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Abstract

Although face mask-wearing has been adopted throughout the U.S. to prevent the spread of COVID-19,
reliable spatial estimates of mask-wearing through different phases of the pandemic do not yet exist. Using
8+ million survey responses, survey raking, and debiasing with ground-truth data on a different mitigation
behavior, we generate fine-scale spatiotemporal estimates of mask-wearing across the U.S. from September
2020 to May 2021. We find that county-level masking behavior is spatially heterogeneous along an urban-
rural gradient and moderately temporally heterogeneous. Because these survey data could be prone to social
desirability and non-response biases, we evaluate whether a question about community mask-wearing could
be a less biased alternative and find support for this social sensing approach to behavioral surveillance. Our
work highlights the need to characterize public health behaviors at fine spatiotemporal scales to capture
heterogeneities driving outbreak trajectories, and the role of behavioral big data to inform public health
efforts.

Keywords: COVID-19, face mask, non-pharmaceutical interventions, spatiotemporal, United States, survey
bias

Introduction

Human behavior plays a key role in infectious disease transmission [1, 2]. Individuals’ decisions to get
vaccinated, reduce their contacts, or wear a face mask, for example, can have a tremendous impact on
disease dynamics [3, 4, 5]. The COVID-19 pandemic has highlighted that we are grossly limited in our
ability to accurately measure and predict human behavior in the face of a novel pathogen. Yet knowledge of
how human behaviors vary over time and space is critical to assess the effectiveness of mitigation strategies,
to forecast disease surges, and to parameterize coupled disease-behavior models [6]. In particular, there is
a paucity of data on how the frequency of face mask-wearing varies across the U.S. over different phases of
the pandemic. This lack of fine-scale spatiotemporal data has forced public health organizations to adopt an
inefficient one-size-fits-all approach to encourage masking nationwide, rather than directing resources and
messaging to areas with lowest uptake. Here, we identify spatiotemporal trends in self-reported data on
mask-wearing behavior across the U.S. from a large survey distributed from September 2020 to May 2021.

Mask-wearing has been identified as an effective strategy to reduce transmission of SARS-CoV-2. At the
individual level, masks decrease both the amount of viral particles dispersed by an infectious wearer and
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inhaled by an uninfected wearer [7]. Modeling studies at the population-level (e.g., [4, 8, 9]) have suggested
that mask-wearing can limit SARS-CoV-2 transmission and COVID-19 deaths, including under scenarios
where masks aren’t worn universally or aren’t completely effective at blocking transmission. Randomized
controlled trials (e.g., [10]) have also demonstrated that mask-wearing is an effective community-level inter-
vention against COVID-19. Despite limited information at the time, the Centers for Disease Control and
Prevention (CDC) initially recommended mask-wearing on April 3, 2020 [11]. Lack of a national mandate,
though, resulted in a heterogeneous landscape of mask policies across states, counties, towns, and even
individual businesses in the U.S. [12, 13]. Compounded with this spatial heterogeneity in mandates is ad-
ditional heterogeneity in compliance, documented by localized observational studies (e.g., [14]). Collection
of systematic, accurate data on mask-wearing levels across the U.S. is therefore essential to informing our
understanding of the role of mask-wearing in the U.S. COVID-19 pandemic trajectory.

To address this gap, researchers and organizations have implemented extensive surveys on human behavior,
including mask-wearing (e.g., [15, 16, 17]). These surveys hold exciting promise, yet they have contributed
relatively little to our understanding of human behavior due to significant sampling limitations. Larger
surveys with sufficient power to detect trends at local geographic scales are often not designed to capture a
representative sample of the population. Demographic biases arising from a non-representative sample can
be addressed with standard statistical tools such as survey weights, but other forms of bias, particularly
non-response and social desirability bias, are more challenging to correct. Surveys about salient public
health issues are especially likely to suffer from response bias; COVID-19 cautious individuals may be
overrepresented in a survey about COVID-19 behavior. However, without estimates of the proportion of
individuals in a given region that are COVID-19 cautious, there is no way to use survey weights on this
demographic. Likewise, respondents may be influenced by social desirability bias when self-reporting COVID-
19 preventive behaviors such as vaccination, social distancing, or mask-wearing so that they respond in a
manner deemed favorable by society despite being inaccurate. Without observational or ground-truth data
to validate survey responses, quantifying this social desirability bias is difficult. Furthermore, it is critical
that ground-truth data to correct biases in health behavior be used at a fine spatial and temporal scale to
avoid further exacerbation of biases (e.g., [18]).

The value of surveys on public health behaviors can be further restricted when data collection is at the
national or state level. Coarse-grained spatiotemporal information on human behavior is of limited utility,
providing only sparse insight into local trends. Collecting responses at the national or state level ignores
spatial heterogeneity at these finer scales, preventing the identification of these local effects that can drive
disease dynamics. Spatial heterogeneity in not only drivers of disease transmission like human behavior,
but also disease prevalence, has been well-documented across pathogens (e.g., [19, 20, 21]). For example,
differences in connectivity between counties or states can affect the timing and geographic scale of disease
spread, while national scale mobility data elides these key patterns [22, 23]. Likewise, aggregation of vac-
cination data to the state level can hide spatial clustering of unvaccinated individuals, which undermines
herd immunity and could drive sustained measles outbreaks in the U.S. [24, 25]. Despite the importance of
detailed local estimates on drivers of disease incidence, few studies have analyzed human behavior during the
COVID-19 pandemic nationally at these fine spatial scales. Furthermore, most surveys are not conducted
for long enough to capture human behavior changes over time, leaving scant opportunity to assess the effects
of changing public health messaging/guidance or disease prevalence on human behavior.

