t) over time. We formulate this behavior by adding −ζ1p(t) term in (6).

Interplay Between Vaccination, Transmission Rate, and Infectious Group

Here, we conduct a systematic simulation study to evaluate the behavior of the proposed model

constructed in (5) to generate a realistic realization of infectious disease spread and evaluate

the impact of mass vaccination in combating the disease propagation. In our simulation we

assume, population size N is 8e6, number of initially infected individuals equals to I0 = 1, and

the initial transmission rate at time t = 0 is p(0) = 3.2e−1. We considered average contact
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Figure 5: Trajectory of dynamical states I and S over time when ω = 7e−1. Figure.5a: In
this view, when p(t) > 0, the trajectories move outwards and diverge away which indicates an
open epidemic state, meaning at any given time t, the communicable disease circulates in a sub-
cluster of host population. In addition, a series of new cases and spikes are unavoidable due to
waning immunity and recruitment to the susceptible population. Figure.5b: Size of infectious
group (I) has an inverse relation with the size of susceptible group S. Figure.5c: Illustrates the
relation between ζ3 and the size of infectious group (I). It shows that higher value of ζ3 results
in fewer infectious cases. Therefore, the size of infectious group (I) has an inverse relation with
ζ3.
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rate, ω ∈ [0.5, 0.7]. To account for the communicable disease, we considered a relatively high

exposure rate, λEI = 2.8e−2, and a short incubation period, σ = 5 unit time. Particularly,

λEI = 2.8e−2 indicates that on average 35 individuals who contracted the disease with rate p

move to infectious state within σ unit time. Exposed individuals who did not contract the disease

after σ = 5 unit time were recruited to the susceptible population with rate λES = 3.4e−2.

Then, infected individuals either got recovered with an average rate λIR = 1.4e−2 within

γ = 14 unit time or passed away with an average rate λID = 8e−4 within µ = 15 unit

time. Other infected individuals were identified with an average rate λIQ = 1.12e−2 within

τ = 5 unit time. The identified infectious individuals were placed into isolation and therefore

could not contact a susceptible individual. The quarantined infectious individuals stayed in the

isolation for k = 21 unit time until they fully recovered and entered R state with an average

rate λQR = 1.8e−3. The rest of the quarantined population passed away after z = 25 unit

time at average rate λQD = 6e−4. We assumed natural immunity waned after α = 200

unit time and recovered individuals were recruited to the susceptible population at average rate

λRS = 7.2e−3.

We utilized (6) to enforce the time-variant transmission rate. We considered three virus

mutations in the first 500 unit time. Specifically, new virus variants were introduced at time

t = [145, 260, 360]. Figure.2b shows the virus mutations and the corresponding contagion rate.

We formulated the contagion rate using (8) as follows:

m(t) =


0.629, t < 145,

0.709, 145 ≤ t < 260,

0.739, 260 ≤ t < 360,

0.787, t ≥ 360,

(9)

To objectively assess the impact of vaccination on p(t) and subsequently the control of disease

spread, we considered ζ3 as the control measure. Particularly, per (6), three factors directly

impact the transmission rate (p(t)), ζ1, ζ2, and ζ3. ζ3 is the external factor that can be utilized
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by policy makers to control the transmission rate p(t) and subsequently the progression of the

disease. Figure.2a illustrates the percentage of the host population that is vaccinated over the

course of 2000 unit time span. We tuned η1 = 9e−1 and η2 = 1e−4 to generate a scenario

where available resources allow the policy makers to vaccinate 80% of population over 2000

unit time span. ζ1 and ζ2 are determined by the nature of virus and we assumed ζ1 = 6.8e−1

and ζ2 = 9.2e−1. We performed 9 different scenarios to assess the effectiveness of vaccination.

Figure.3a and 3b illustrate the evolution of p when ζ3 ∈ {0.4 + x ≤ 0.8, x = .05} and

ω ∈ [0.5, 0.7]. During the first 500 unit time, p reaches its maximum value 1 due to multiple

virus mutations (Figure.2b) and insufficient immunity resilience against virus (term ζ3v(t) and

ζ1p(t) in (6)). However, p reduces when host population’s immunity resilience increases and

eventually converges. As shown in figure.4a, the biggest jump in the number of new cases

occurs when p(t) reaches its maximum value 1 for both ω = 0.5 and ω = 0.7, which indicates

the direct relationship between the number of cases and p. Figure.5c and 6c indicate the relation

between ζ3 and size of infectious group (I). It indicates that higher value of ζ3 results in fewer

infectious cases. Therefore, size of infectious group (I) has inverse relation with ζ3 and direct

relation with p. Our simulation indicates that the disease spread is halted entirely when p(t)

converges to 0(or {ζ3 = 8e−1, ω = 0.7} and {ζ3 ∈ [0.75, 0.8], ω = 0.5}). For cases that

p(t) >> 0 (figure.3a and 3b), disease continues to circulate in the host population and the

magnitude of p(t) and ω directly impact the size of infectious group (figure.4a).

