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Abstract
We present and assess the UK Biobank (UKB) Polygenic Risk Score (PRS) Release, a set
of PRSs for 28 diseases and 25 quantitative traits being made available on the individuals in
UKB. We also release a benchmarking software tool to enable like-for-like performance
evaluation for different PRSs for the same disease or trait. Extensive benchmarking shows
the PRSs in the UKB Release to outperform a broad set of 81 published PRSs. For many of
the diseases and traits we also validate the PRS algorithms in other cohorts. The availability
of PRSs for 53 traits on the same set of individuals also allows a systematic assessment of
their properties, and the increased power of these PRSs increases the evidence for their
potential clinical benefit.
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Introduction
Polygenic risk scores (PRSs) provide a personalised measure of genetic liability of disease,
combining genetic risk information from across the genome 1,2. PRS scores can also be used
to measure the genetic contribution to quantitative traits (for simplicity, we also use the term
PRS here for such traits). The field is growing rapidly, with advances in methods 3, reporting
standards 4, and cataloguing 5,6. There is also mounting evidence for their clinical utility 7. For
example, a PRS algorithm for coronary artery disease has similar predictive power to LDL
cholesterol 8, an established clinical risk factor, while PRS algorithms for coronary artery
disease 9 and for breast cancer 10 have been shown to identify groups with equivalent risk to
clinically relevant rare variant carriers. There has been extensive recent interest in PRSs,
with a large number now available; in some cases more than 100 PRS algorithms have been
published for the same disease 6.

Prospectively collected biobanks such as UK Biobank 11 (UKB) play an important role in
enabling PRS development, evaluation, and application 12. They can provide data for PRS
training, but more importantly they provide large representative population samples for
evaluation of PRS scores in multiple contexts, including ancestry. They also provide a broad
base of other clinical and biomolecular information, both to train and evaluate multi-factor
clinical risk models and for other research applications 13–17. To enable PRS research and
development, we present the UK Biobank PRS Release, which comprises well-powered
PRS scores for 28 diseases and 25 quantitative traits, together with associated data and
analysis. We present two PRS sets, a Standard Set with scores calculated for all individuals
in UKB, trained on external data only, and an Enhanced Set calculated for a Testing
Subgroup of 104,231 individuals in UKB, which has the advantage of being trained on
external data plus additional training data from a separate subgroup of UKB.

A level playing field is essential for fair comparisons and evaluations of PRS performance 18.
Reported performance can be influenced by many factors, including the choice of
performance metric, covariate adjustment, demographic and study properties of the
evaluation cohort, and decisions on how the phenotype was defined 12. These choices can
confound inferences about the performance of the underlying PRS algorithm or PRS
methodologies. To address these issues, we have built a unified pipeline for PRS evaluation,
constructing a standardised Testing Subgroup within UKB and a standardised set of disease
and quantitative trait definitions. We have made this pipeline available as an open source
tool within the UK Biobank Research Access Platform, along with the associated phenotype
definitions, to allow other researchers to check reported metrics and perform evaluations of
their own or others’ PRS scores against the UK Biobank Release. We have used this
pipeline to benchmark the UK Biobank PRS Release, comparing the Standard and
Enhanced PRS sets to each other and to 81 PRS scores from published algorithms, with
favourable results.

One recognised limitation of current PRSs is the effect of ancestry (herein, ‘ancestry’ refers
to genetically inferred ancestry) on PRS performance 19,20. Ultimately, a resolution to this
issue requires more representative training data, but in the short term there is a requirement
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for appropriate cross-ancestry measurement and reporting of PRS performance. Our
Comparison Tool allows such standardised measurement and reporting, and we use it to
quantify the diminution of performance in non-European ancestry individuals, for the UKB
PRS Release and for many other PRSs.

In order to understand generalisability in PRS performance, and as a check against any
UKB-specificity, we adapted the evaluation pipeline to apply it to other trait definitions and
testing sets in additional UK-based and US-based cohorts. Variation in phenotype definition
across cohorts, and countries, can confound performance comparisons in this context 12. We
found similar performance in the UK-based 100,000 Genomes Project dataset 21,22, which
shares the same UK national system for hospital records and which therefore provides some
measure of homogeneity in disease phenotype definition.

