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Abstract

Background: Disease networks offer a potential road map of connections
between diseases. Several studies have created disease networks where diseases
are connected either based on shared genes or Single Nucleotide Polymorphisms
(SNP) associations. However, it is still unclear to which degree SNP-based
networks map to empirical co-observed diseases within a different, general, adult
study population spanning over a long time period.

Methods: We create a SNP-based disease network (PheNet) from a large
population using the UK biobank phenome-wide association studies. Importantly,
the SNP-associations are adjusted for linkage disequilibrium, case/control
imbalances, as well as relatedness. We map the PheNet on to significantly
co-occurring diseases in the Norwegian HUNT study population, and further,
identify consecutively occurring diseases with significant occurrence in the
PheNet.

Results: We find that the overlap between the networks are far larger than
expected, where most diseases tend to link to diseases of the same category and
some categories are more linked to each other than expected by chance.
Considering the ordering of consecutively occurring diseases in the HUNT data,
we find that many diabetic disorders and cardiovascular disorders are subsequent
the diagnostication of obesity and overweight, and cardiovascular disorders that
often tend to be observed subsequent to other diseases are associated with higher
mortality rates.

Conclusions: The HUNT sub-PheNet showing both genetically and co-observed
diseases offers an interesting framework to study groups of diseases and examine
if they, in fact, are comorbidities and pinpoint exactly which mutation(s) that
constitute shared cause of the diseases. This could be of great benefit to both
researchers and clinicians studying relationships between diseases.

Keywords: disease network; phenowide association studies; UK biobank; the
HUNT study

Background
Since the first successful Genome-Wide Associations Study (GWAS) in 2007 [1],

a large body of scientific work has been devoted to identify candidate genetic loci

that influence the risk of developing certain diseases or phenotypes. Currently, the

GWAS catalog consist of more than 5,800 publications and 398,000 associations

between Single Nucleotide Polymorphisms (SNPs) and multiple diseases [2, 3]. As

a result of the need for post-GWAS analyses to interpret the results, phenome-wide
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association studies (PheWAS) have proven efficient in identifying pleiotropic effects

of disease SNPs for a broad range of physiological and/or clinical outcomes based

on Electronic Health Records (EHR) [4, 5, 6]. Thus, PheWas analyses offer the

opportunity for a system level approach for studying disease interactions.

The network medicine field was initialized by Goh and coworkers when creating a

Human Disease Network (HDN) based on causal genes from the Online Mendelian

Inheritance in Man (OMIN) database [7]. The HDN represents the linking of diseases

that are associated with one or more genes, and it gives a full landscape of known

human genetic disorders. In this study, it was discovered that most diseases are

actually connected through common genetic origins, as the network consists of a

giant component connecting hundreds of diseases in addition to several smaller

components [7].

Reusing the successful approach of the HDN, several works have aimed at con-

structing similar disease networks by instead using detailed SNP-disease connections

from GWAS to investigate disease-disease associations at a genomic level [8, 9, 10].

These works were successful at grouping similar diseases based on common genetic

SNP findings from GWAS. However, they were based on rather limited sets of dis-

eases (7 to 177) and a limited number of both participants and SNPs analyzed in

the GWAS. In addition, as for the HDN study [7], some of these investigations re-

lied on summary statistics from different studies, which could influence the validity

of their findings. It is quite possible that differences in phenotype definitions and

test-association methods when merging these results into a disease network would

impact the outcomes.