Here, we systematically characterize mask-wearing across the United States at a fine spatiotemporal scale
for nine months using a national survey and account for the bias in this survey. By comparing survey
demographics and vaccination statuses with accurate ground-truth data, we estimate and account for survey
and response biases in our analysis of masking behavior. With these bias-corrected estimates, we characterize
the spatiotemporal heterogeneity in masking behavior at the county-month level across the U.S. Finally,
we examine the differences between self-reported and community-reported estimates of masking using an
additional survey question, seeking to understand whether these two measures are good predictors of one
another. Our results are the most precise estimates of masking in the United States during the COVID-
19 pandemic, providing insight into local variation in behavior in response to public health messaging and
changes in COVID-19 incidence.
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Results

To characterize trends in masking behavior in the United States during the COVID-19 pandemic we used
data from the COVID-19 Trends and Impact Survey (CTIS) conducted via Facebook from September 2020
through May 2021. Respondents self-reported how often they had worn a mask while in public in the last
week (8,338,877 valid responses). We transformed these responses into a binary variable of masking or
not masking and aggregated the responses to the county-month level to analyze spatiotemporal trends. To
validate this data source, we analyzed a separate dataset from Outbreaks Near Me and found consistent
spatiotemporal patterns (Figs. S14, S15, S16), though both data sources suffer from issues of bias and
low sample size. We addressed these issues in the CTIS data using binomial regression models to inform
estimates of masking in counties with low sample size, and raking and sample rebalancing on age, gender,
and education to adjust for unrepresentative samples. After finding that responses to a different CTIS
question overestimated true vaccination rates (corroborating the finding of [18]), we quantified this bias and
used it to correct estimates of masking behavior, assuming that vaccination and masking behavior responses
were equally as biased. (Vaccination and mask-wearing are both prosocial public health behaviors which are
socially desirable to report and are likely correlated [26].) We analyzed overall spatial and temporal trends
as well as fine-scale heterogeneity in the bias-corrected masking behavior estimates. Finally, we validated
the bias-corrected CTIS values by comparing them to respondents’ estimates of the proportion of people
masking in their community.

Spatially heterogeneous effects of binomial regression model, survey raking, and
debiasing

To demonstrate the spatially heterogeneous effects of our data processing scheme, Fig. 1 shows the difference
between estimates from three separate model runs and the raw CTIS masking data. We refer to this difference
as the residual, though it is only an indicator of model fit in Fig. 1A. In Fig. 1B and C the residual values
indicate where data processing has caused the largest changes in estimates compared to the original data.
After modeling the data with binomial regression, estimates of masking proportions are higher than observed
values (Fig. S3) in the central U.S., and slightly lower than observed values in the Northeast, Northwest, and
Southwest (Fig. 1A). Adjusting for unrepresentative samples with raking and resampling and rerunning the
binomial regression model has a minor effect on mask-wearing estimates, only exhibiting a slight decrease
compared to the model without raking (Fig. 1B). Correcting for survey biases using vaccination data in the
binomial regression model run on raked survey responses systematically decreases masking proportions, as
expected and denoted by increased residuals (Fig. 1C). We refer to estimates from the model in Fig. 1C as
debiased or bias-corrected for the remainder of the paper. Our results reinforce that behavioral surveillance
should be conducted carefully to limit bias initially.

Masking behavior exhibits spatial and temporal heterogeneity and is positively
associated with population density

Using bias-corrected masking proportions from the CTIS, we find that masking behavior is spatially het-
erogeneous over all months (Moran’s I between 0.68 and 0.70 for all months, Figs. 2A, S7). Bias-corrected
masking proportions range from 0.11 to 0.96, and vary substantially within states, emphasizing the impor-
tance of analyzing masking behavior at finer scales than the state or HHS region level. Masking proportions
are closely linked to population density over the survey period: urban counties tend to have higher mask-
ing proportions than rural counties (Fig. 2B). While masking proportions range quite a bit within NCHS
urban-rural classifications, all differences between NCHS classes are significant (Kruskal-Wallis and Pairwise
Wilcox test). Over all counties and survey months, the median fitted masking proportion in urban counties
exceeds 0.8 while the median fitted masking proportion in the most rural counties is below 0.6.