The predictive power of PRSs is one feature that affects their potential impact in healthcare.
The availability of a set of PRSs more powerful than most of those previously studied allows
a reassessment of aspects of this clinical potential. As earlier studies have observed 9,10,23–25,
we show that risk profiles of individuals with appropriately high PRS scores are similar to
those seen in carriers of known rare pathogenic variants, that these high-PRS individuals
account for a much higher fraction of disease, and of early onset disease, and that the PRS
score modulates the effect of rare pathogenic variants. The increased power of the PRSs
described here increases the quantitative impact of these effects.

Previous PRS studies have largely focussed on performance of a relatively small number of
traits. The availability of PRSs for 53 traits within a large, richly phenotyped cohort allows a
systematic assessment of their properties and provides an opportunity to explore a range of
PRS analyses, and draw cross-trait conclusions regarding PRS properties. In addition to
quantifying the effects of ancestry, sample size, and generalisability, we find that correlations
between PRS scores for different traits are generally low, and that PRS effect sizes are
usually larger in people of younger age. These resources should further enhance the UKB
resource, facilitate the ongoing improvement of PRS algorithms and methodologies,
particularly across genetic ancestries, and accelerate development and validation of new
research or clinical use cases for PRSs.

For clarity, in what follows we distinguish three closely related concepts. Throughout, we
use: (1) PRS score, or just PRS, for the score assigned to a particular individual; (2) PRS
algorithm for the function which calculates the PRS score from genetic data on an individual;
and (3) PRS methodology for the approach used to determine a particular PRS algorithm.

Results

Performance of the PRS Release in UK Biobank
We generated a Standard PRS Set, calculated on all UKB individuals, for 28 diseases and 8
quantitative traits, by meta-analysing multiple external GWAS sources (Supplementary
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Tables 1 and 2 and Supplementary Information). We also generated an Enhanced PRS Set,
calculated on individuals in the UKB Testing Subgroup only, for 28 diseases and an
expanded list of 25 quantitative traits, in which the underlying PRS algorithm was trained
from both external and a subset of UKB data (Supplementary Tables 3 and 4, UKB
phenotype definitions in Supplementary Table 5). To ensure uniformity of evaluation, the
performance of both PRS sets was evaluated on a standard array of metrics in the same
group of UKB testing individuals. The UKB Testing Subgroup (Supplementary Table 6)
comprised 82,346, 9,543, 9,478 and 2,864 individuals of predominantly European, South
Asian, African, and East Asian ancestry, respectively, and was designed to maximise the
representation of non-European ancestries. (Numbers of non-European ancestry individuals
were too small to provide well-powered training data.) Individuals in the Testing Subgroup
were selected to ensure no overlap with the previously defined White British Unrelated
(WBU) subgroup 11, which was used to contribute training data for the Enhanced PRS Set
(see Supplementary Information).

We quantify PRS performance in multiple ways. Cumulative incidence plots provide a useful
visual tool for comparing disease incidence over time among individuals grouped according
to their PRS for that disease. Notwithstanding known issues in UKB healthy bias 26 and
underreporting of some diseases (e.g. type 2 diabetes is reported mainly from primary care
records, which are only available for ~40% of UKB participants), Figure 1 reveals large
differences in disease incidence across ages for groups defined by the Enhanced PRS Set,
further emphasising the potential of PRSs for powerful individual risk stratification.

Figure 2 and Supplementary Tables 7 and 8 quantify performance properties of the
Enhanced PRS Set, for disease and quantitative traits, in the Testing Subgroup.
Performance is assessed across multiple ancestries, subject to a minimum threshold on
case numbers, as reliable performance metrics cannot be evaluated in some ancestries for
diseases which are rare in UKB. In individuals of European ancestry, performance in disease
traits (measured by odds ratio per SD of PRS, from logistic regression adjusting for age and
sex) was variable, ranging from 3.87 (type 1 diabetes) to 1.39 (epithelial ovarian cancer),
with median 1.85. Performance in quantitative traits in individuals of European ancestry
(measured by effect on standardised trait per SD of PRS, from linear regression adjusting for
age and sex) ranged from 0.427 (estimated BMD T-score) to 0.230 (docosahexaenoic acid),
with median 0.274. Similar patterns were seen for the Standard PRS Set (Supplementary
Figure 1 and Supplementary Tables 7 and 8), and also when performance was evaluated on
the disease traits using the area under the receiver operating characteristic curve (AUC) as
an alternative performance metric (Supplementary Figure 2 and Supplementary Table 7).