A recent study [11] used PheWas summary statistics from a single source EHR, the

Geisinger’s biobank, consisting of 625, 325 SNP associations with 541 disease codes

from the International Classification of Diseases, Ninth Revision (ICD9). Their

constructed disease network consists of 358 diseases linked by 1, 398 connections,

showing that many diseases are also genetically linked through common GWAS-

significant SNPs [11]. However, their summary statistics originates from a study

[12] which uses the PLATO method [13] for association testing. PLATO applies a

logistic regression model which does not account for relatedness of the participants

or for imbalance in the case/control ratios when testing the associations between

SNPs and binary phenotypes. Using EHR data from the UK Biobank (UKBB) par-

ticipants, Dong and coworkers [14] created a similar GWAS-based disease network

and compared to observed comorbidities within the UKBB participants. Their SNP

disease associations were based on GWAS data from a linear mixed model [15]

for both binary and continuous traits, which also does not account for imbalances

in case/control ratios and is suboptimal for binary traits. Note that, comparisons

with comorbidities within the same study population introduces bias in terms of

evaluating the relationship among the diseases outside of the study population.

A related study using PheWas summary statistics from UKBB was analyzed us-

ing SAIGE (Scalable and Accurate Implementation of GEneralized mixed model)

[16, 17]. In association testing with SAIGE, the sample relatedness and unbalanced

case/control ratios are adjusted for. Using a p-value threshold of 10−4 and group-

ing SNPs into linkage disequilibrium (LD) clusters, the authors created a disease

network consisting of 1, 403 phenotypes and focused on identifying comorbidities
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related to obstetric disorders. They validated the use of disease ego-centric net-

works by comparing the genetic risk of comorbidity with the neighbouring diseases

to empirically observed comorbidities for the same study participants. However, as

pointed out by the authors, in order to get a reliable validation of their results,

one would need to compare observed comorbidities to data from a different study

population [16].

Here, we use the same UKBB based PheWas summary statistics as in Ref. [16],

but with adjusteed criteria for inclusions of phenotypes and SNP associations (see

Methods for details). The aim is to validate the findings of genetically linked diseases

from the UKBB based disease network with actual co-occurrences from a different

study population, the Trndelag Health Study (HUNT) participants. The HUNT-

study is one of the longest longitudinal population studies, covering up to ∼ 90%

of the adult population in Nord-Trndelag, Norway from 1984 until 2019 [18, 19].

Matching these participants with EHR and the cause of death registry, we have an

almost complete health record history of 90, 103 participants diagnosed with one

or multiple of the diagnoses from the UKBB PheWas summary, from August 1987

until June 2017. With this data, we have, to our knowledge, the largest time interval

for medical history, and we use it to investigate if the genetically linked diseases

correspond to actual comorbidities in a different study population.

Methods
Datasets

UK Biobank PheWas

We create the phenome-wide association network (PheNet) from summary statistics

of 1, 403 binary phenotypes from a broad EHR-based PheWas of ∼ 400, 000 White

British participants of European ancestry [17, 20]. The phenotypes are represented

as phenotype codes (phenocodes) which is a collection of similar ICD billing codes

from the EHR, and are classified into 17 disease categories. The summary statistics

were generated using SAIGE, which, unlike many other GWAS association tests,

handles unbalanced case/control ratios and relatedness with a generalized linear

mixed model, controlling for sex, birth year and four principal components (PC1-

PC4) [17]. Using a p-value threshold of < 10−6 and including only top hits (lowest

p-value) of the SNP associations in high LD, the UKBB summary statistics consists

of 21, 532 SNP associations with 1, 397 phenocodes at a 2-digits level. We neither

use no cutoff for minor allele frequencies (MAF) nor number of cases in order to

include as many significant SNP-disease associations as possible, and we assume that

unrealistic findings will be filtered out when considering the observed co-morbidity

status among the HUNT participants.

The HUNT study and related health records

The HUNT study is a population based longitudinal study inviting all adult (age

≥ 20) inhabitants of Nord-Trndelag county in Norway to health related question-

naires and clinical measurements in four 11-year time intervals, ranging from 1984

until 2019 [18, 19]. The first study in 1984 (HUNT1) had a participation rate at

89.4% of the inhabitants of Nord-Trndelag. The next rounds of invitations (HUNT2,

HUNT3 and HUNT4) expanded the study to include also short interviews, clinical
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examinations and biological sampling, as well as expanding the sample population

to include those aged 13 − 19. For the last survey (HUNT4), also inhabitants of

the neighboring Sr-Trndelag county were included. The uniqueness of the HUNT

study is the high participation rate with the ability to follow a large fraction of

the population over a time interval of up to 35 years. As of 2020, the HUNT study

consists of a total of 230, 000 participants [21].