Figure.4 and 3 illustrate the evolution’s of model’s states and the interplay between 6 differ-

ent states and p. We observe that number of recovered individuals (figure.4d) non-monotonically

increases and the fluctuations in the recovered population become more apparent for smaller

value of ζ3 (which leads to larger value of p) due to insufficient immunity resilience against

virus in the host population. Furthermore, insufficient immunity resilience against the virus
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Figure 6: Trajectory of dynamical states I and S over time when ω = 0.5, using the proposed
model of this paper. Reducing the contact rate, ω, in addition to increasing the immunity re-
silience, v(t), results in smaller infectious group size. Figure.6a: In this view, when p(t) > 0,
the trajectories move outwards and diverge away which indicates an open epidemic state, mean-
ing at any given time t,the communicable disease circulates in a sub-cluster of host population.
In addition, a series of new cases and spikes are unavoidable due to waning immunity and re-
cruitment to the susceptible population. Figure.6b: Size of infectious group (I) has inverse
relation with size of susceptible group S. Figure.6c illustrates the relation between ζ3 and size
of infectious group (I). It shows that higher value of ζ3 result in fewer infectious cases. There-
fore, size of infectious group (I) has inverse relation with ζ3.
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has a similar effect on state E as indicated in figure.4b. Particularly, insufficient immunity

resilience and subsequently immunity loss both contribute to rate at which susceptible recruit-

ment occur. Specifically, sufficient immunity resilience against virus leads to two scenarios:

1) outbreak fades away due to small number of infected individuals ({ζ3 = 8e−1, ω = 0.7}

and {ζ3 ∈ [0.75, 0.8], ω = 0.5}) and 2) exposed individuals recruited to susceptible state at

lower rate due to sufficient immunity resilience against virus ({ζ3 ∈ [0.7, 0.75], ω = 0.7} and

{ζ3 ∈ [0.65, 0.7], ω = 0.5}).

To better understand the epidemic waves, we illustrated the trajectory of I as the function

of time and S in figure.5a and 6a. In this view, when p(t) >> 0, the trajectories move outwards

and diverge away which indicates an open epidemic state, meaning at any given time t, the

communicable disease circulates in a sub-cluster of host population. Furthermore, we observe

that average contact rate, ω, impacts the rate at which system converges to endemic states.

For example, when ω = 0.7, disease is halted entirely only when ζ3 = 0.8]. While for ω =

0.5 disease is eradicated when {ζ3 ∈ [0.75, 0.8]} (figure.6 and 5). In addition, series of new

cases and spikes are unavoidable due to waning immunity and recruitment to the susceptible

population.

Figure.5c and 6c illustrate that reducing the contact rate (ω = 0.5) in addition to increasing

the immunity resilience, v(t), results in smaller value of p(t) and eventually smaller infectious

group size (Iω=.5 = 0.24 vs Iω=.7 = 0.28).

Our model framework allows robust prediction regarding disease spread in the presence of

vaccination, waning immunity, and virus mutation. We find that halting the disease spread is

achievable when the transmission rate converges to zero. Furthermore, our simulation shows

that the rate at which p converges to zero is a product of host population’s average contact rate,

immunity against virus, and virus mutation. Particularly, the rate at which immunity resilience is

achieved in the host population compared to virus mutation occurrences defines the prevalence
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of spike in new cases. Our model significantly elucidates the interplay between immunity loss,

virus mutation, immunity resilience, and prevalence of spike in new cases when exposed group

is an intermediate step between the susceptible and the infectious groups. Furthermore, our

model maps out the endemic state given contributing factors and predicts the size of epidemic

waves.

Materials

In this paper, we propose a new computational model using a homogeneous Poisson point pro-

cess for the first time which addresses the critical issues pertaining to conventional state-space

infectious disease modeling. The proposed model in this paper reconstructs the S → E → I

transition, by considering the fact that changes in the susceptible population occur only when

individuals get exposed to the virus and not when they contract the disease. Furthermore, our

proposed framework takes into account the probabilistic nature of transition and the temporal

inter-dependency between p, ω, S, and I when an exposed individual undergoes an incuba-

tion period. In addition, our proposed model has the flexibility to take into account mutation,

development of immunity resilience, and immunity loss as part of the state-space model.