Masking behavior not only varies geographically but also temporally. Peak masking behavior is observed
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Figure 1: Visualization of spatially heterogeneous data processing effects. (A) Residuals following
binomial regression model. (B) Residuals following binomial regression model with raking/sample rebalanc-
ing. (C) Residuals following binomial regression model with raking/sample rebalancing, and an offset for
bias. All maps shown for February 2021.
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Figure 2: Bias-corrected masking behavior is spatially heterogeneous and higher in urban areas.
(A) Map of bias-corrected masking behavior in October 2020 reveals high spatial heterogeneity. Masking
proportions vary substantially even within a single state. Spatial heterogeneity does not notably vary over
time (Fig. S7). (B) Breakdown of county masking proportions over all survey months by NCHS urban-rural
classification. A direct relationship between median masking proportion and population density is observed.

in January 2021 while the lowest masking proportions are observed in May 2021 (Fig. 3). Counties with
higher mean masking proportions fluctuate less than counties with lower mean masking proportions from
September to April but experience the largest differences from their mean values in May 2021. For context,
we highlight that this decrease coincides with increasing proportions of vaccinated individuals in the U.S.
(Fig. 3, [27]), declining new infections [28], and decreasing reported worry about severe illness due to
COVID-19 from the CTIS [29]. The policy context during this time was also shifting: On April 27, 2021
the CDC announced that fully vaccinated individuals no longer needed to wear masks outdoors [30] and on
May 13, 2021 they announced that fully vaccinated individuals no longer had to wear masks indoors either
[31]. Meanwhile, 49% of counties that ever had a mask mandate lifted it before May 1, 2021 (Fig. S17).
These announcements coincide with the observed decrease in masking in these months. Together, these
analyses underscore the importance of tracking and analyzing mask wearing at fine spatial and across long
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temporal scales: further spatial and temporal aggregation of these data would have missed key heterogeneity
previously not quantified and prevented future work from investigating the connection between policy and
behavior change at appropriate granularity.
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Figure 3: Bias-corrected masking behavior peaks in the winter of 2020-21 and falls in the
spring of 2021, mirroring new cases and increasing vaccinations. Top curves show time series of
z-score of bias-corrected masking proportions for each county colored by average masking proportion across
the survey period. Inset plot shows z-scores of 7-day rolling average of new cases (green), proportion of
individuals vaccinated nationally (orange), and reported worry about severe illness from COVID-19 in CTIS
respondents (purple).

Community-reported masking levels are a good predictor of bias-corrected self-
reported estimates

Bias-corrected masking proportions are well-approximated by modeled estimates of community-reported
masking (Fig. 4). The difference between the two mask-wearing proportion estimates ranges from −6% to
5% and becomes more apparent in April and May 2021, particularly in rural areas. In May 2021, though,
community estimates in urban areas tend to overestimate bias-corrected individual masking estimates. This
result is quantitatively affected by influential observations but is qualitatively robust (Fig. S18). These
results suggest that surveying participants about community masking may give less biased responses than
asking individuals to report their own masking behavior, potentially reducing social desirability bias and
capturing parts of the population that may be otherwise less likely to respond to the survey.

Discussion

Despite the widespread adoption of face mask-wearing at points during the COVID-19 pandemic in the
U.S., the true prevalence of this behavior across temporal and spatial scales is largely unknown. Data on
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Figure 4: Community-reported masking gives a good estimate of bias-corrected self-reported
masking. Community-reported masking refers to the CTIS question where individuals report how many
people in their community are masking, which may decrease non-response and social desirability bias com-
pared to asking individuals to self-report their masking behavior. Point color denotes urban-rural classes.

mask wearing has been collected through surveys, at varying spatiotemporal resolutions and with potentially
varying survey biases (see e.g., [15, 16, 17]). Here, we characterize mask wearing behavior across the U.S.
using self-reported masking data from a large national online survey. We employ Bayesian binomial regression
models to remediate issues of small sample size, perform raking/sample balancing to address unrepresentative
survey samples, and correct for additional response biases using measurable bias in vaccination data. We
observe substantial spatial heterogeneity in masking behavior across urban versus rural counties with some
temporal changes in mean masking estimates at the county-month level, most notably a steep decline in
masking in May 2021. We find that community-reported masking responses well approximate our bias-
corrected masking estimates. Other work adds to this validation: similar spatial heterogeneity is found in
two other surveys, with some overlapping time periods (Figs. S14, S15, S16, [32, 17]) and our debiased
estimates generally agree with those recorded in observational studies, including higher levels of masking
in urban areas (Fig. S19, [14, 33]. Our results reveal the landscape of masking behavior across three
distinct phases of the pandemic (pre-surge, during the winter 2020-21 surge, and post-surge during the
initial COVID-19 vaccination rollout). Our work also highlights the critical role that behavioral big data
can play in pandemic response, if such data are used with caution.

Our findings have several implications for the fields of public health, disease modeling, and survey design. We
identify high spatial and moderate temporal heterogeneity in masking behavior at the county-level – patterns
that are obscured if data are aggregated to the state or HHS region-level. Contrary to our expectations,
this level of spatial variability around the mean is consistent over time. Consequently, disease models should
account for spatial variability in masking behavior, but may only need to consider changes in masking
dynamics over longer temporal scales. This high spatial heterogeneity highlights the need for diverse and
targeted public health approaches across the country rather than a single national program. Guidance set
at the state-level without regard for differences in local conditions may miss early opportunities to control
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disease spread, may prematurely enforce public health restrictions, and may contribute to fatigue with public
health restrictions. Despite a large number of responses (>8 million), these survey data still suffer from bias,
underscoring that while larger samples may increase precision, without greater accuracy this precision is
not useful (i.e., the big data paradox, [18]) and reinforcing the importance of careful survey design. Future
analyses can compare demographic, policy, environmental, disease burden, and other factors between regions
we have identified with low and high masking levels to tease out what may be driving these differences in
masking, and therefore how public health efforts can be more effective moving forward.