Another strength of the HUNT study is the possibility to link the participants to

several local, regional, and national health related registries due to the unique Nor-

wegian 11-digit personal identification number [18]. Such registries include, among

others, the Medical Birth Register of Norway, the Norwegian Prescription Database,

the Cancer Register of Norway, the Norwegian Cause of Death Register, and re-

gional (the Nord-Trndelag Hospital Trust (HNT)) and national (Norway Control

and Payment of Health Reimbursement (KUHR)) registers for hospital and general

practitioner records.

In this paper, we use data from HUNT1, HUNT2, and HUNT3, and we link

the participants to ICD-billing codes from HNT and KUHR and the Norwegian

Cause of Death Registry. With this, we have a complete list of diagnoses made at

hospital visits (HNT 1987-2017) and at the general practitioner (KUHR 2006-2017)

for a total of 90, 103 patients. We are also able to track participants that have

died due to the diseases. As we are interested in validating the findings from the

UKBB based PheNet, we consider only ICD codes from HUNT that are mapped to

phenocodes existing in the PheNet, resulting in 967 of the 1, 397 UKBB phenocodes.

The mapping from ICD9 and ICD10 codes were performed using the PheCode Maps

[22, 23].

Construction of the PheNet

When constricting the PheNet, we first group SNPs that are in high LD, as the

single top hit SNPs for different diseases can be in high LD and represent the

same genetic cause of the disease, without being a mutation at the exact same

loci position. Using the LDmatrix function from the LDlinkR R-library [24, 25],

SNPs that are within ∼ 500 kb and share a high LD (r2 ≥ 0.8), are defined into

LD-blocks. From the updated list of SNP/LD-block disease associations (from here

on mentioned as SNP-disease associations), a bipartite network is created, where a

link between SNP and disease is present if the corresponding associated p-value is

p < 10−6. The disease-disease network is further generated, where two diseases are

linked if they share one or more SNPs from the bipartite network.

Link weights in the PheNet

To obtain a reasonable measure of the link weight between pairs of diseases, we

utilize the effect sizes of the SNP-disease association, β. The effect sizes measures the

log odds ratio for obtaining the disease given the presence of the SNP, and is hence

a reasonable measure for the strength of the association between the SNP and the

disease. We argue that our method of merging the effect sizes rather than merging

p-values or counting the number of associated SNPs provides more information

regarding the disease-disease associations.

In order to obtain a single link weight between two diseases sharing one or more

associated SNPs, we calculate the link weight according to Fig. 1. In this illustration,
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there are n unique SNPs that are significantly associated with both disease 1 and 2.

In the first step, the effect sizes linking the diseases though the same SNP, β̃1i and

β̃2i, are merged into one effect size for SNP i by the geometric mean of the absolute

effect sizes, β12,i =
√
|β̃1i| · |β̃2i|. If some of the associated SNPs are in LD, we use

the mean effect sizes for these SNPs before calculating the geometric mean. This

step results in n link weights between disease 1 and 2 when they share associations

with n common SNPs. Next, to obtain a single link weight between disease 1 and 2

we calculate the arithmetic mean of the n link weights between the diseases, such

that the final link weight between diseases 1 and 2 is β12 = 1
n

∑n
i=1 β12,i.

