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Data and code availability
The UK Biobank PRS Release is available via application to the UK Biobank’s Research
Access Platform. The Evaluation Tool is available as a command line tool within the
Research Access Platform. Source code for the Evaluation Tool is available at
https://github.com/Genomicsplc/ukb-pret. The GWAS summary statistics for 53 traits,
performed in the WBU subgroup as additional training data for the Enhanced PRS Set, is
available at https://zenodo.org/record/6631952.
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Supplementary methods

UK Biobank
A schematic workflow for the generation and standardised evaluation of the UK Biobank
PRS Release is presented in Supplementary Figure 15.

The UK Biobank (UKB) is a UK based prospective cohort of ~500,000 individuals aged
40-69 at enrolment. Genotype data were generated using a custom Axiom genotyping array
assaying 825,927 genetic variants, followed by genome-wide imputation. Phenotype
information was assessed using a combination of a 2-day visit at UKB enrollment,
questionnaires, and linkage with primary and secondary care electronic health records,
including Hospital Episode Statistics and cancer registry data. See Bycroft et al 1 for further
details.

After removal of exclusions and withdrawals, a subset of 337,151 UKB individuals, the White
British Unrelated (WBU) subgroup, was defined as the intersection of two sample groups
created by Bycroft et al 1: the ‘White British ancestry’ group (UKB Data Field 22006) and the
‘used in genetic principal components’ group (UKB Data Field 22020), the latter being high
quality samples that were filtered to avoid closely related individuals. This WBU subgroup
(the ‘training subgroup’) was used to generate genome-wide association study (GWAS)
summary statistics, which were then meta-analysed with external GWAS datasets to create
the Enhanced PRS Set. 104,231 of the remaining individuals (the Testing Subgroup) were
used for evaluation, including 82,346, 9,543, 9,478 and 2,864 individuals of European, South
Asian, African, and East Asian ancestries, respectively (see below for details of genetic
ancestry inference). There were too few individuals of Native American ancestry (N=390) to
be included for evaluation.

All UKB individuals have given informed consent. Our research project (Project Application
Number 9659) was approved by the UK Biobank according to their established access
procedures 3, and legal and ethical approval is covered by the Research Tissue Bank
approval obtained from the UK Biobank’s governing Research Ethics Committee (REC
16/NW/0274), as recommended by the National Research Ethics Service.

Phenotypes, GWAS and meta-analysis
Phenotype variables for each trait within UK Biobank were created from a combination of
Hospital Episode Statistics, Cancer Registry reports (where applicable) and self-report
responses. Exclusion criteria resulted in some phenotypes being set to ‘missing’ for some
individuals, for example, low density lipoprotein cholesterol levels were set to missing for
individuals on statin medication. For details, see Supplementary Table 5. We carried out
various ad hoc QC checks for errors and consistencies in UK Biobank data fields; these
indicated only a small fraction of remaining individuals are affected.
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GWAS summary statistics for each trait were generated by applying PLINK 2.0 to the WBU
subgroup, applying a logistic regression model for disease traits, and a linear regression
model for quantitative traits. Age at first assessment, genotyping chip, sex (for non-sex
specific traits), and principal components (PCs) 1-10 (described by Bycroft et al 1) were
included as covariates in the models. UK Biobank GWAS sample size information is
provided in Supplementary Tables 3 and 4.

In addition, a literature search for external GWAS summary statistic data was conducted for
each trait (Supplementary Tables 1-4). Studies were excluded if they contained UKB data or
if they were included in more recent published releases or meta-analyses.

To provide a common reference, and ensure consistency across studies, all GWAS summary
statistics (both published and internally generated) were harmonised to a variant backbone,
ensuring alignment to the Alt allele of the forward strand of Genome Reference Consortium
Human Build 37 (GRCh37). Summary statistic imputation methodology 4 was deployed to fill
in gaps in the variant backbone using 1000 Genomes Project data 5 as a reference panel for
LD inference.

GWAS studies were meta-analysed via fixed-effect inverse variance meta-analysis, including
a correction for sample overlap where required 5. Data permitting, two meta-analyses were
performed per trait; one including UK Biobank GWAS data to create the Enhanced PRS Set,
and one excluding UK Biobank GWAS data to create the Standard PRS Set. For some
quantitative traits, no suitable external GWAS data could be identified, and for these traits no
Standard PRS was created (see Supplementary Table 2).

Genetic ancestry inference
Genome-wide genetic data for UK Biobank participants were used to estimate the proportion
of each genome that could be ascribed to each one of five high-level ancestry groups:
Sub-Saharan African (AFR), Native/Indigenous American (AMR), East Asian (EAS),
European (EUR), and South Asian (SAS). To obtain these estimates, we first applied
Principal Component Analysis (PCA) to a subset of common SNP genotypes in the 1000
Genomes reference dataset using standard methods 6. To select SNPs for PCA, we
intersected HapMap3 variants with a collection of well-imputed variants across UK Biobank,
GSA, and OMNI arrays. We dropped SNPs with low call-rate (< 0.05) or MAF < 0.02 in 1000
Genomes, and then LD-pruned (using plink --indep 50 5 2) to an approximately independent
set of around 185,000 SNPs across the autosomes. For PCA, the genotypes were
mean-centred, but not standardised.