While county-level mask-wearing behavior varies across months, we observe little heterogeneity across coun-
ties in these temporal trends. The observed changes in masking behavior roughly corresponded to national
trends in new cases in the U.S. and self-reported worry about severe disease as reported in the CTIS, though
we did not determine causality or examine this relationship at the individual or county level. Because we
model county-level averages, this observed correlation could be driven by a specific demographic group or
subset of individuals modifying their masking behavior rather than a uniform change in average mask uptake
in a county’s population. The sharp decrease in masking in May 2021 is contemporaneous with many states
lifting mask mandates (Fig. S17) and an announcement from the CDC that vaccinated individuals no longer
had to wear masks outdoors (April 27, 2021 [30]) or indoors (May 13, 2021 [31]). It is plausible that these
policy changes could have impacted masking behavior, both in vaccinated and unvaccinated individuals, even
though the change in CDC guidance did not apply to unvaccinated individuals [34, 35]. More work is needed
to explore the potential differences in masking between vaccinated and unvaccinated individuals. Additional
research could also focus on quantifying the impact of social norms on individuals’ masking behavior at fine
spatiotemporal resolution in the U.S.

Community-reported masking estimates agree closely with bias-corrected self-reported masking behavior.
Because community-focused questions may be subject to less non-response and social desirability bias than
self-reporting questions [36], this result serves to validate our bias-corrected masking estimates. More im-
portantly, our finding highlights that surveying participants about community behavior may be an avenue to
reduce survey bias. We note, however, that this finding may not apply in all settings; self-reported masking
behavior on a university campus closely matched observed masking levels and questions about community
masking were less accurate [37]. This approach also does not resolve issues of small sample size; the asso-
ciation we found between bias-corrected self-reported masking and community-reported masking is stronger
between modeled estimates than between raw means. While these implications for analysis of surveys on
human behavior may not apply universally, similar results have been found in other infectious disease appli-
cations including disease surveillance (using the CTIS data [29, 38]) and early outbreak detection in social
networks [39, 40]. Our results further emphasize the promise of human social sensing going forward [41].

Our work has several limitations. First, our results are subject to many of the limitations of the survey
on which they are based, including the likelihood of unrepresentative samples (as we cannot account for
biases in all demographic characteristics through raking and resampling), dishonest responses, incomplete
responses, and the exclusion of children under 18 years old. More detailed information on the limitations
of the CTIS can be found in [29, 42]. Further limitations are introduced by our analysis of the data. We
ignore potential heterogeneity at smaller temporal (weekly) and spatial (zipcode) scales due to limited sample
size. By dichotomizing masking responses, we also lose information about the frequency with which people
mask, though we do expect the effect of this to be minimal (see Supplement for details). In addition, our
binomial regression approach compensates for small sample sizes in some county-months, but the resulting
estimates depend on the validity of our model structure. Poor model specification could produce biased or
inaccurately confident results, especially in counties with fewer respondents. Lastly, we assume that bias in
the CTIS survey on self-reported masking behavior has the same generative process as that of self-reported
vaccination status and is constant over time. Given evidence of an association between vaccination intention
and the practice of COVID-19 preventive behaviors, we think this assumption is reasonable [26]. Further,
trends observed in the bias-corrected results were visible prior to debiasing, implying that our findings are
qualitatively robust to this assumption.

In summary, we have produced the first accurate high-resolution spatiotemporal estimates of face mask
wearing in the United States for the period from September 2020 through May 2021. Our work reveals that
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masking behavior is highly variable across the United States, suggesting that a one-size-fits-all approach
to increasing mask wearing behavior is likely to be ineffective. Instead, we have identified regions of the
country with higher and lower masking levels. These differences should be investigated going forward as
public health organizations consider how to more effectively target these low masking regions. For exam-
ple, these communities may be more susceptible to mis- and disinformation regarding mitigation behaviors
which must be strategically confronted. Furthermore, this variability in behavior demonstrates the need to
develop infectious disease dynamics models to analyze and predict how spatiotemporal trends in disease are
affected by changes in human behavior, such as vaccination, contact patterns, and face mask-wearing. Our
analyses also address issues of survey bias, with the takeaway that, in the future, we should invest in robust
survey infrastructure that can recruit large representative samples with minimal bias, including using certain
representative respondents as human social sensors to report on their communities.