Overlap with co-occurring diseases in the HUNT study

For each HUNT participant, a list of their registered diseases, considering only the

967 phenocode diseases, are ordered based on the first diagnose date. If a person

is registered with diseases A, B, C, and D, we construct the pairs A-B, A-C, A-D,

B-C, B-D and C-D. Constructing such pairs for all patients, we count the number of

times each pair of diseases are present among the 90, 103 participants. To obtain a

measure for the strength of co-occurrence for these disease pairs, we use the φ-score

proposed as a comorbidity measure by Hidalgo et. al. [26]. The φ-score is a Pearson

correlation for binary variables, defined as

φij =
CijN − PiPj√

PiPj(N − Pi)(N − Pj)
, (1)

where N is the total number of participants, Cij is the number of patients with

disease i and j, and Pi and Pj is the number of patients with disease i and j respec-

tively. To assess only the disease pairs with a co-occurrence larger than expected

by chance, we perform a one sided t-test, with the test statistic defined as

t =
φ
√
N − 2√

1− φ2
, (2)

with N − 2 degrees of freedom. Extracting only the disease pairs observed in the

PheNet, we classify the disease pairs as significantly observed comorbidities if the

Bonferroni adjusted p-value from the one sided t-test is below 0.05/1, 135 = 4.405 ·
10−5, where the number 1, 135 is the number of disease pairs tested.

To access the significance of the number of significantly observed disease pairs, we

compare our finding with the corresponding finding of random networks, holding the

same network properties as the PheNet. Shuffling the labels (disease names) of the

nodes, 104 random networks are simulated, and the number of disease pairs with

Bonferroni adjusted significant φ-scores are counted for each network, giving an

empirical distribution for the number of significant co-observed pairs in the random

networks.

Further, comparing the PheNet disease pairs with the ordered co-occurring disease

in the HUNT study population, we perform the same method as above where the

disease pairs from the HUNT participants are ordered based on the diagnose date

of the disease. A participant with diseases A, B, C and D (in that order) will now

give the disease pairs A-B, B-C and C-D. From the constructed frequency list of
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ordered disease pairs for all participants, the φ-scores and corresponding p-values

are calculated. As the PheNet gives no direction of the links, both directions of the

disease pairs are considered when extracting these disease pairs from the frequency

list of ordered disease pairs and counting the number of pairs with Bonferroni

significant φ-scores. This score is again validated against the empirical distribution

of corresponding scores from the 104 random networks.

Creating the HUNT sub-PheNet

The HUNT sub-PheNet is the sub network of the UKBB based PheNet where only

the links with Bonferroni adjusted significant φ-scores are included. In this way,

the HUNT sub-PheNet represents disease associations that are both genetically

linked and at the same time being strongly linked as comorbidities based on actual

observed disease co-occurrences.

Network analysis

Grouping genetically linked diseases into network modules

As we expect that groups of similar and related diseases will cluster together in

the PheNet, we use the Louvain’s network clustering algorithm to construct net-

work modules [27]. This greedy method optimizes the modularity when constructing

modules. The modularity measure the density of links within modules compared to

links between the modules and is defined as

Q =
1

2m

∑
ij

[
Aij −

kikj
2m

]
δ(ci, cj), (3)

where Aij represents the link weight between disease i and j, ki =
∑

j Aij and

kj =
∑

iAij , m =
∑

ij Aij , ci and cj are the modules of disease i and j respectively

and δ is the Kronecker delta function equal to 1 if ci = cj and 0 otherwise.

Using the cluster louvain function from the igraph R-library [28] we construct

modules for both the UKBB based PheNet and the HUNT sub-PheNet using the

β-scores as link weights for the PheNet and the φ-score as link weight for the

HUNT sub-PheNet. Note that the Louvain’s algorithm does not support negative

link weights, but this gives no problems as all β-scores are absolute values and all

significant φ-scores are positive in the HUNT sub-PheNet.