As previously reported for other PRSs 19,20, performance in individuals of non-European
genetic ancestry was lower than in those of European ancestry (Figure 2B and 2D).
Averaging across all diseases, the odds ratio per SD of PRS reduced by 9.1% in individuals
of South Asian ancestry (95% CI 5.7-12.5%), and by 14.3% in individuals of East Asian
ancestry (95% CI 5.1-23.4%). Consistent with previous observations, the largest reduction
was in individuals of African ancestry (27.6%, 95% CI 23.8-31.4%). Reductions in effect per
SD were numerically larger for the 25 quantitative traits (Figure 2D), but because OR per SD
and effect per SD are on different scales 27, changes for the quantitative traits cannot be
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compared to those for the disease traits. Averaging across all quantitative traits, the effect
size of the PRS reduced by 18.1% in individuals of South Asian ancestry (95% CI
13.6-22.6%), 26.6% in individuals of East Asian ancestry (95% CI 21.7-31.6%), and 46.1%
in individuals of African ancestry (95% CI 40.7-51.6%).

As expected, the Enhanced PRS Set outperformed the Standard PRS Set (Supplementary
Figure 3, Supplementary Table 9).  Comparing the two types of PRS for 28 diseases and 8
quantitative traits, there were 27 instances where the Enhanced PRS significantly
outperformed (at a nominal 5% level) the Standard PRS in European ancestry individuals,
and no instance where the Standard PRS significantly outperformed the Enhanced PRS
(median increase in Enhanced relative odds ratio = 1.03, range 0.97-1.16). In a separate
comparison, looking across diseases, the relationship between training sample size and
predictive performance was noisy (Supplementary Figures 4 and 5), suggesting that other
trait-specific factors, such as heritability, genetic architecture, and prevalence, are also
important in determining performance 12,28.

We benchmarked the UK Biobank PRS Release against PRS scores generated from 81
published algorithms, across a range of disease and quantitative traits (Figure 3 and
Supplementary Tables 7, 8, 9 and 10). Among European ancestry individuals, the Enhanced
PRS Set in the UKB Release significantly outperformed (at a nominal 5% level) all
comparator PRSs for all disease traits apart from systemic lupus erythematosus,
cardiovascular disease, Parkinson’s disease, and epithelial ovarian cancer, and for all
quantitative traits apart from total cholesterol. For these latter diseases, with one exception
(epithelial ovarian cancer), the point estimate for performance of the Enhanced PRS was
greater than all comparator PRSs.

We noted above that absolute performance of the UK Biobank PRS Release was reduced in
non-European ancestries. This is also true of the comparator PRSs. When compared within
each ancestry group, the UK Biobank PRS Release performed favourably across all traits
relative to comparator PRSs (Supplementary Figures 6 and 7). We also note that differences
in absolute risk can sometimes compensate for differences in discriminatory performance.
For example, the odds ratio per SD of the Enhanced PRS for type 2 diabetes is lower in
individuals of South Asian ancestry (OR per SD = 1.87, 95% CI 1.77-1.98), compared to
European ancestry (OR per SD = 2.28, 95% CI 2.21-2.35). But because the disease is more
prevalent in South Asian ancestry individuals, there is a bigger separation in absolute risk
between the top and bottom 3% of the PRS distribution in South Asian compared to
European ancestry individuals (Figure 4).

PRS risk profiles compared to high-risk variant carriers
Health systems already use genetics to identify individuals at increased risk of particular
diseases, including some common diseases (e.g. breast cancer and heart disease), but to
date this has focussed on carriers of high-risk rare mutations 29,30. PRS scores provide a way
to measure a separate component of genetic risk, via the accumulation of many small-effect
common variants, and so it is of interest to compare the risk profiles of these two
components. Taking familial hypercholesterolemia (FH) and breast cancer (BC) as
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examples, and following previous work 9,10, we find that individuals possessing high PRS
scores have a cumulative incidence risk profile similar to carriers of high-risk variants in
known functional genes identified from available whole exome sequencing in the same
cohort.