Methods

In this study, we seek to characterize the spatiotemporal heterogeneity in self-reported masking behavior in
the United States from the fall of 2020 to the spring of 2021. Due to low sample size in some counties, we
use Bayesian binomial regression models to estimate mask-wearing proportions each month. Recognizing
that surveys are subject to several types of bias, we use raking and resampling of responses to correct
for unrepresentative samples and self-reported vaccination status compared to ground-truth vaccination
data to quantify non-response and social desirability biases. With these estimates, we are able to identify
spatiotemporal trends in bias-corrected masking behavior and compare these values to reported community
levels of masking in a different survey question.

Survey data & processing

We analyzed self-reported mask-wearing survey responses for all 50 U.S. states and the District of Columbia
using data from the U.S. COVID-19 Trends and Impact Survey (CTIS) [29]. The CTIS was created by the
Delphi Research Group at Carnegie Mellon University and distributed through a partnership with Facebook.
Beginning in September 2020, a random state-stratified sample of active Facebook users were invited daily
to take the survey about COVID-19 and report how often they wore a mask in the past 5-7 days (the number
of days changed from 5 to 7 on February 8, 2021). Answer options were (1) All, (2) Most, (3) Some, (4) A
little, or (5) None of the time, or (6) I have not been in public in the last 5-7 days (Fig. S1). To dichotomize
these responses for an analysis of the proportion of respondents wearing masks, we dropped respondents
who hadn’t been in public recently or did not respond to the masking question, and considered responses of
“all” and “most of the time” as masking, and all other responses as not masking. This cutoff is reasonable
considering the raw proportions of responses in each category for September thru May (Fig. S2). Due
to sample size constraints, we aggregated these responses to the county-month scale. See Supplement for
additional details on survey distribution and data processing.

Bayesian binomial regression model

Due to small sample sizes in some U.S. counties, we used Bayesian binomial regression models to develop
reliable estimates of the proportion of individuals masking in a given county-month. Population density was
used as a fixed effect; masking behavior has previously been linked to population density and this variable
was easily available at the county scale [14, 33]. We fit separate models for each month, allowing for a
temporal trend without explicitly modeling it by specifying a parametric form. We define Mi as the number
of respondents masking in county i (e.g., respondents that masked most or all of the time in the past 5-7
days), Ni as the total number of respondents in county i (Mi ≤ Ni), and pi as the county-level probability
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of a response consistent with masking. We use the the following model to estimate p̂i and M̂i:

Mi ∼ Binomial(Ni, pi)

logit(pi) ∼ Normal(µi, σ)

zDi =
(Di − D̄

σD

)
µi = β0 + β1z

D
i

β0 ∼ Normal(0, 1)

β1 ∼ Normal(1, 1)

where Di = log10(population densityi) for county i. We ran the model using brms [43] with the cmdstanR
[44] backend. We ran the sampler with 4 chains for 3000 iterations per chain. Sampler diagnostics indicate
efficient exploration and that the model has converged: the neff > 950, neff per iteration ≥ 0.25, R̂ ≤ 1.01,
E-BFMI > 0.25, and no transitions hit max tree depth. All PSIS-LOO k statistic values are below 0.71,
indicating that the model is robust to the influence of individual observations, and the distribution of Pareto
k statistics is uniform, indicating that the model captures essential features of the data [45]. Posterior
predictive checks indicate good model fit (Fig. S4) as do plots of observed versus predicted and residual
values (Figs. S5, S6).

Survey raking and resampling

We were unable to use the provided weights for responses to the CTIS due to spatial and temporal mismatch
with the scales of our data analysis. Thus, we calculated county-month weights for each observation using
the anesrake package [46] and the U.S. Census American Community Survey’s 2018 data on county age, sex,
and education distributions. We did not to use race or ethnicity data in the raking scheme as its inclusion
substantially reduced algorithm convergence but note that race/ethnicity was moderately correlated with
education (Cramer’s V > 0.10). We then resampled from these responses using the calculated weights to
estimate a raked masking proportion, which was fed into the binomial models, as described above. Obser-
vations from county-months that did not converge were all assigned equal weights. (Additional details are
in the Supplement).

Estimation of CTIS masking bias

Given the likelihood of sampling, non-response, and social desirability biases, we generated bias-corrected
estimates of masking in the U.S. In the absence of ground-truth masking data with which to calibrate these
CTIS responses, we turned to a different survey question for which ground-truth data were available.

Beginning in late December 2020, the CTIS asked respondents whether they had received a COVID-19
vaccine. Response options were (1) Yes, (2) No, or (3) I don’t know. Meanwhile, ground-truth vaccination
data were collected at http://vaccinetracking.us by combining state-reported and CDC data to estimate
the percentage of people vaccinated in each county in the U.S. [27]. A comparison of CTIS responses and
ground-truth vaccination data revealed that estimates of COVID-19 vaccination based on CTIS responses
were much higher than true vaccination rates at the US county scale (Fig. S8, [18, 47]). Assuming that
masking survey responses suffer from the same bias issues (in magnitude and direction) as vaccination
responses, this result would suggest that CTIS responses also substantially overestimate masking behavior.
Thus, we approximated survey bias by comparing the CTIS vaccination responses to the ground-truth
vaccination data at the county-level and incorporating this bias into the model of CTIS masking behavior.