Centroid coordinates for ancestry groups in PC space (defined from the first four PC axes)
were obtained from those 1000 Genomes Project 7 individuals belonging to population codes
as follows (excluding populations that were found empirically to be highly admixed): AFR
(ESN, GWD, LWK, MSL, YRI); AMR (MXL, PEL); EAS (CDX, CHB, CHS, JPT, KHV); EUR
(CEU, FIN, GBR, IBS, TSI); SAS (BEB, GIH, ITU, PJL, STU). Genotype data from
individuals outside the 1000 Genomes cohort were then projected onto the same PC axes to
obtain their PC scores. The relationship between each individual’s vector of PC scores and

Page 4 of 80

https://www.zotero.org/google-docs/?SebuZ8
https://www.zotero.org/google-docs/?8DDkja
https://www.zotero.org/google-docs/?ZA8ysP
https://www.zotero.org/google-docs/?f32Dmm
https://www.zotero.org/google-docs/?i2CIa3
https://www.zotero.org/google-docs/?tW8xwk


each centroid was determined via a softmax transformation (base=exp(3)) applied to the
cosine similarity of the two vectors, to obtain the estimated ancestry proportions. The use of
base=exp(3) was found empirically to result in a good reclassification of 1000 Genomes
individuals to their correct ancestry group (data not shown). Individuals were assigned the
superpopulation hard-call for which they presented the highest ancestry proportion, such that
no individual was labelled as admixed.

Generation of UK Biobank PRS Release
The Standard PRS Set (also referred to as the “UKB-Free” set) of 28 diseases and 8
quantitative traits was generated from external GWAS data described in Supplementary
Tables 1 and 2. Published comparator PRSs (see later) were not used in the construction of
either the Standard or Enhanced PRS sets. The Enhanced PRS Set (also referred to as the
“UKB-WBU” set) of 28 diseases and 25 quantitative traits was generated from external
GWAS data plus UKB White British Unrelated (WBU) GWAS data described in
Supplementary Tables 3 and 4. An exception was made for Crohn’s disease (CD) and
ulcerative colitis (UC). The external GWAS data for these two traits derive primarily from
Immunochip arrays 8, which have high SNP density around signal genes and low density
elsewhere. This, coupled with the relatively low case count in UKB WBU (2064 CD cases
and 3914 UC cases), meant that the UKB contribution consisted mostly of between-signal
noise, and the PRS with UKB data added had lower performance than without it. Because of
these special circumstances, we reverted to the Standard PRS algorithm when adding CD
and UC to the Enhanced PRS Set.

Genetic variants used to generate PRS weights were required to have an INFO score > 0.8
in UKB; have an INFO score > 0.8 in the GWAS meta-analysis dataset; have an INFO score
> 0.7 in other key reference datasets available to Genomics plc; not display large differences
in allele frequency between UKB genetically inferred ancestry groups (see above) and either
Gnomad or 1000 Genomes Project (absolute allele frequency difference between Gnomad
and UKB of less than 0.2 in any ancestry group, p>1e-12 and p>1e-10 for Gnomad and
1000 Genomes Project respectively in any ancestry group); and not display evidence of
large departures from Hardy-Weinberg Equilibrium (p>1e-10) in any ancestry group. The
variants also needed to have a definitive one-to-one mapping between Genome Builds 37
and 38. We excluded indels, the pseudoautosomal regions, and any variants with minor
allele frequency (MAF) <0.05 in the 1000 Genomes Project dataset (for any ancestries used
as LD reference panels in the PRS generation step).

PRS algorithms were built from trait-specific meta-analyses using a Bayesian approach (see
Supplementary Tables 1-4), where appropriate combining data across multiple ancestries
and related traits. Per-individual PRS values were calculated as the genome-wide sum of the
per-variant posterior effect size multiplied by allele dosage.

Following the generation of a raw PRS value for an individual using the PRS weights
derived above, a centering and standardisation step was applied in order to produce a
corrected PRS value that could be interpreted as coming from a distribution that is of
approximately of zero mean and unit variance for people occupying the same position in
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‘ancestry space’ as the individual in question. First, the centred PRS was obtained
following the method of Khera et al 9, by subtracting out the PRS value predicted from a
linear regression of the PRS against the first four principal component scores, fitted in
1000 Genomes Project individuals 7. Next, the genetic ancestry of each individual was
inferred (see above). The centred PRS was then divided by the standard deviation of the
PRS in the 1000 Genomes ancestry group with the closest match to the individual in
question, to obtain a centred and variance-standardised PRS.

Comparator PRS Set
The PGS Catalog database (https://www.pgscatalog.org/) was searched (30th November
2021) to identify comparator PRS algorithms for any of our traits of interest (Supplementary
Table 10). From this list we excluded PRS algorithms which had used any UKB GWAS data
in the training stage (algorithms based on non-UKB GWAS data which had only used UKB
data for the training of hyperparameters were not excluded). We also excluded algorithms
which were designed for specific subtypes of the disease or trait, algorithms which were
superseded by a more recent algorithm from the same research group, and duplicates.
Where the same research group had uploaded multiple algorithms for the same trait to the
PGS Catalog, each using different statistical methodologies or different parameters, we
selected the one which the authors reported as having the best performance. Where several
groups had reported PRS algorithms for a given trait which were all simple lists of
GWAS-significant SNPs reported in the literature, we selected the most recent algorithm. We
included algorithms which appeared to be similar to other algorithms, but which had been
specifically optimised for non-European ethnicities or ancestries. Additional PRS algorithms
were identified by regular monitoring of relevant publications, pre-print websites, social
media and by conference attendance.