This unique framework allows for the evaluation of the disease spread in various societies

and sub-societies with different immunity responses and vaccination profiles. Our proposed

model provides a robust framework that can be imperative when controlling a long pandemic

in a mega population that echoes waves of mutation and spread. Furthermore, Such a model

can be utilized to simulate the future waves of pandemics depending on an assumed temporal

expectation of the mutation.

Our model provides a unique mathematical framework that allows policy-makers to improve

preparedness and unfolds the optimal time-frame for vaccination given the available resources

for the current and unforeseen outbreaks. Using our framework, health authorities will have a
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powerful and flexible framework to objectively conceptualize and predict the endemic state in

the context of mitigation interventions and deployment of vaccination.

Homogeneous Poisson Point Processes

A homogeneous Poisson point process is a stochastic process that is utilized in queuing theory

to model random events such as arrivals or departures in a system (47). The Poisson point

process is defined as a Poisson random variable where the Poisson parameter depends on the

duration of the interval in which departure or arrival occurs. In Poisson point process, non-

overlapping intervals are considered as independent events (48) (49). Considering these two

key observations, a Poisson point process is defined as given below.

Definition 0.1. Assume X(t) = Z(t1, t2) represents a Poisson point process. The number of

arrivals, k, during (t1, t2) interval with length of t = t2–t1 is a Poisson random variable with

parameter λt. Given that,

P{Z(t1, t2) = k} = eλt
(λt)k

k!
. (10)

where P{Z(t1, t2) = k} represents probability of having k arrival within t unit time. Consider-

ing (10), it can be mentioned that if the intervals (t1, t2) and (t3, t4) are non-overlapping, then

the random variables Z(t1, t2) and Z(t3, t4) are independent.•

The properties of a Poisson process imply that in any interval δ(t), one event can occur with

the probability that is proportional to δ(t). Furthermore, the probability that two or more events

occur in the same interval is proportional to O(δ(t)) (50). The inter-arrival duration of a Poisson

point process (inter-arrival duration between the (i − 1)th and (i)th moments) is defined as an

exponential process. The aforementioned statement is proven below.

Proof. Assume t0 is any fixed point and t0+τ represents the first arrival time after t0. Therefore,
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the probability of having at least one arrival within τ unit time, Fτ (t), is:

Fτ (t) = P{τ < t}

= P{Z(t0, t0 + t) > 0}

= 1− P{Z(t0, t0 + t) = 0} = 1− e−λt

(11)

We can observe that 1 − e−λt is in fact, the cumulative distribution function of exponential

distribution. Hence, we can derive the probability density function (PDF ) as follows:

fτ =
dFτ (t)

dt

= λe−λt.

(12)

Thus, considering (12), we can derive the average number of arrivals in a Poisson point

process given a known interval time τ as follows (49) (51):

E(fτ ) =
1

λ
. (13)

We use the Poisson point process concept presented in this section to reformulate the conven-

tional definition of the SEIR model. In the next section, we propose a novel SEIR framework

by integrating the arrival Poisson point process concept into the SEIR state-space model. Thus

introducing a coherent framework that takes into account the interdependency between ω, p, and

I state that are neglected in the conventional SEIR model.
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25. A. Rǎdulescu, C. Williams, K. Cavanagh, Management strategies in a seir-type model of

covid 19 community spread, Scientific reports 10, 1–16 (2020).

26. O. N. Bjørnstad, K. Shea, M. Krzywinski, N. Altman, The seirs model for infectious disease

dynamics., Nature Methods 17, 557–559 (2020).

27. N. Hens, et al., Seventy-five years of estimating the force of infection from current status

data, Epidemiology & Infection 138, 802–812 (2010).

28. C. C. McCluskey, Global stability for an seir epidemiological model with varying infectiv-

ity and infinite delay, Mathematical Biosciences & Engineering 6, 603 (2009).

31

All rights reserved. No reuse allowed without permission. 
(which was not certified by peer review) is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity. 

The copyright holder for this preprintthis version posted August 2, 2022. ; https://doi.org/10.1101/2022.08.01.22278281doi: medRxiv preprint 

https://doi.org/10.1101/2022.08.01.22278281


29. G. Huang, Y. Takeuchi, W. Ma, D. Wei, Global stability for delay sir and seir epidemic

models with nonlinear incidence rate, Bulletin of mathematical biology 72, 1192–1207

(2010).

30. L. Gallo, M. Frasca, V. Latora, G. Russo, Lack of practical identifiability may hamper

reliable predictions in covid-19 epidemic models, Science advances 8, eabg5234 (2012).

31. S. Unkel, C. P. Farrington, P. H. Garthwaite, C. Robertson, N. Andrews, Statistical methods

for the prospective detection of infectious disease outbreaks: a review, Journal of the Royal

Statistical Society: Series A (Statistics in Society) 175, 49–82 (2012).