Like the masking data, the CTIS vaccination response data suffers from small and unrepresentative samples
in some counties. Thus, we resampled the responses from April and May 2021 according to the survey
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weights we generated above and then used a (frequentist) binomial generalized linear mixed-effects model to
estimate pi, the proportion of respondents who were vaccinated (assumed to be partial vaccination, with 1
of a 1-dose or 2-dose vaccine) at the county-level each week (details in Supplement).

Given these modeled CTIS county-level vaccination proportions, we compared them with the true vaccination
data to calculate the expected bias in reported survey responses relative to ground truth data in county i:

biasi = logit(CTIS estimated vaccination proportioni) − logit(true vaccination proportioni).

To increase the stability of our bias estimates, we used a linear mixed-effect model. This mixed effects model
used random intercepts, which penalizes extreme coefficient estimates to the overall mean, and assumed that
the residual error in the estimates was normally distributed. This model generates a penalized estimate of
survey bias for each county from the difference in modeled reported vaccination and ground truth vaccination:

bias = β0 + ui + εi

ui ∼ Normal(0, σ2
u)

εi ∼ Normal(0, σ2
ε ).

This model was implemented using lmer in the lme4 package [48]. If there were no responses in the county
i or a bias estimate could not be calculated, bias estimates for this county were imputed by taking the mean
of surrounding county estimates.

We then incorporated these estimates into a Bayesian binomial regression model with an offset for bias to
estimate the bias-corrected probability of reporting masking in county i. We define Mi as the number of
respondents masking in county i out of Ni total respondents, and pi as the county-level probability of a
response consistent with masking. We use the the following model to estimate p̂i and M̂i:

Mi ∼ Binomial(Ni, pi)

logit(pi) ∼ Normal(µi, σ)

zDi =
(Di − D̄

σD

)
µi = β0 + β1z

D
i + offset(bias)

β0 ∼ Normal(0, 1)

β1 ∼ Normal(1, 1)

where Di = log10(population densityi) for county i. The bias-corrected proportion of individuals masking,
ci, was calculated as

ci = logit−1(µi − bias).

We ran the model using brms [43] with the cmdstanR [44] backend. We ran the sampler with 4 chains for 3000
iterations per chain. Sampler diagnostics indicate efficient exploration and that the model has converged:
the neff > 1000, neff per iteration ≥ 0.3, and R̂ ≤ 1.01.

Community-reported masking

Beginning November 24, 2020, the CTIS asked a question about masking in one’s community: “In the past
7 days, when out in public places where social distancing is not possible, about how many people would you
estimate wore masks?” The answer options were (1) All, (2) Most, (3) Some, (4) A few, or (5) None of the
people, or (6) I have not been out in public places in the past 7 days. We dichotomized these responses
and aggregated them to the county-month the same way as the self-reported CTIS masking responses for
December 2020 through May 2021. We then modeled these community masking estimates the same way
we modeled the CTIS masking data using Bayesian binomial regression and resampling weighted by survey
weights but without a bias offset.
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Spatiotemporal analysis

All analyses were completed in R version 4.1.3 and maps were produced using choroplethr [49]. Urban-rural
classes are from the National Center for Health Statistics’ Urban-Rural Classification Scheme [50].
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Supplementary Information

Additional CTIS details

The COVID-19 Trends and Impact Survey was created by researchers in the Delphi Group at Carnegie
Mellon University and distributed via Facebook to active users 18 or older starting in April 2020. On a daily
basis, a random state-stratified sample of Facebook users are invited to take the survey at the top of their
news feed. These users will not be re-invited to take the survey for at least thirty days. The survey asks a
broad range of questions related to COVID-19 symptoms and behaviors, with variations across each of the
thirteen different waves spanning from April 2020 to June 2022. In this study, we make use of data from
Wave 4 (September 8, 2020 - November 23, 2020), Wave 5 (November 24, 2020 - December 18, 2020), Wave
6 (December 19, 2020 - January 11, 2021), Wave 7 (January 12, 2021 - February 7, 2021), Wave 8 (February
8, 2021 - March 1, 2021), and Wave 10 (March 2, 2021 - May 19, 2021, Wave 9 was skipped for numbering
purposes).

Weights were provided by Facebook for each response to adjust for non-response and coverage bias at the
daily-state level [51]. Briefly, each weight describes the number of people represented by a respondent based
on their age, gender, location, and date of response. These weights were calculated via a two step process
using inverse propensity score weighting based on respondents’ demographics recorded in their Facebook
user profiles to adjust the survey sample to reflect active Facebook users, followed by revisions of these
weights using post-stratification so that the survey sample reflects the general population [29]. Because
these weights were not at the same scale of our data analysis, we did not use them and instead performed
raking to calculate our own weights as described in Methods.

As part of our data processing, we also dropped responses missing fips codes or outside the 50 states and the
District of Columbia. When raking, we use three categories for age (18-24, 25-54, and 55+), two categories
for sex (ACS)/gender (CTIS) (male and female), and six categories for education (less than high school, high
school graduate or equivalent, some college, 2 year college degree, 4 year college degree, and postgraduate
degree). Subsetting age further results in issues of nonconvergence. Raking on race/ethnicity with more than
two categories leads to substantial nonconvergence whether or not we include education. We drop responses
missing age, gender, or education from being raked.