Comparator algorithms were excluded at the QC stage if there was insufficient SNP
information to allow the algorithm to be implemented, or if >10% of the SNPs in the algorithm
were not present in the imputed UKB dataset. Post-processing steps (PRS centering and
standardisation) were applied to comparator PRS in an equivalent way to the UK Biobank
PRS Release sets.

PRS performance evaluation
All three PRS sets - the Standard Set, the Enhanced Set, and the Comparator PRS Set -
were evaluated in the same multi-ancestry Testing Subgroup in UKB (see above), as well as
in other evaluation cohorts (Supplementary Table 6).

Additional QC was performed in UKB prior to PRS evaluation on each trait. Individuals
without a reported age at first assessment were excluded. Individuals with conflicting case
status vs date-of-diagnosis or incident status were excluded. Unless censored by death, a
formal withdrawal from the project, or by a hard cutoff date of 1 March 2020, linkage to
national HES data was assumed complete for all individuals up to 10 years from first
assessment (12 years for age related macular degeneration), but then taken as censored
after that time. All case events that occurred more than 10 years after first assessment (12
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years for age related macular degeneration), or after the hard cutoff date of 1 March 2020,
were treated as controls.

Performance evaluation in a given ancestry group required a minimum of 100 cases in that
ancestry group for disease traits, and 100 samples in that ancestry group for quantitative
traits. The AMR ancestry group was excluded for all traits due to low sample size. For
evaluation in the 100,000 Genomes Project, a minimum of 75 cases was required. For an
overview of sample sizes in the evaluation cohorts, see Supplementary Table 6.

PRS performance was evaluated based on several metrics. For disease traits, odds ratios
(from logistic regression) are reported per standard deviation (SD) of PRS, and also by
comparing the top 3%, 5% and 10% of the PRS distribution against the rest. Age at
recruitment and sex were added as covariates in the logistic regression where possible,
noting that age was not available for all cohorts, and sex could not be added as a covariate
for analyses within a single sex. For disease traits in prospective cohorts, the hazard ratios
per SD (from Cox regression, with age and sex as covariates where possible) are also
reported. For quantitative traits, the regression coefficients (from linear regression, with age
and sex as covariates where possible) on the raw trait scale and standardised trait scale are
also reported. For disease traits, the area under the receiver operating characteristic curve
(AUC) is also reported. Standard errors for AUC were found using an implementation of
deLong’s algorithm 10. For quantitative traits, the variance explained (r2) of the trait by the
PRS is also reported. Standard errors for r2 were found by Fisher’s z-transformation.
Standard errors for relative changes in odds ratios, AUC, and  r2, correcting for correlations
induced by calculating PRSs in the same individuals, were found using a stratified
(within-case/within-control) bootstrapping procedure.

Analyses of PRS properties
Age-specific hazard ratios were calculated by splitting the age-at-first-assessment into
10-year age bins, and then using Cox regression (adjusted for sex, where approriate) to
estimate an incident hazard ratio within each age bin, allowing a maximum of 10 years of
follow-up.

Whole exome sequencing data were available for 189,954 European-ancestry UKB
participants. Carriers of deleterious mutations in either a breast cancer risk gene
(loss-of-function mutations in ATM, BRCA1, BRCA2 or PALB2, with classification of a
mutation as loss-of-function based on a “high-confidence” scoring using the LOFTEE
software 11, or the CHEK2 1100delC mutation) or a familial hypercholesterolemia (FH) risk
gene (pathogenic or likely-pathogenic mutations in APOB, APOE, LDLR or PCSK9, as
classified by using the American College of Medical Genetics and Genomics (ACMG)
guidelines 12, and extending the list provided by Fahed et al 13 by moving from previous 50k
UKB exome dataset to the newer 200k UKB exome dataset) were identified. For each gene,
the relevant disease (female breast cancer or coronary artery disease (CAD)) hazard ratio
for carriers compared to non-carriers was estimated in the UKB Testing subset, and the
upper percentile of the Enhanced PRS distribution for which the hazard ratio (HR)
(compared to the 40-60th percentiles) matched the carrier HR was found. Individuals with a
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PRS above this value can be thought of as having a broadly equivalent overall level of risk to
that of mutation carriers. The CAD analyses were repeated in the subset of UKB participants
for whom Primary Care prescribing data were available and who did not have a reported
prescription for statin medication (other than prescriptions which began after the CAD
diagnosis). Statin prescriptions were extracted from the UKB Primary Care data linkage
dataset, using read_v2 codes bxd*, bxe*, bxg*, bxi*, bxj*, bxk* and bxl*, BNF codes
02.12.02.00.00 and 02.12.04.00.00, or via text searches for “atorvastatin”, “cerivastatin”,
“ezetimibe”, “fluvastatin”, “pravastatin”, “rosuvastatin”, “simvastatin” and associated brand
names (the LDL-lowering drug ezetimibe was included in the list, although in practice
ezetimibe prescriptions were almost always seen in individuals also receiving a statin
prescription). After excluding statins users, 164 of the 656 FH mutation carriers and 30,271
of 82,335 UKB Testing subset were included in the evaluation analyses (all European
ancestry). Sample numbers are provided in Supplementary Table 11.

