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1 Variable Selection for Omics Data

1.1 Metabolomics and proteomics in the IAF data

The TAM Frontier (IAF) data consist of clinical biochemistry, physiological, and multi-omics
measurements collected from samples of 30 ’apparently’ healthy individuals. Although the
participants were considered healthy at the time of recruitment, the age of the participants
were at the highest prevalence of chronic diseases (45-59 years old). Thus, 10-year car-
diovascular disease (CVD) risk scores were computed, using the clinical biochemistry and
physiological data, with the atherosclerosis cardiovascular diseases (ASCVD) calculator (see
Appendix 7 in ? |). Variables included the risk score calculation are: age, sex, race, smoking
status (yes/no), systolic blood pressure, diabetes (yes/no), HDL cholesterol, total choles-
terol, and treatment for hypertension (yes/no). From the results, the male participants have
1.1-35.4% risk of CVD event(s) in the next 10 year, whereas the risk is only 0.3-3.9% in
females.

These risk scores were calculated for each individual at each time point, and later will be
utilised in the variable selection step of the data processing workflow. We associated both
metabolomics and proteomics datasets (in two separate models) with the estimated CVD risk
scores. We applied the simultaneous penalised linear mixed models (SP-LMM) implemented
in splmm R package to perform a simultaneous variable selection of both fixed and random
effects using a class of penalty functions as explained in ? |. This method was particularly
developed for the purpose of variable selection in high-dimensional data. The following model
was fitted for each metabolomics and proteomics data:

p
yi = B + /Bfn)ageij + B{Msex; + Z BrXki + bo + bg”)ageij + bosex; + €,
k=3

where for the i-th individual with m; repeated measurements, y; is the matrix of estimated
ASCVD risk scores, y; = (i1, Yiz, - - - » Yim, )~ and Xy; is the matrix of fixed effects of the
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k-th protein/metabolite covariates, Xp; = (Xgi1, Xk, - - - , Xgim;)? - Fixed and random effect
coefficients are denoted by By, k = 1,2,...,p, and (bo, by, b2), respectively. The symbol (n)
indicates that for these parameters we keep them unpenalized. Two penalisation techniques
are considered: LASSO and Smoothy Clipped Absolute Deviation (SCAD). The best model

with the lowest Bayesian Information Criterion (BIC) was selected.

1.2 Metabolomics in the IBS data

The variable selection procedure was also applied for the NMR metabolomics measurements
in the IBS data. Generalised linear mixed models with ¢; penalisation were fitted to the
log10-transformed metabolomics measurements and a binary response of IBS status. The
following model was considered:

P
. m(x
logit(m(z)) = In (1—(—7r()x)> = Bo + Brage;; + Basex; + ; BreXpi + bo + biage;;,

where 7(z) is the probability of an individual is diagnosed with IBS, given the linear com-
bination of individual’s age, sex, and the set of metabolites. We performed a penalisation
procedure implemented in the glmmLasso R package for estimating the effect sizes and se-
lecting the most discriminating variables. Again, the best model with the lowest BIC was
selected.



2 Results of data quality check
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Figure S1: IRI pipeline implemented in the study.
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Figure S2: Outlier analysis step of creatinine in the IAF clinical biochemistry data. Outlying

observations are shown as the circles outside the MAD thresholds (red horizontal lines).
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Figure S3: Trend analysis of creatinine in the IAF clinical biochemistry data. This subject
has a significant monotonic trend and a high Spearman correlation coefficient (rho = 0.8649.

This subject will be excluded from the IRI estimation.
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Figure S4: Variance checking of creatinine in the IAF clinical biochemistry data. Two subjects
(Jozef and Octave) have variances outside the MAD thresholds and they will be excluded
from the IRI estimation.
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Figure S5: Trend analysis of citrate in the IAF metabolomics data. Two subjects have
significant monotonic trends and high Spearman correlation coefficients (poyrine = —1 and
PJosefina = —0.9429). These subjects will be excluded from the IRI estimation.
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Figure S6: Variance checking of citrate in the IAF metabolomics data. Five subjects have
variances outside the MAD thresholds and they will be excluded from the IRI estimation.



3 IRI estimates

3.1 Metabolomics and proteomics in the IAF data

IRI of S_LDL_PL
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Figure S7: IRI of S-LDL-PL

IRI of ICAM.2

Qutlying observation
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Figure S8: IRI of ICAM-2



IRI of KIM1
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Figure S9: IRI of KIM-1

IRI of SELP
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Figure S10: IRI of SELP



3.2 Metabolomics in the IBS data

IRI of b-arabinose
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Figure S11: IRI of b-arabinose
IRI of glucose
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Figure S12: IRI of glucose




Table 1: P-value of the standard student t-test used for comparing the mean of IRI widths
between healthy individuals and IBS patients, after the Benjamini-Hochberg correction. The
bold font face indicates when the two means are statistically significant at 5% significance
level. Metabolites with significant P-values in all three pairs are also made italic.

Metabolites Healthy vs IBS-C Healthy vs IBS-D IBS-C vs IBS-D
Deoxycholic acid 0.0455 0.0568 0.5696
Cholic acid 0.0010 0.0016 0.0007
Ursodeoxycholic acid 0.0612 0.5591 0.0628
Lithocholic acid 0.1373 0.0002 0.0357
Chenodeoxycholic acid 0.8482 0.0008 0.0009
X2 Methylbutyrate 0.0117 0.8693 0.0477
Lactate 0.0004 0.0098 0.0000
Alanine 0.8482 0.0058 0.0301
Tyrosine 0.1393 0.0005 0.0127
Isoleucine 0.0455 0.0002 0.1913
Leucine 0.7971 0.1024 0.0357
Valine 0.0416 0.0000 0.0026
Lysine 0.0719 0.0130 0.2855
Succinate 0.0455 0.0627 0.0309
Glycine 0.8482 0.0008 0.0007
b-arabinose 0.0000 0.0000 0.0000
b-zylose 0.0033 0.0000 0.0000
Acetate 0.8457 0.0657 0.0408
Propionate 0.0455 0.8233 0.1927
Butyrate 0.3211 0.2341 0.0372
Glucose 0.0013 0.0000 0.0000
Isovalerate 0.8482 0.0752 0.0939
Uracil 0.8482 0.2488 0.3110
Hypoxanthine 0.0000 0.0000 0.0000
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