Disease homogeneity

To test the hypothesis that diseases tend to link to diseases of the same disease cate-

gory, we create a disease homogeneity score, the H-score, representing the diversity

of categories linked to a disease [29]. The H-score is defined as,

H∗
i =

16∑
j=1

(
kij
ki

)2 (4)

where kij is the number of diseases of category j linked to disease i, and ki is the

degree of disease i. This H-score is hence very driven by the degree of the disease,

as the maximum and minimum value it can take depends on the number of possible
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categories linked to it. To adjust for this fact, we scale the score such that all H-

scores take a value between zero and one and are independent of the degree of the

disease [30],

Hi =
H∗

i −Hm

1−Hm
. (5)

Here, Hm is the minimum value disease i can have and is defined according to the

degree of the disease, ki,

Hm = 1/ki, k ≤ C (6)

Hm = ((2C − ki) + (ki − C)22)/k2i , C <ki ≤ 2C (7)

Hm = ((3C − ki)22 + (ki − 2C)32)/k2i , 2C <ki ≤ 3C (8)

· · · (9)

where C = 16 is the number of categories in the PheNet. With this, a H-score of

1 represents diseases only connected to a single disease category, while a H-score

of 0 represents maximal difference of categories (two or more categories, and equal

amount of diseases from each category).

To test if the mean H-score within each module and each category are significantly

different from expected, we simulate 104 random networks holding the same prop-

erties as the PheNet and the HUNT sub-PheNet. In each of the simulated networks,

only the categories are shuffled without replacement, and the distribution of mean

H-scores within each module and category are used as an empirical distribution to

test if the observed corresponding H-score from the PheNet and the HUNT sub-

PheNet are Bonferroni significantly different from the empirical distribution. The

reported p-values are the fraction of random mean H-scores larger than the observed

H-scores, Bonferroni adjusted by multiplying with the number of tests (number of

modules and number of categories; nPheNet = (12, 16) and nsub−PheNet = (10, 16)).

Testing interactions across categories with the Z-score

To test if some categories are more or less linked to each other than what is expected

by chance, we calculate a Z-score, a normalized score for the number of links shared

between each pair of categories,

xi,j =
all links∑

I(link connecting nodes with categories i and j) (10)

zi,j =
xi,j − µi,j

σi,j
, (11)

where µi,j and σi,j are the mean and standard error of xi,j from 104 simulated

random networks. The simulated networks are constructed in the same manner as

for the H-score analysis, and the significance of the Z-score is tested with a two-

sided Z-test from a standard normal distribution. The p-values are reported with

Bonferroni adjustment considering nPheNet = nsub−PheNet = 16 · 15/2 + 16 = 136

tests.
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Direction of disease links and linkage with the Norwegian Cause of Death registry

Finally, we investigate if some of the disease pairs are observed in a specific order,

giving a disease history of the HUNT participants. Considering all disease pairs from

the PheNet, we test if disease A is more probable to be observed before disease B

and vice versa with a binomial test. If the ordering of the diseases are random, the

null hypothesis is that drawing A before B has a probability of p = 0.5 with n being

the number of participants with both diseases. For all disease pairs from the PheNet,

where the observed number is the number of times disease A are listed before disease

B in the HUNT data, we perform a two-sided binomial test and extract only the

pairs of diseases with a Bonferroni adjusted p < 0.025/1, 135 ≈ 2.2 · 10−5, and

further extract only the disease pairs found in the HUNT sub-PheNet. The median

time between diseases for all participants with this ordering of co-occurring diseases

are registered.

For each of the diseases observed to be in a specific order, termed first disease or

last disease, we perform a hypergeometric test to see if some of the disease categories

are more or less represented than expected by chance. With a hypergeometric test,

we observe x of these ordered diseases from m available diseases of the specific

category, with n being the number of trials; the total number of first/last diseases,

and N being the number of available diseases; the number of diseases in the HUNT

sub-PheNet. The p-values from this two-sided hypergeometric test of enrichment

among the categories are hence calculated as,

P (X ≥ k) =

n∑
k=x

(
m
k

)(
N−m
n−k

)(
N
n

) and P (X ≤ k) =
x∑

k=1

(
m
k

)(
N−m
n−k

)(
N
n

) . (12)

The p-values are Bonferroni adjusted with 16 tested categories when reported, where

a p < 0.025 is considered a significant finding. This test is performed for both sets

of first and last diseases separately.