Our analysis of UKB shows that the risk by age 70 of coronary artery disease (CAD) for
carriers of a pathogenic or likely-pathogenic mutation in one of the four major FH genes is
13.0% (95% CI 10.0-15.9%), in line with previous studies 31,32 (see Supplementary Materials
for definition of mutation carriers). A similar risk is seen in individuals who are in the top 19%
of the CAD Enhanced PRS distribution (risk by age 70 = 14.2%, 95% CI 13.6-14.9%, Figure
5A). Risks are higher both for mutation carriers and for high PRS individuals who are not
using statins for primary prevention 33. Restricting the analyses to the subset of 176,564
participants for whom primary care prescribing data are available and who have no recorded
statin prescription (other than prescriptions following a CAD diagnosis), the risk to age 70 in
carriers is 17.3% (95% CI 10.0-23.9%), which is similar to that seen in statin-free individuals
in the top 8% of the Enhanced PRS distribution (risk by age 70 = 18.1%, 95% CI
16.2-20.0%, Figure 5B and Supplementary Table 11). (Note that all analyses here have
caveats. For example while FH carriers not on statins will have a higher CAD risk, these
individuals might tend to have lower cholesterol levels to have avoided statin prescription, an
effect which will tend to reduce their CAD risk compared to other FH carriers.)

For the example of female breast cancer, the top 0.2% of the breast cancer Enhanced PRS
distribution is associated with an equivalent level of lifetime risk to deleterious mutations in
the BRCA1/2 genes. If we instead consider breast cancer-associated mutations across a
broader range of genes (ATM, BRCA1, BRCA2, CHEK2 and PALB2), the carrier risk is
equivalent to the top 3% of the PRS distribution (Supplementary Figure 8, see
Supplementary Materials for definition of mutation carriers).

Previous studies 9,10 have shown that individuals at equivalently high risk due to PRS
typically outnumber high-risk variant carriers, often massively so. Focusing on non-statin
users, and on the individuals in the top 8% of the Enhanced UKB CAD PRS distribution with
similar lifetime CAD risk to FH carriers (combined carrier frequency 0.22%), the high PRS
group accounts for between 18 and 30 times the number of CAD events, depending on age
(Figure 5C). Both high PRS and FH mutation carriers convey a higher risk at younger ages
(Supplementary Figure 9), but the effect is stronger for FH carriers, explaining the reduced
ratio when restricted to age less than 50.

Following previous work 23–25, we also find that carriers of high-risk variants can have their
disease risk further modulated by their PRS score (Figure 5D), providing one explanation for
the phenomena of incomplete penetrance and variable expressivity 34. The more-powerful
PRSs described here should have a larger effect in modulating the impact of rare variants
than has previously been observed.
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PRS risk profiles with age
Cumulative incidence plots across multiple traits and ancestries (Figure 1 and
Supplementary Figures 10 and 11) indicate that people with high PRS are at elevated risk of
disease throughout the lifecourse, and this observation, coupled with the fact that a person’s
PRS score is invariant and can be measured early in life, could be clinically relevant, given
that identifying high-risk individuals at younger ages is often challenging via other methods.
There is, additionally, evidence for age-dependent PRS performance in some diseases, with
a tendency for greater discrimination at younger ages 35, and this could add further weight to
the use of PRS for risk identification in younger people. We are now able to assess this
question systematically for 28 diseases. Figure 6 shows that many of the diseases in the UK
Biobank PRS Release display evidence for larger PRS effect size (log hazard ratio per SD of
PRS) in younger compared to older individuals in UKB (9 out of 23 diseases with nominal
significance, 13 consistent with the null of no age effect and 1 (age-related macular
degeneration) with nominal significance in the other direction). This supports earlier
observations 35, and may point to a general principle that environmental effects on disease
risk are more cumulative than genetic effects over the lifecourse.

Multivariate PRS properties
We assessed PRS correlations across the 53 diseases and quantitative traits in the UKB
PRS Release. Correlations between PRS scores for the disease traits are generally low
(Supplementary Figure 12, Supplementary Tables 12 and 13). The only disease-disease
correlations greater than 0.5 are between coronary artery disease and cardiovascular
disease (r = 0.80, Enhanced Set), hypertension and ischaemic stroke (r = 0.78, Enhanced
Set) and Crohn’s disease and ulcerative colitis (r = 0.54, Standard/Enhanced Set).
Correlations among PRSs for quantitative traits are stronger, with strong correlations in
particular among the traits related to lipid biology, and with the strongest correlation between
phosphatidylcholines and phosphoglycerides (r = 0.99, Enhanced Set). The only correlation
greater than 0.5 between a disease trait and a quantitative trait is between primary open
angle glaucoma and intraocular pressure, a known major risk factor (r = 0.62, Enhanced
Set). Comparing the Enhanced PRS for coronary artery disease to Enhanced PRSs for
known risk factors, the correlation with the LDL cholesterol PRS is 0.21, while the correlation
with the body mass index PRS is 0.16. Despite generally low correlations, clustering of traits
by PRS scores generates relationships consistent with known biology (Supplementary
Figure 12). For example, type 2 diabetes clusters with body mass index (r = 0.31, Enhanced
Set) and glycated haemoglobin (r = 0.31, Enhanced Set).