In addition, when dichotomizing CTIS responses we assume that people who “sometimes” wore a face mask
in public were not masking which may lead us to underestimate self-reported masking levels. We believe the
effects of this assumption are minimal because the proportion of “sometimes” responses was small compared
to other options (Figs. S2).

Estimation of CTIS bias

We compare CTIS responses about vaccination to true vaccination estimates for the period from April 1,
2021 through May 31, 2021. We chose this period when nearly all adults were eligible for vaccination in
the U.S. so that the sample population responding to the masking and vaccination questions would be most
similar. In this time period, the differences between the survey and ground-truth vaccination data have also
stabilized (Fig. S8). We use a (frequentist) binomial generalized linear mixed-effects model to estimate pi,
the proportion of respondents who were vaccinated at the county-level each week. If Vi is the number of
(partially) vaccinated respondents in each county i out of Ni respondents, then the model is as follows:

Vi ∼ Binomial(Ni, pi)

logit(pi) = β0 + β1t+ β2t
2 + ui

ui ∼ Normal(0, σ2
u)

where t and t2 are orthogonal polynomials of degree 1 and 2, respectively, generated by the poly function
in R from the rank of the weeks in which the vaccination data were observed. Therefore, β1 and β2 are

16

 . CC-BY-NC-ND 4.0 International licenseIt is made available under a 
 is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity. (which was not certified by peer review)

The copyright holder for this preprint this version posted July 22, 2022. ; https://doi.org/10.1101/2022.07.19.22277821doi: medRxiv preprint 

https://doi.org/10.1101/2022.07.19.22277821
http://creativecommons.org/licenses/by-nc-nd/4.0/


Figure S1: CTIS question on masking behavior. Note that time period of interest changed from 5 days
to 7 days on February 8, 2021.
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Figure S2: Raw proportions of each CTIS response for a selection of counties spanning popu-
lation densities across time. Number of responses in that county-month listed above each bar. NCHS
urban-rural classifications are as follows: (1) Denver, CO; (2) Montgomery, MD; (3) Onondaga, NY; (4)
Baldwin, AL; (5) Gallatin, MT; Douglas, OR; (6) Wood, TX; Piscataquis, ME; Harrison, KY.

covariates that describe the trend of time in expected reported vaccination across counties, while ui describes
systematic difference in vaccination in county i relative to the mean trend. This model was implemented
using glmer in the lme4 package [48].

Using these modeled CTIS county-level vaccination proportions, we compared them with the true vaccination
data to calculate the expected bias in reported survey responses relative to ground truth data in county i.
There were 45 counties that had missing bias estimates due to either a lack of weekly CTIS vaccination
survey responses between 0 and 1 (cannot use logits of p = 0, 1), or missing true vaccination estimates for
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Figure S3: Raw masking data for February 2021. Proportions masking most of the time or more are
much higher than observational studies would suggest, with spatial trends difficult to identify.
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Figure S4: Posterior predictive checks of binomial regression model of CTIS data.

weeks with survey responses between 0 and 1 (therefore, cannot calculate difference between true and CTIS
vaccination estimates).
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Figure S5: Observed versus predicted CTIS masking estimates with binomial regression model.

CTIS model coefficients

Model coefficients for z-score(log10(population density)) ranged from 0.45 to 0.55 (Fig. S9), meaning a one
unit change in z-score(log10(population density)) is correlated with the expected odds of masking multiplying
by e0.5 ≈ 1.65. The coefficient of the population density covariate in our binomial regression model is
consistent over time, indicating that the relationship between population density and masking behavior is
stable across months.

19

 . CC-BY-NC-ND 4.0 International licenseIt is made available under a 
 is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity. (which was not certified by peer review)

The copyright holder for this preprint this version posted July 22, 2022. ; https://doi.org/10.1101/2022.07.19.22277821doi: medRxiv preprint 

https://doi.org/10.1101/2022.07.19.22277821
http://creativecommons.org/licenses/by-nc-nd/4.0/


2021−03−01 2021−04−01 2021−05−01

2020−12−01 2021−01−01 2021−02−01

2020−09−01 2020−10−01 2020−11−01

0.4 0.6 0.8 1.0 0.4 0.6 0.8 1.0 0.4 0.6 0.8 1.0

−2

0

2

4

−2

0

2

4

−2

0

2

4

Predicted

R
es

id
ua

l (
di

ffe
re

nc
e 

of
 lo

gi
ts

)

Figure S6: Observed versus residual CTIS masking estimates with binomial regression model.