The pattern of age-specific risks associated with a high PRS was compared to that for
mutation carriers using cumulative incidence plots. Analyses were repeated combining
mutations across all of the genes relevant for that disease, to find the percentile of the PRS
distribution for which the HR was equivalent to having a mutation in any of those genes. The
HRs for mutation carriers and for PRS above this percentile were also calculated separately
for cases diagnosed below ages 50, 60 or 70 years, to explore whether either risk factor has
a stronger association with earlier-onset disease. The proportions of cases diagnosed below
ages 50, 60 or 70 years who carried a rare mutation or who had a PRS above the
risk-equivalent percentile were calculated. Confidence intervals for case proportions were
calculated using the “exact” method in the binconf() function of the R Hmisc package. Finally,
we used cumulative incidence plots to compare the disease risks between rare mutation
carriers in the top and bottom 10% of the PRS distribution. Here we used the Standard PRS,
in order to maximise the number of UKB samples with exome sequencing data available for
the analyses.

Forwards-backwards stepwise regression was used to find the best-fitting linear combination
of PRS scores for predicting all-cause mortality. The WBU subset of UKB was used to train a
Cox proportional-hazards model, with years from first assessment until participant’s death or
censoring as the time variable, searching over all 36 Standard PRS scores (28 diseases plus
8 quantitative traits). Model selection was based on the Akaike information criterion, with
significance threshold 0.05. A second forwards-backwards stepwise regression was then
applied to parental mortality data. Data for the mother and father of each participant
(excluding those who reported that they had been adopted as a child) were taken as two
separate observations, using their offspring’s PRS scores as predictors. For each, their
follow-up was from their birth until either their age at their offspring’s UKB assessment or
their age at death, as reported by the participant at their first UKB assessment. Ideally,
parental follow-up would begin at the parent’s age when the participant was born, to avoid
immortal time bias 14, but this age is not available for parents who died before UKB
assessment. We therefore assumed a minimal effect of immortal time bias on parental
outcomes, and this assumption is borne out by the observed 2:1 ratio between PRS effect
sizes in the “own mortality” and “parents’ mortality” analyses (Supplementary Figure 13).
Traits which were selected by both the “own mortality” and “parents’ mortality” stepwise
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regression analyses were then entered into a final training step, in which the PRS scores for
these traits were entered as covariates, together with participants’ age at first recruitment
and sex (of the participant, mother or father, as applicable) as additional covariates, into
separate “own mortality” and “parents’ mortality” Cox proportional-hazards models.
Coefficients from these final models were then fixed and evaluated in the remaining UKB
Testing Subgroup. Differences in Harrell’s C statistic, in models with and without PRS
covariates, were tested via a z-test on the difference, using an estimated variance that
accounts for covariance in C statistics and derived from an infinitesimal jackknife estimator
15, and 95% confidence intervals for the difference in C-statistics were estimated using 1,000
bootstrap samples.

Additional cohorts
100,000 Genomes Project (100KGP). The 100,00 Genomes Project, run by Genomics
England, consists of more than 100,000 whole-genomes sequences, with electronic health
record data, from ~85,000 NHS patients in England affected by a rare disease or cancer, as
well as the parents of some of the rare disease patients 16.  Recruitment of participants to the
100,000 Genomes Project was completed in 2018. All participants gave informed consent.

For our PRS performance evaluations, rare disease affected participants were excluded and
from related pairs (up to 3rd degree), one randomly selected individual was included (KING2

threshold = 0.0442), resulting in a sample of 40,001 for analysis. Germline Whole Genome
Sequence (WGS) data were filtered to the GWAS analysis variant list. To fill in gaps in the
variant list, genotypes were phased (Eagle v2.4.1 17) and imputed (Minimac3 18) using the
1000 Genomes Project reference panel. This set of common variant genotypes has been
made available as a shared resource in the Genomics England research environment.

Hospital Episode Statistics (HES) and cancer registry data were used to identify disease
cases and controls using ICD-10 codes (see Supplementary Table 5). For cancer traits,
individuals that received a differing cancer diagnosis prior to, or contemporaneously to, the
main diagnosis were removed to ensure the cancer diagnosis was not a result of comorbid
metastasis. Controls were selected exclusively from the participant pool of the unaffected
rare disease relatives. For non-cancer traits, individuals that received a cancer diagnosis
prior to the main diagnosis were removed to avoid disease development due to cancer
treatment effects. Controls were selected from both rare disease arm (unaffected relatives)
and cancer arm. 12 disease traits were evaluated (for sample size information, see
Supplementary Table 6).

To enable fair PRS performance comparisons of 100KGP with UKB and other evaluation
cohorts, software was imported into the 100KGP research environment to apply the same
approach to ancestry estimation, PRS calculation and ancestry centering and variance
normalisation.