The relatively low between-PRS correlations suggest that multi-PRS prediction models could
be useful for analyses of general mortality. Following previous work 14,36, we carried out a
stepwise regression of time from first assessment to death from any cause, using all
Standard Set disease and quantitative trait PRS scores (use of the Standard Set allowed
UKB WBU to be used for training the model; see Supplementary Information). As an
encouraging sanity check, we found the expected 2:1 relationship between PRS effect size
on participants’ own mortality compared to that of their parents (Supplementary Figure 13).
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PRS scores for common diseases including coronary artery disease (hazard ratio per SD =
1.05, 95% CI 1.03-1.07) and ischaemic stroke (hazard ratio per SD = 1.06, 95% CI
1.04-1.09) were significant determinants of all-cause mortality, as was the PRS for body
mass index (hazard ratio per SD = 1.06, 95% CI 1.04-1.08). The PRS for HDL cholesterol
(hazard ratio per SD = 0.98, 95% CI 0.96-1.00) was a notable protective factor. The model
including all the PRS risk factors in Supplementary Figure 13, trained in the WBU subgroup
and tested in the Testing Subgroup, was a significantly better predictor of mortality than a
model including age-at-first-assessment and sex only both for own mortality (change in
Harrell’s C = 0.0041, 95% CI 0.0021-0.0059, p = 3.5x10-5) and for parental mortality (change
in Harrell’s C = 0.0065, 95% CI 0.0059-0.0071, p = 2.1x10-93, where the model was adjusted
for the participant’s age-at-first-assessment and for the parent’s sex). However, the amount
of variation explained by the model was low (Royston’s 37 measure of explained variation =
1.8% for the PRS-only model on participants’ own mortality), suggesting the model is useful
more for biological insight than direct prediction.

Validation of the PRS algorithms in other cohorts
The previous sections have validated the PRS scores as powerful predictors of disease and
quantitative traits in UK Biobank. To further validate the PRS algorithms (and implicitly the
methodology that generated them), and to guard against UKB specificity of results, we
examined their performance in other cohorts. We investigated cohort specificity by applying
our PRS algorithms for 12 diseases to an external evaluation dataset. The 100,000
Genomes Project 21,22 (100KGP) is similar to UK Biobank in being UK-based (specifically,
England-based), with linkage to the same UK electronic healthcare record system, but is
different in being recruited either via genetic disorder probands or cancer diagnosis, and in
being genetically assayed via whole-genome sequencing rather than array-based
genotyping. We selected a subgroup of unrelated 100KGP individuals, excluding those with
rare genetic or comorbid disorders (see Supplementary Methods). Despite the differences in
cohort characteristics, we found predictive performances to be similar (Figure 7; Pearson r
(logOR per SD, Enhanced PRS) = 0.948; Pearson r (logOR per SD, Standard PRS) =
0.971). The only disease with a significant difference in logOR per SD (at nominal 5% level)
was atrial fibrillation, which had a higher performance in 100KGP than in UKB for both the
Enhanced PRS (OR per SD (100KGP) = 2.18 (95% CI 2.01-2.35); OR per SD (UKB) = 1.93
(95% CI 1.86-1.99)) and the Standard PRS (OR per SD (100KGP) = 2.06 (95% CI
1.89-2.22); OR per SD (UKB) of 1.81 (95% CI 1.74-1.87)).

We extended our cross-cohort comparisons to additional, primarily US-based, cohorts
across multiple genetically inferred ancestries (Supplementary Figure 14 and Supplementary
Tables 6, 7 and 8). There is a similar pattern between Enhanced and Standard PRS
performance, but some traits (for example, hypertension, venous thromboembolic disease,
and age-related macular degeneration) show considerable cross-cohort heterogeneity,
underlining the role that cohort-specific factors can play in predictive performance, and
reinforcing the need for a standardised comparison framework when evaluating predictive
performance. Heterogeneity has also been observed in other cross-cohort comparison
studies 12.
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Discussion
The availability of population-scale biobanks has generated unparalleled opportunities to
create and evaluate genetic tools for predicting disease and quantitative traits in real-world
settings 12. We have provided a platform for such research, by providing powerful PRS
scores for 28 diseases and 25 quantitative traits in UK Biobank.