We also link these diseases to the Norwegian Cause of Death registry and register

how many who have died from each of these diseases. Note that in the Norwegian

Cause of Death registry, diagnoses highly related to the cause of death are also listed.

Also, some participants could have their first event of a specific disease as the cause

of death and are hence not registered in the hospital nor general practitioner records

with this disease.

Results
The PheNet shows genomic linkage between diseases

The UKBB based PheNet constructed from the updated list of SNP-disease asso-

ciations, where all included diseases are available in the HUNT study, includes 457

diseases with 1, 135 links between them. The full PheNet including all diseases from

the PheWas summary can be found in Additional file 1, Fig. S1. In the PheNet

shown in Fig. 2, most diseases are linked in a giant component and several smaller

components, confirming that also at a genomic level, the genetic origin of many

diseases are shared with other diseases. The nodes, representing diseases, are col-

ored based on their disease category, sized by the number of associated SNPs to

the specific disease and the link between diseases are scaled based on the number
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of shared SNPs. The twelve largest modules identified by the Louvain’s clustering

algorithm with the β-scores as link weights are circled in and numbered in the fig-

ure. Most diseases are only connected by a few SNPs, such as Obesity linked with

Essential hypertension, while others, such as Arthropathy NOS linked with Other

arthropathies and Benign neoplasm of uterus linked with Uterine leiomyoma share

more than 40 common SNPs. In contrast to other studies [8, 9, 10, 11, 16], this

network consists of associations found from a solid framework for genomic associ-

ation testing even with imbalanced case/control ratios, a large sample population

for the association testing (UKBB participants), a stringent threshold for associa-

tions (p-value < 10−6), and adjustment for LD in linking diseases based on common

SNPs.

The number of diseases from each category and the mean degree for the disease of

each category are shown in Tab. 1. All categories except pregnancy complications

are represented, where the neoplasms (n = 66) and circulatory system (n = 59)

are the disease categories with the most diseases. Congenital anomalies (n = 5)

and infectious diseases (n = 5) are the categories with the fewest diseases in the

PheNet. Diseases of the circulatory system category have the highest mean degree,

on average linked to 8.4 diseases, and most of them are located in module 4, which

is dominated by diseases from the circulatory system category (see Additional file

3). This category holds diseases related to cardiovascular diseases, for which many

are known to be heritable, and many studies aim to understand the genetic causes

of these diseases [31, 32]. Among the links in module 4, we find that Myocardial

infarction, Angina Pectoris and Coronary atherosclerosis are all linked together

based on 12, 17 and 19 shared SNPs. These diseases are closely related, as they

are all caused by reduced blood flow to the heart, and previous studies have found

several genetic markers prone to cause these diseases [33, 34, 35].

Table 1 Number of diseases of each category for the PheNet and the HUNT sub-PheNet

PheNet HUNT

Category N Mean degree N Mean degree
circulatory system 59 8.4 54 5.4
congenital anomalies 5 6.2 1 10.0
dermatologic 22 5.2 15 1.9
digestive 48 4.3 35 2.9
endocrine/metabolic 42 7.7 30 4.2
genitourinary 41 3.5 33 1.7
hematopoietic 22 4.5 21 1.7
infectious diseases 5 7.8 2 1.0
injuries & poisonings 9 1.8 3 1.3
mental disorders 28 3.6 22 2.4
musculoskeletal 32 3.3 28 2.3
neoplasms 66 5.7 55 2.2
neurological 21 1.8 15 1.5
respiratory 21 3.2 17 2.2
sense organs 24 2.0 17 1.6
symptoms 12 5.5 11 2.2

Diseases tend to link within disease categories

Visually inspecting the PheNet in Fig. 2, it seems that diseases from the same

category are often linked to one another. This is to be expected, since many of

the diseases within a category are quite similar and hence, might share much of

the same genetic background. Modules 10 and 12 consist only of diseases from the
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digestive and neoplasm category respectively, while modules 4 and 7 are dominated

by diseases from the circulatory system, mental disorders and neoplasm, with most

links connected within the categories. On the other hand, module 2 consists of

diseases from many categories and share many links across categories.