32. R. E. Serfling, Methods for current statistical analysis of excess pneumonia-influenza

deaths, Public health reports 78, 494 (1963).

33. C. Farrington, N. J. Andrews, A. Beale, M. Catchpole, A statistical algorithm for the early

detection of outbreaks of infectious disease, Journal of the Royal Statistical Society: Series

A (Statistics in Society) 159, 547–563 (1996).

34. S. C. Wieland, J. S. Brownstein, B. Berger, K. D. Mandl, Automated real time constant-

specificity surveillance for disease outbreaks, BMC medical informatics and decision mak-

ing 7, 1–10 (2007).

35. J. Zhang, F.-C. Tsui, M. M. Wagner, W. R. Hogan, AMIA Annual Symposium Proceedings

(American Medical Informatics Association, 2003), vol. 2003, p. 748.

36. Y. Le Strat, F. Carrat, Monitoring epidemiologic surveillance data using hidden markov

models, Statistics in medicine 18, 3463–3478 (1999).

37. D. Madigan, Bayesian data mining for health surveillance, Spatial and syndromic surveil-

lance for public health pp. 203–221 (2005).

32

All rights reserved. No reuse allowed without permission. 
(which was not certified by peer review) is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity. 

The copyright holder for this preprintthis version posted August 2, 2022. ; https://doi.org/10.1101/2022.08.01.22278281doi: medRxiv preprint 

https://doi.org/10.1101/2022.08.01.22278281


38. S. Dahal, J. M. Banda, A. I. Bento, K. Mizumoto, G. Chowell, Characterizing all-cause

excess mortality patterns during covid-19 pandemic in mexico, BMC Infectious Diseases

21, 1–10 (2021).

39. P. B. Miller, E. B. O’Dea, P. Rohani, J. M. Drake, Forecasting infectious disease emergence

subject to seasonal forcing, Theoretical Biology and Medical Modelling 14, 1–14 (2017).

40. Z. Li, et al., Impact of a two-dose varicella immunization program on the incidence of

varicella: a multi-year observational study in shanghai, china, Expert Review of Vaccines

20, 1177–1183 (2021).

41. R. Paul, A. A. Arif, O. Adeyemi, S. Ghosh, D. Han, Progression of covid-19 from urban to

rural areas in the united states: a spatiotemporal analysis of prevalence rates, The Journal

of Rural Health 36, 591–601 (2020).

42. W. O. Kermack, A. G. McKendrick, A contribution to the mathematical theory of epi-

demics, Proceedings of the royal society of london. Series A, Containing papers of a math-

ematical and physical character 115, 700–721 (1927).

43. J. Satsuma, R. Willox, A. Ramani, B. Grammaticos, A. Carstea, Extending the sir epidemic

model, Physica A: Statistical Mechanics and its Applications 336, 369–375 (2004).

44. M. J. Keeling, P. Rohani, Modeling infectious diseases in humans and animals (Princeton

university press, 2011).

45. L. Dell’Anna, Solvable delay model for epidemic spreading: the case of covid-19 in italy,

Scientific Reports 10, 1–10 (2020).

33

All rights reserved. No reuse allowed without permission. 
(which was not certified by peer review) is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity. 

The copyright holder for this preprintthis version posted August 2, 2022. ; https://doi.org/10.1101/2022.08.01.22278281doi: medRxiv preprint 

https://doi.org/10.1101/2022.08.01.22278281


46. S. Tiwari, C. Vyasarayani, A. Chatterjee, Data suggest covid-19 affected numbers greatly

exceeded detected numbers, in four european countries, as per a delayed seiqr model, Sci-

entific reports 11, 1–12 (2021).

47. L. Kleinrock, Queueing systems: theory (John Wiley, 1975).

48. R. G. Gallager, Discrete stochastic processes, vol. 321 (Springer Science & Business Me-

dia, 2012).

49. A. Papoulis, S. Pillai, Probability, random variables, and stochastic process, mcgraw-hill,

inc (1991).

50. J. H. Jones, Notes on r0, California: Department of Anthropological Sciences 323, 1–19

(2007).

51. J. Pitman, Poisson-kingman partitions, Lecture Notes-Monograph Series pp. 1–34 (2003).

34

All rights reserved. No reuse allowed without permission. 
(which was not certified by peer review) is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity. 

The copyright holder for this preprintthis version posted August 2, 2022. ; https://doi.org/10.1101/2022.08.01.22278281doi: medRxiv preprint 

https://doi.org/10.1101/2022.08.01.22278281