Outbreaks Near Me survey details & results

The Outbreaks Near Me (ONM) survey was created by scientists at Harvard and Boston Children’s Hospital
and distributed through a partnership with SurveyMonkey. Following the completion of another survey on
SurveyMonkey, a random representative sample of users across the United States were invited to take the
Outbreaks Near Me survey. The survey was released in June 2020 and asked respondents how likely they were
to wear a mask in several different environments: while grocery shopping, visiting with friends and family in
their homes, exercising outside, and in the workplace. Answer options were (1) Very, (2) Somewhat, (3) Not
so, or (4) Not likely at all (Fig. S10). We focus on the responses to the grocery shopping scenario, as this
setting is most comparable to the “in public” scenario described in the CTIS question. To dichotomize these
responses for an analysis of the proportion of respondents wearing masks, we consider “very likely” responses
as masking and all other responses as not masking. This choice allows for comparison with CTIS data and
makes sense given the small percentage of “somewhat likely” responses (Fig. S11). We aggregate responses
at the zipcode-month scale and crosswalk these estimates to the county-month level using HUD files [52].
The Outbreaks Near Me survey dropped responses from individuals who reported their age as less than 13
or more than 100 years old. We additionally drop respondents who did not respond to the grocery store
portion of the masking question or who have an invalid zip code that cannot be crosswalked to a fips code;
this process leaves us with 1,042,685 valid responses. Survey weights were provided for individual responses
at the weekly-state and daily-national scales, though we do not to use them because our analysis focuses on
the county-month scale.

Due to small sample sizes, we use binomial regression models to estimate masking proportions for each
county-month, as described in ‘Bayesian binomial regression model’ in the Methods (Figs. S12, S13). We
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Figure S7: Spatial heterogeneity in self-reported masking behavior does not vary over time.
Moran’s I calculated for self-reported masking behavior from the CTIS estimates from binomial regression
model with raking/resampling and bias offset.

compare estimates from these models to CTIS values calculated using only the binomial regression model,
i.e., no raking/resampling or debiasing. We calculate the ratio of ONM to CTIS masking proportions for
each county each month and take the average across all months in the survey, excluding counties that have
estimates for fewer than five of nine months. Additionally, we visualize the time series of individual counties
from the two surveys side by side.
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Figure S8: Motivation for bias correction using vaccination survey and ground-truth data. Ratio
of modeled CTIS vaccination estimates to true vaccination proportions for each state over time (January 1
to June 30, 2021). Dashed line at a ratio of 1.
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Month Estimate l-95% CI u-95% CI
09/2020 0.51 0.51 0.52
10/2020 0.5 0.5 0.51
11/2020 0.49 0.48 0.5
12/2020 0.5 0.49 0.51
01/2021 0.53 0.52 0.54
02/2021 0.55 0.54 0.56
03/2021 0.55 0.54 0.55
04/2021 0.55 0.54 0.55
05/2021 0.45 0.45 0.46

Figure S9: Coefficients and 95% credible intervals for z-score(log10(population density)) coeffi-
cient in the rake and debias model for each month.

Figure S10: ONM question on masking behavior.
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Figure S11: Raw proportions of each ONM response for a selection of counties spanning popu-
lation densities across time. Number of responses in that county-month listed above each bar. NCHS
urban-rural classifications are as follows: (1) Denver, CO; (2) Montgomery, MD; (3) Onondaga, NY; (4)
Baldwin, AL; (5) Gallatin, MT; Douglas, OR; (6) Wood, TX; Piscataquis, ME; Harrison, KY.
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Figure S12: Observed versus predicted ONM masking estimates.
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Figure S13: Observed versus residuals for ONM masking estimates.
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Figure S14: CTIS and ONM responses show similar values and trends across space and time. (A)
Average ratio of ONM to CTIS masking proportions for each county from September 2020 through May 2021.
All average ratios are greater than 1, but only 0.4% are greater than 1.1. Counties with estimates for less
than five of nine months are excluded. (B) Across three counties of varying urbanicity, masking proportions
increase through January 2021 and then decrease through May 2021 in both surveys. Differences between
survey estimates appear to decrease over time. Urban counties may exhibit higher levels of masking and less
variability in these estimates over time compared to rural counties.
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Figure S15: Time series correlations between the CTIS and ONM surveys. (A) Time series
correlation for each county across all months is high across all counties. (B) Time series correlation for all
counties each month is 1 across all months.
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Figure S16: Difference between county masking estimates from the CTIS and ONM survey
decreases over time, with greater variability in more rural counties. Facets designate NCHS
urban-rural classification. Difference between survey estimates goes to nearly 0 across all counties in April
2021, with increasing, albeit small, differences in May 2021.
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Figure S17: Timeline of lifting of county mask mandates in the U.S. Neither state nor county mask
mandates were ever imposed in AK, AZ, FL, GA, ID, MO, NE, OK, SC, SD, and TN during the period from
April 10, 2020 to August 15, 2021. Thus, these states have been excluded. Approximately 49% of counties
that ever imposed a mask mandate lifted it before May 1, 2021.
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Figure S18: Community reported masking gives a good estimate of bias-corrected self-reported
masking even when influential fips code are removed from the model. Fips codes with pareto k
values >= 0.7 were excluded from the Bayesian binomial regression model with bias offsets (specifically fips
4019, 6037, 6071, 12071, 12103, 36005, 40143, 41039, 45045, 48201, 48439, 53033). Community reported
masking refers to the CTIS question where individuals report how many people in their community are
masking, which may decrease non-response and social desirability bias compared to asking individuals to
self-report their masking behavior. Point color denotes urban-rural classes.
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