Validating PRS performance, or comparing the performance of different PRS algorithms, is
challenging, because performance is context specific. The primary requirement is for a ‘level
playing field’, to correct for cohort-specific and design-specific factors such as phenotype
definition and other cohort characteristics 12. We have developed and made available a PRS
evaluation tool to address this requirement. It enables robust and like-for-like comparisons of
the predictive performance of different PRS scores in UKB. It should facilitate the ongoing
development of PRS algorithms by the research community.

Our comparisons show the Enhanced PRS scores released in UKB to be more powerful, in
European-ancestry and in non-European ancestry individuals, than almost all of those in a
large comparator set of 81 previously released PRSs across these traits. The observation of
similar performance in a separate UK cohort (the 100,000 Genomes Project) further
validates the algorithms underlying the PRSs released in UKB. Performance across a set of
non-UK cohorts remained generally powerful, but was more heterogeneous, likely resulting
from confounding with cohort-specific differences, including phenotype definition. We
anticipate the extension of multiple PRS Releases and evaluation tools to other cohorts, to
enable effective cross-cohort analyses. We note that these tools will become especially
valuable as PRS algorithms themselves move beyond simple linear combinations of variant
weights, and towards other algorithmic forms with pre- and post-processing steps 3.

The availability of powerful PRSs for 53 traits on the same large set of extensively
characterised individuals allowed a systematic study of PRS properties. PRS performance
differs substantially across the diseases studied, presumably due, amongst other things, to
differences in GWAS sample size 38 and genetic architecture across diseases (for example,
ischemic stroke is a collection of multiple subtypes which have differing genetic risk factors
39, meaning that an algorithm that generates a single PRS for this compound phenotype will
have reduced power). With a few unsurprising exceptions, within-individual pairwise
correlations of PRS scores are low. The correlation between the Enhanced coronary artery
disease (CAD) PRS and the Enhanced PRSs for known quantitative risk factors for CAD
(e.g. LDL cholesterol: r = 0.21; body mass index: r = 0.14) are also not appreciable. Many
PRSs show evidence for larger effect sizes for younger, compared to older, individuals in
UKB.

One critical aspect is PRS performance in different ancestry groups 19,20. We developed our
PRS evaluation tool with this in mind, maximising the non-European ancestry representation
in the Testing Subgroup of UKB and reporting ancestry-specific results for all analyses with
sufficient case data. We confirmed and quantified the widely-observed diminution of
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performance across ancestries, with average decrease in disease OR per SD of 9.1%,
14.3%, and 27.6%, respectively for South Asian, East Asian, and African ancestry
individuals respectively, relative to the performance in European ancestry individuals. Clearly
there is an urgent need for additional GWAS data in non-European ancestry individuals,
through further studies, and where possible, release of summary statistics from existing
studies, to improve PRS training data, and for improved PRS methodologies to further
reduce performance differences across ancestries. We note that PRSs nonetheless have
predictive power across all ancestries, and that the predictive power of the UKB Enhanced
PRS in African-ancestry individuals for some diseases (e.g. type 2 diabetes or prostate
cancer, with OR per SD of 1.48 (95% CI 1.40-1.56) and 1.56 (95% CI 1.38-1.76)
respectively) are larger than those for European ancestry individuals for other diseases (e.g.
cardiovascular disease or age-related macular degeneration, with OR per SD of 1.53 (95%
CI 1.50-1.57) and 1.47 (95% CI 1.40-1.54), respectively). Further, differences in baseline risk
in different ancestries can mean that, notwithstanding diminished PRS performance,
high-PRS individuals in a particular non-European ancestry can be at higher levels of
absolute risk than similarly high-PRS individuals of European ancestry (recall Figure 4,
which shows much higher risk for type 2 diabetes for similar levels of PRS in South Asian,
compared to European ancestry individuals in UKB). Discussion of the application of PRS in
different groups should incorporate differences in disease specific performance, but also in
baseline disease rates. One limitation of our cross-ancestry analysis is that it reflects the
representation in UKB of these non-European groups, which will not necessarily be the
same as that in other cohorts. Small numbers of cases for rarer diseases also precluded
some comparisons.