The Atherosclerosis Risk in Communities (ARIC) Study. ARIC comprises over 15,000
adults from predominantly 2 study-defined racial/ethnic groups (“Black” and “White”), from
defined populations in 4 sites in the USA, aged 45–64 years when recruited between 1987
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and 1989 19. Participants were extensively examined at baseline, and have had continuing
follow-up via annual phone calls. Genotype and phenotype data for ARIC were obtained
from dbGaP accession id phs000090.v3.p1. All participants gave informed consent. Our use
of these data was approved by the Western Institutional Review Board (Study Number
1264897, IRB Tracking Number 20192201).

Discovery, Biology, and Risk of Inherited Variants in Breast Cancer (DRIVE). Discovery,
Biology, and Risk of Inherited Variants in Breast Cancer (DRIVE) was a project funded in
2010 as part of the National Cancer Institute's Genetic Associations and Mechanisms in
Oncology (GAME-ON) initiative (https://epi.grants.cancer.gov/gameon/). The DRIVE
genotype and phenotype data were obtained from dbGAP accession id phs001265.v1.p1,
which includes genotype data from 60,015 breast cancer cases and controls drawn from 17
studies and genotyped using the OnocArray chip 20. All participants gave informed consent.
Our use of these data was approved by the Western Institutional Review Board (Study
Number 1264897, IRB Tracking Number 20192201). The majority of the samples are from
European-ancestry women, and are a subset of those represented in the BCAC summary
statistics 21 which were used in the training of our PRS. We therefore restricted our analysis
to the 1,000 women with inferred African ancestry who had not been included in the BCAC
European GWAS.

Electronic Medical Records and Genomics (eMERGE). The Electronic Medical Records
and Genomics (eMERGE) Network 22 is an NHGRI-funded consortium of ten participating
sites (Cincinnati Children's Hospital Medical Center/Boston Children's Hospital, Children's
Hospital of Philadelphia, Essentia Institute of Rural Health, Marshfield Clinic Research
Foundation and Pennsylvania State University, Geisinger Clinic, Group Health
Cooperative/University of Washington, Mayo Clinic, Icahn School of Medicine at Mount
Sinai, Northwestern University, Vanderbilt University Medical Center). The goal of eMERGE
is to conduct genome-wide association studies in approximately 55,000 individuals using
EMR-derived phenotypes and DNA from linked Biorepositories
(https://emerge-network.org/emerge-sites/). All participants gave informed consent. Our use
of these data, under dbGaP accession phs000888.v1.p1, was approved by the Western
Institutional Review Board (Study Number 1264897, IRB Tracking Number 20192201). We
have split eMERGE into 6 cohorts (labelled eMERGE-1, eMERGE-2, etc) that reflect the
participants’ dbGaP research use permission codes (HMB-PUB-GSO, HMB-GSO, GRU,
GRU-IRB-PUB, HMB and DS-DEM respectively).

The Charles Bronfman Institute for Personalized Medicine (IPM) BioMe BioBank. IPM
is a consented, EMR-linked medical care setting biorepository of the Mount Sinai Medical
Center drawing from a population of over 70,000 inpatients and 800,000 outpatient visits
annually 23. Genotype and phenotype data were obtained from dbGaP accession id
phs000388.v1.p1. All participants gave informed consent. Our use of these data was
approved by the Western Institutional Review Board (Study Number 1264897, IRB Tracking
Number 20192201).

Jackson Heart Study (JHS). The Jackson Heart Study (JHS) is a community-based
observational study comprising 5,301 African-American participants residing in Jackson,
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Mississippi metropolitan statistical area. Approximately 30% of the participants are also
enrolled in the ARIC study. A subset of 2,702 participants were genotyped for the Candidate
gene Association Resource (CARe) using the Affymetrix 6.0 Array 24. Genotype and
phenotype data were obtained from dbGaP accession id phs000499.v3.p1. All participants
gave informed consent. Our use of these data was approved by the Western Institutional
Review Board (Study Number 1264897, IRB Tracking Number 20192201).

Multi-Ethnic Cohort (MEC). The Multi-Ethnic Cohort is a population-based prospective
cohort study of over 215,000 men and women living in Hawaii and California (45-75 yrs at
baseline, collected from 1993-1996). The cohort includes large representations of older
adults for five US racial/ethnic groups (Japanese Americans, African Americans, European
Americans, Latinos and Native Hawaiians) 25. A subset of ~28,000, with associated data on
cardiometabolic traits, were selected for genotyping on the Multi-Ethnic Genotyping Array
(MEGA) as part of the Population Architecture using Genomics and Epidemiology (PAGE)
study 26 (dbGaP accession phs000220.v2.p2). A separate set of breast cancer cases and
age- and ethnicity-matched controls were selected for genotyping on Human660W-Quad
and Human-1M arrays as part of a separate study (dbGaP accession phs000517.v3.p1). All
participants gave informed consent. Our use of these data was approved by the Western
Institutional Review Board (Study Number 1264897, IRB Tracking Number 20192201).