Many health systems currently have active programmes to identify carriers of rare,
high-penetrance, mutations which increase risk for common diseases, such as familial
hypercholesterolemia (FH) for CAD, mutations in ATM, BRCA1/2, CHEK2, and PALB2 for
breast cancer, and Lynch syndrome for bowel cancer. As others have noted 9,10, it is now
possible to identify a different set of individuals, with equivalent levels of risk to that of rare
mutation carriers, where the risk is also genetic, but driven by the cumulative impact of large
numbers of common variants. Continuing improvement in PRS methodology and training
data will further increase the proportion of individuals in the population at levels of risk which
would attract attention in health systems if due to rare variants. For example, with the UKB
Enhanced CAD PRS we have shown that the top 8% of individuals have the same level of
CAD risk as FH mutation carriers (comparing individuals in UKB not on statins).

It seems untenable in the long term to offer interventions or enhanced screening to one
group of individuals at high risk because of genetics but not to another, just because the
variants contributing to risk are different. This supports the case for an equivalence-of-risk
principle, in which risk-based screening guidelines developed for the management of
high-risk variant carriers 29,30 can be extended to cover individuals with equivalent risk based
on their PRS. Further, the high-PRS individuals account for many fold more disease events
9,10, an effect which will also increase as the power of PRSs continues to improve. For
example, in the FH example, the high PRS group is responsible for up to 30-fold more
disease events compared to FH carriers. Increasing detection of FH carriers is,
appropriately, a focus of many health systems (e.g. a key metric in the current 10-year plan
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for the UK NHS is to increase detection from current levels of 7% to at least 25%) 40. These
results suggest that a parallel approach to detecting high-risk individuals via PRS could have
an even greater impact on disease prevention.

The UK Biobank PRS Release provides well-validated PRS scores across multiple traits,
and provides opportunities for subsequent research, but we expect that they will evolve in
time, and will be improved upon. We have provided a comparative evaluation tool in the
expectation that better PRS scores will be developed, as data and methodologies improve.
We plan regular updates to the PRS Release, both to improve on performance and to
expand the list of traits. In this way, we anticipate the UK Biobank PRS Release will provide
an ongoing platform of powerful polygenic risk scores, to enable continuing research and
clinical model development.

Methods
Please refer to Supplementary Materials.
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Figures

Figure 1. Cumulative incidence plots illustrating the predictive performance of the UK Biobank
PRS Release for 28 diseases in European ancestry individuals (Enhanced Set). Each plot shows
the estimated percentage of individuals diagnosed with a specific disease by a given age, for three
groups within the UKB Testing Subgroup defined only by their PRS scores. Colours indicate the
highest 3% (red), median 40-60% (green) and lowest 3% (blue) of the Enhanced PRS distribution. M
= male, F = female. Shadings indicate 95% confidence intervals. Type 1 diabetes age range has been
widened to reflect early onset. AMD = age-related macular degeneration. CAD = coronary artery
disease. POAG = primary open angle glaucoma. SLE = systemic lupus erythematosus. VTE = venous
thromboembolic disease. Throughout, ovarian cancer refers specifically to epithelial ovarian cancer.
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Figure 2. Predictive performance of the UK Biobank PRS Release (Enhanced Set) by ancestry.
Performance (odds ratio, or effect on standardised quantitative trait, per SD of PRS, adjusting for age
and sex), measured in the independent UKB Testing Subgroup, of the disease traits (A) and
quantitative traits (C), stratified by genetically inferred ancestry. Results for non-European ancestries
are shown if at least 100 cases are available for testing. Relative change in performance in
non-European ancestries compared to European ancestry for disease traits (B) and quantitative traits
(D). Bars indicate 95% confidence intervals (CI). eGFR = estimated glomerular filtration rate. BMD =
bone mineral density. HDL/LDL = high/low density lipoprotein. PUFAs = polyunsaturated fatty acids.
Refer to Figure 1 legend for disease abbreviations.
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Figure 3. Predictive performance of the UK Biobank PRS Release against published
comparator PRSs. Performance (odds ratio, or effect on standardised quantitative trait, per SD of
PRS, adjusting for age and sex) in the independent UKB Testing Subgroup (European ancestry) of the
Enhanced PRS sets for disease traits (A) and quantitative traits (B), for those traits for which there are
published PRS algorithms (citations provided in Supplementary Table 10). Bars indicate 95%
confidence intervals, the log scale makes these larger and asymmetric for lower values in panel B.
Asterisks indicate significance level for difference in effect size between the Enhanced PRS and the
nearest comparator PRS (5000 bootstraps): * p<0.05, ** p<0.01, *** p<0.001. Wheeler-E-A,
Wheeler-E-E and Wheeler-E-EA refer respectively to the African, European and East Asian ancestry
versions of the Wheeler 2017 PRSs for glycated haemoglobin using erythrocytic variants.
Wheeler-G-A, Wheeler-G-E and Wheeler-G-EA refer respectively to the African, European and East