The Multi-Ethnic Study of Atherosclerosis (MESA). MESA comprises over 6,000 adults
from 4 study-defined racial/ethnic groups (“African American”, “Chinese American”,
“Hispanic”, and “White/Caucasian”), recruited primarily via phone call invitation to 6 sites in
the USA, aged 45–84 years and free of cardiovascular disease when recruited between
2000 and 2002 27,28. Participants were extensively examined at baseline, and have had
continuing follow-up via annual phone calls. Genotype and phenotype data for MESA were
obtained from dbGaP accession ids phs000420.v6.p3 and phs000209.v13.p3 respectively.
All participants gave informed consent. Our use of these data was approved by the Western
Institutional Review Board (Study Number 1264897, IRB Tracking Number 20192201).

The Omics in Latinos (OLA) component of the Hispanic Community Health Study /
Study of Latinos Project. The Hispanic Community Health Study / Study of Latinos Project
is a multi-center epidemiologic study in Hispanic/Latino populations to assess the role of
acculturation in the prevalence and development of disease. Genotype and phenotype data
for OLA were obtained from dbGaP accession id phs000880.v1.p1. All participants gave
informed consent. Our use of these data was approved by the Western Institutional Review
Board (Study Number 1264897, IRB Tracking Number 20192201).

GWAS of Breast Cancer in the African Diaspora (ROOT study). The ROOT consortium
study is a case-control GWAS of breast cancer in women of African ancestry, including
Africans living in Nigeria, African Americans and African Barbadians 29. The dbGaP dataset
(phs000383.v1.p1) includes genotypes for 3,766 women. After excluding close relatives,
those for whom we were not able to calculate a PRS, and 23 women of inferred European or
admixed ancestry, the analyses included 1,643 breast cancer cases and 2,049 controls, all
of inferred African ancestry. All participants gave informed consent. Our use of these data
was approved by the Western Institutional Review Board (Study Number 1264897, IRB
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Tracking Number 20192201). The African American component of the ROOT dataset
includes up to 220 cases and 430 controls from the Southern Community Cohort Study
(SCCS). The BCAC African-American/Afro-Caribbean iCOGS study 30 for which summary
statistics were included in the our PRS training also includes 679 cases and 680 cases from
the SCCS. It was not possible to remove either the SCCS data from the summary statistics,
or the overlapping SCCS women from the ROOT data, but it is unlikely that this will have
introduced bias, since the SCCS cases only represent 0.4% of the training summary
statistics.
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Supplementary figures

Supplementary Figure 1. Predictive performance of the UK Biobank PRS Release (Standard
Set) by ancestry . Performance (odds ratio, or effect on standardised quantitative trait, per SD of
PRS, adjusting for age and sex), measured in the independent UKB Testing Subgroup, of the disease
traits (A) and quantitative traits (C), stratified by genetically inferred ancestry. Results for
non-European ancestries are shown if at least 100 cases are available for testing. Relative change in
performance in non-European ancestries compared to European ancestry for disease traits (B) and
quantitative traits (D). Bars indicate 95% confidence intervals (CI). Refer to Figure 1 and 2 for disease
and quantitative trait abbreviations respectively. Throughout, ovarian cancer refers specifically to
epithelial ovarian cancer.
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Supplementary Figure 2. Predictive performance (AUC) of the UK Biobank PRS Release
disease traits by ancestry. Performance (area under the receiver operating characteristic curve,
AUC), measured in the independent UKB Testing Subgroup, of the disease traits in the Standard (A)
and Enhanced (B) PRS sets, stratified by genetically inferred ancestry. Results for non-European
ancestries are shown if at least 100 cases are available for testing. Bars indicate 95% confidence
intervals (CI). Refer to Figure 1 for disease abbreviations.
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Supplementary Figure 3. Comparison of the predictive performance of the Standard and
Enhanced PRS sets. Performance (odds ratio, or effect on standardised quantitative trait, per SD of
PRS, adjusting for age and sex), measured in the independent UKB Testing Subgroup, of the disease
traits (A, C, E, G) and quantitative traits (B, D, F, H) in the Standard and Enhanced PRS sets in
different ancestries. EUR = European ancestry (A, B). EAS = East Asian ancestry (C, D). SAS =
South Asian ancestry (E, F). AFR = Sub-Saharan African ancestry (G, H). Bars indicate 95%
confidence intervals (CI). Traits with highest and lowest performance are labelled. For trait codes see
Supplementary Table 5.
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Supplementary Figure 4. Relationship between disease trait predictive performance and GWAS
effective sample size across genetically inferred ancestry groups. A Relationship between odds
ratio and effective sample size for the Enhanced PRS Set. B Relationship between relative change in
odds ratio and relative change in effective sample size, comparing the Enhanced to the Standard PRS

Set. Effective sample size is defined as , where and are respectively the total4
𝑗

∑ 𝑛
𝑗
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sample size and the proportion of cases for the jth constituent GWAS for a given trait.  Only those
diseases with non-overlapping samples in the constituent GWASs are displayed. Bars indicate 95%
confidence intervals. Dashed lines indicate linear regression slopes, with p-values indicating the
significance of the slope. Refer to Figure 1 for disease abbreviations.
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Supplementary Figure 5. Relationship between quantitative trait predictive performance and
GWAS sample size across genetically inferred ancestry groups. Relationship between variance
explained and sample size for the Enhanced PRS Set. Only those diseases with non-overlapping
samples in the constituent GWASs are displayed. Bars indicate 95% confidence intervals. Refer to
Figure 2 for quantitative trait abbreviations.
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Supplementary Figure 6. Performance relative to comparator PRSs across ancestries, disease
traits. Performance (odds ratio per SD of PRS) of the disease trait Enhanced PRS Set, compared to
other published polygenic scores (citations provided in Supplementary Table 10) and comparing
performance in European ancestry (y-axis) to other ancestries (x-axis). Non-UK Biobank cohorts are
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used if they provide a larger sample size for a given ancestry and trait than UK Biobank. A Atrial
fibrillation. B Age-related macular degeneration. C Asthma. D Breast cancer. E Bipolar disorder. F
Coronary artery disease. G Bowel cancer. H Cardiovascular disease. I Hypertension. J Ischaemic
stroke. K Osteoporosis. L Prostate cancer. M Primary open angle glaucoma.N Psoriasis. O
Rheumatoid arthritis. P Type 2 diabetes Q Ulcerative colitis. R Venous thromboembolic disease. Bars
indicate 95% confidence intervals.
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Supplementary Figure 7. Performance relative to comparator PRS across ancestries,
quantitative traits. Performance (effect on standardised quantitative trait per SD of PRS) of the
quantitative trait Enhanced PRS Set, compared to other published polygenic scores (citations
provided in Supplementary Table 10) and comparing performance in European ancestry (y-axis) to
other ancestries (x-axis). Non-UK Biobank cohorts are used if they provide a larger sample size for a
given ancestry and trait than UK Biobank. A Total triglycerides. B Total cholesterol. C LDL cholesterol.
D HDL cholesterol. E Glycated haemoglobin. F eGFR (creatinine). G Body mass index. H Height. I
Age at menopause. J Resting heart rate. Bars indicate 95% confidence intervals.
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Supplementary Figure 8. Comparative cumulative incidence plots in high-risk breast cancer
(BC) gene mutation carriers and high-PRS individuals of equivalent risk. High-risk mutation
carriers (red) compared to individuals in the top percentile of the PRS distribution (blue)
corresponding to the equivalent high-risk variant risk, evaluated in the subset of UKB (EUR) for whom
exome sequencing data are available (for mutation carriers) or in the subset of UKB Testing Subgroup
(EUR) (median and high PRS individuals). A, Incidence of female breast cancer in BRCA1 + BRCA2
loss-of-function variant carriers (415 carriers) vs breast cancer Enhanced PRS. B, Incidence of breast
cancer in combined BRCA1+BRCA2+ATM+CHEK2+PALB2 loss-of-function variant carriers (1,395
carriers) vs breast cancer Enhanced PRS. Shaded areas indicate 95% CI.
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Supplementary Figure 9. Effects of familial hypercholesterolemia (FH) gene mutations and
PRS on risk of CAD, by age of diagnosis. The log(HR) for CAD associated with pathogenic or likely
pathogenic mutations in any of four FH genes (ABOB, ABOE, LDLR, PCSK9), relative to non-carriers
(pink, evaluated in the subset of UKB (EUR) for whom exome sequencing data are available), or
associated with a PRS (Enhanced CAD PRS) in the top 19% (A) or 8% (B) of the distribution, relative
to the median PRS (40-60th percentiles) (blue). A shows analyses including all eligible European
ancestry UKB participants in the Testing subgroup; B is further restricted to participants with Primary
Care data linkage and with no reported statin prescription, other than prescriptions which began after
a first CAD diagnosis. FH carrier effect estimated in the subset of UKB for which whole exome
sequencing data are available (n=189,954 in A and n=75,351 in B). Bars represent 95% CI.
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Supplementary Figure 10. Cumulative incidence plots by ancestry, Standard PRS Set.
Cumulative incidence plots are shown for each disease and each ancestry group in the UKB Testing
Subgroup, provided more than 40 cases are available (the number of cases is printed otherwise), with
separate curves for the highest 3% (red), lowest 3% (blue), and median (green) of the PRS
distribution. A. Alzheimer's disease (AD). B. Atrial fibrillation (AF). C. Age-related macular
degeneration (AMD). D. Asthma (AST). E. Breast cancer (BC), F. Bipolar disorder (BD), G. Coronary
artery disease (CAD). H. Crohn's disease (CD). I. Coeliac disease (CED). J. Bowel cancer (CRC). K.
Cardiovascular disease (CVD), L. Epithelial ovarian cancer (EOC). M. Hypertension (HT). N.
Ischaemic stroke (ISS). O. Melanoma (MEL). P. Multiple sclerosis (MS). Q. Osteoporosis (OP). R.
Prostate cancer (PC). S. Parkinson's disease (PD). T. Primary open angle glaucoma (POAG). U.
Psoriasis (PSO). V. Rheumatoid arthritis (RA). W. Schizophrenia (SCZ). X. Systemic lupus
erythematosus (SLE). Y. Type 1 diabetes (T1D). Z. Type 2 diabetes (T2D). AA. Ulcerative colitis (UC).
AB. Venous thromboembolic disease (VTE). EUR = European ancestry. EAS = East Asian ancestry.
SAS = South Asian ancestry. AFR = Sub-Saharan African ancestry. Shaded areas indicate 95% CI.
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Supplementary Figure 11. Cumulative incidence plots by ancestry, Enhanced PRS Set.
Cumulative incidence plots are shown for each disease and each ancestry group in the UKB Testing
Subgroup, provided more than 40 cases are available (the number of cases is printed otherwise), with
separate curves for the highest 3% (red), lowest 3% (blue), and median (green) of the PRS
distribution. A. Alzheimer's disease (AD). B. Atrial fibrillation (AF). C. Age-related macular
degeneration (AMD). D. Asthma (AST). E. Breast cancer (BC), F. Bipolar disorder (BD), G. Coronary
artery disease (CAD). H. Crohn's disease (CD). I. Coeliac disease (CED). J. Bowel cancer (CRC). K.
Cardiovascular disease (CVD), L. Epithelial ovarian cancer (EOC). M. Hypertension (HT). N.
Ischaemic stroke (ISS). O. Melanoma (MEL). P. Multiple sclerosis (MS). Q. Osteoporosis (OP). R.
Prostate cancer (PC). S. Parkinson's disease (PD). T. Primary open angle glaucoma (POAG). U.
Psoriasis (PSO). V. Rheumatoid arthritis (RA). W. Schizophrenia (SCZ). X. Systemic lupus
erythematosus (SLE). Y. Type 1 diabetes (T1D). Z. Type 2 diabetes (T2D). AA. Ulcerative colitis (UC).
AB. Venous thromboembolic disease (VTE). EUR = European ancestry. EAS = East Asian ancestry.
SAS = South Asian ancestry. AFR = Sub-Saharan African ancestry. Shaded areas indicate 95% CI.