Page 19 of 24

 . CC-BY 4.0 International licenseIt is made available under a 
perpetuity. 

 is the author/funder, who has granted medRxiv a license to display the preprint in(which was not certified by peer review)preprint 
The copyright holder for thisthis version posted August 1, 2022. ; https://doi.org/10.1101/2022.06.16.22276246doi: medRxiv preprint 

https://doi.org/10.1101/2022.06.16.22276246
http://creativecommons.org/licenses/by/4.0/


Asian ancestry versions of the Wheeler 2017 PRSs for glycated haemoglobin using glycemic variants.
Refer to Figure 1 and 2 for disease and quantitative trait abbreviations respectively.
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Figure 4. Cumulative incidence of type 2 diabetes, by ancestry, Enhanced PRS Set. Evaluated in
the UKB Testing Subgroup. A. European ancestry (EUR). B. South Asian ancestry (SAS). Shaded
areas indicate 95% CI.
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Figure 5. PRS risk profiles compared to functional variant carriers. A Cumulative incidence of
coronary artery disease (CAD) for 656 carriers (0.35% of evaluation group) of pathogenic or
likely-pathogenic mutations in FH genes (APOB, APOE, LDLR or PCSK9) (red, evaluated in UKB
European ancestry individuals for whom whole exome sequencing data were available), compared to
individuals in the top 19% percent of the Enhanced CAD PRS distribution (blue) (percentile chosen
such that the risk up to age 70 is similar to that for mutation carriers), and the median 40%-60% of the
PRS (green). The PRS risks are evaluated in the UKB Testing Subgroup (European ancestry). B
Cumulative incidence of CAD for 164 carriers (red, 0.22% of restricted evaluation group of individuals
with primary care data linkage and no recorded statin prescription prior to CAD event), compared to
individuals in the top 8% percent of the Enhanced CAD PRS distribution (blue) and the median
40%-60% of the PRS (green). The PRS risks are evaluated in the UKB Testing Subgroup (European
ancestry), additionally restricted to individuals with no recorded statin prescription prior to CAD event.
C Percentage of CAD cases diagnosed in individuals aged <50, <60, or <70 years that occurred in
carriers of pathogenic or likely pathogenic FH gene mutations (red) or in individuals in the top 8% of
the Enhanced PRS distribution (blue), restricted to individuals with no recorded statin prescription
prior to CAD event. The ratio between the number of high PRS cases and mutation carrier cases in
each age group is shown on the plot. D Cumulative incidence plots for carriers of pathogenic or likely
pathogenic mutations in FH genes (not restricted to individuals with no statins use), with additional
stratification by the top 10% (red), median 40%-60% (green), and bottom 10% (blue) of the Standard
CAD PRS (the Standard PRS is used here to maximise the number of individuals with both whole
exome sequencing data and a PRS value available for analysis). Bars and shadings indicate 95% CI.
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Figure 6. Change in PRS effect size with age. Difference in PRS effect size (log hazard ratio per
SD of PRS, based on incident events over the next 10 years) between younger (40-49) and older
(60-69) age-at-first-assessment groups. Standard PRSs are presented and evaluated in all UKB to
maximise case numbers, for all diseases except Alzheimer’s disease, asthma, psoriasis,
schizophrenia and type 1 diabetes, which primarily develop outside the UKB age range. Bars indicate
95% CI. Refer to Figure 1 for disease abbreviations.
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Figure 7. Comparative predictive performance in UK Biobank and 100,000 Genomes Project.
Performance (OR per SD) across 12 diseases in the UK Biobank Testing Subgroup and selected
individuals of European ancestry from the 100,000 Genomes Project (selected to be free of rare
genetic and comorbid disorders). Coloured bars show the 95% CI of the OR per SD. Grey bars show
the 95% CI of the change in logOR per SD between the two cohorts. Grey bars that intersect the 1:1
slope (dotted line) indicate non-significance (at 5% level) of the hypothesis that the performance in the
two cohorts is different (true for all diseases except atrial fibrillation in both panels). A Enhanced
PRSs. B Standard PRSs. Refer to Figure 1 for disease abbreviations.
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