Page 70 of 80



A

Page 71 of 80



B

Page 72 of 80



C

Page 73 of 80



D

Supplementary Figure 12. Heatmaps of correlations among PRS scores. All correlations are
calculated from European ancestry individuals in the UKB Testing Subgroup. A Correlations among
the Standard Set, 28 disease codes ordered alphabetically, then 8 quantitative trait codes ordered
alphabetically (recall the Standard Set has fewer quantitative traits than the Enhanced Set). B
Correlations among the Standard Set, ordered according to a hierarchical clustering dendrogram
(complete linkage on Euclidean distance, see hclust() function in R). C Correlations among the
Enhanced Set, 28 disease codes ordered alphabetically, then 25 quantitative trait codes ordered
alphabetically. D Correlations among the Enhanced Set, ordered according to a hierarchical clustering
dendrogram (complete linkage on Euclidean distance, see hclust() function in R). See Supplementary
Table 5 for trait code mappings.
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Supplementary Figure 13. Multivariate PRS model for all-cause mortality. Traits are shown if
selected by stepwise regression of time-to-death from first assessment, if selected both for
participants’ own death and for their parents’ death (maternal and paternal data entered as separate
observations). Dashed line shows the expected parent:offspring effect size ratio of 1:2. See
Supplementary Table 5 for trait code mappings.
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Supplementary Figure 14. Performance of the UK Biobank PRS Release algorithms in other
cohorts. Performance (odds ratio per SD of PRS) of the disease trait PRSs, stratified by genetically
inferred ancestry, in different cohorts, for the Standard PRSs (A) and the Enhanced PRSs (B).
Results for non-European ancestries are shown if at least 100 cases are available for testing.
Performance (proportion of variance in trait explained by PRS, r2) of the quantitative trait PRSs,
stratified by genetically inferred ancestry, for the Standard PRSs (C) and the Enhanced PRSs (D). r2

was used as the performance metric because not all cohorts had information on participants’ age.
Bars indicate 95% confidence intervals. ARIC = Atherosclerosis Risk in Communities. DRIVE =
Discovery, Biology, and Risk of Inherited Variants in Breast Cancer. eMERGE = Electronic Medical
Records and Genomics Network. IPM = Institute for Personalized Medicine BioMe Biobank Project.
JHS = Jackson Heart Study. MEC = Multi-Ethnic Cohort. MESA = Multi-Ethnic Study of
Atherosclerosis. OLA = Omics in Latinos component of the Hispanic Community Health Study / Study
of Latinos Project. ROOT = GWAS of Breast Cancer in the African Diaspora (ROOT) study. UKB = UK
Biobank. Refer to Figure 1 and 2 for disease and quantitative trait abbreviations respectively.
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Supplementary Figure 15. Schematic workflow for the generation and standardised evaluation
of the UK Biobank PRS Release. UK Biobank phenotype definitions were developed for 28 diseases
(binary case/control status) and 25 quantitative traits, and then applied to internal GWAS generation
and standardised PRS evaluation. GWAS datasets were identified and meta-analysed to generate
input data for the UK Biobank PRS Release. Where sufficient external GWAS data were available for
a trait, a ‘Standard’ polygenic score was generated for every UK Biobank participant. For all traits, an
internal GWAS was generated using the previously described White British Unrelated (WBU) subset
of UK Biobank 1, and meta-analysed with other GWAS data to generate an ‘Enhanced’ polygenic
score for every participant in the UK Biobank Testing Subgroup. An independent multi-ancestry UK
Biobank Testing Subgroup was used for reporting standardized performance and QC outputs. EUR =
European ancestry. SAS = South Asian ancestry. EAS = East Asian ancestry. AFR = African
(Sub-Saharan) ancestry. Refer to Figure 1 and 2 for disease and quantitative trait abbreviations
respectively.
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