To test that the linking within categories are more prominent in the PheNet

than expected by chance, we calculate the H-score for each disease. The H-score

represents the diversity of the disease connections, taking into account how many

categories each disease is linked to. Diseases with high H-scores are ”monochro-

matic” diseases that are connected to mostly the same category, while diseases with

low H-score are connected to phenocodes of many different categories. In a random

network, one would expect the absence of a pattern in regarding the disease connec-

tions and hence, observing low H-scores. In contrast, in a network where diseases

from the same category cluster together, we would expect to find higher H-scores

for many of the diseases. Fig. 3 A) shows the mean H-score within each module,

plotted against 104 random networks simulated with the same network properties.

We see that for all modules except module 6 and 9, the mean H-score in the module

is significantly larger than expected (see p-values in Tab. 2), supporting our obser-

vation that diseases from the same category are more likely to connect to diseases

of the same category. Considering the non-significant modules, module 6 is domi-

nated with diseases from the musculoskeletal category where the diseases represent

forms of Arthropathy, which is diseases of a joint. These diseases are connected to

Diseases of esophagus of the digestive category in module 2, Benign neoplasm of

uterus of the neoplasm category in module 7, as well as Other peripheral nerve dis-

orders, Internal derangement of knee, Unspecified diffuse connective tissue disease

and Lymphadenitis of the neurological, injuries and poisoning, dermatological and

hematopoietic categories respectively. Module 9 consists of two diseases from the

circulatory system (both diseases of Arterial embolism and thrombosis) and four

diseases from the sense organs category (all four related to Glaucoma). These dis-

eases from the module are linked to each other as well as to diseases related to

cancer of brain of the neoplasms category in module 7.

Table 2 Mean H-score with corresponding Bonferroni adjusted p-values for each module.

PheNet HUNT

Modules Mean H p-value Modules Mean H p-value
1 0.49 0.0024 1 0.51 0.02
2 0.38 < 10−4 2a 0.90 < 10−4

2b 0.55 < 10−4

3 0.69 < 10−4

4 0.66 < 10−4 4a 0.87 < 10−4

4b 0.82 < 10−4

5 0.39 < 10−4 5 0.86 < 10−4

6 0.40 0.1236 6 0.62 0.02
7 0.54 < 10−4 7 0.66 < 10−4

8 0.35 0.0084 8 0.46 0.01
9 0.52 0.1524
10 1.00 < 10−4 10 1.00 < 10−4

11 0.74 0.0084
12 1.00 < 10−4

To investigate if this effect is different for diseases of different categories, we also

calculate the mean H-score within each category and compare with the 104 random

networks. Fig. 3 B) shows the same effect also within categories, where the mean
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H-scores are significantly different from expected for most of the categories (see

p-values in Tab. 3). For the non-significant categories, we find that the infectious

diseases, injuries and poisonings, respiratory, and symptoms categories all seem to

be more diverse in their linked diseases. For symptoms, this makes perfectly sense, as

the same symptoms might co-occur with many diseases of different categories, and

thus also share significant SNP-hits with co-occurring disease. Infectious diseases

are only represented by five diseases in the PheNet, where two of them are located

in module 2 and the rest are linked outside of the larger modules. Chronic hepatitis

is one of the infectious diseases in module 2, which is linked to 22 other diseases

of different categories. This could indicate the patients with Chronic hepatitis are

genetically susceptible to many other type of diseases, such as Obstructive chronic

bronchitis and Hypoglycemia.

Table 3 Mean H-score with corresponding Bonferroni adjusted p-values for each category.

PheNet HUNT

Category Mean H p-value Mean H p-value
circulatory system 0.75 < 10−4 0.85 < 10−4

congenital anomalies 0.85 < 10−4 1.00 < 10−4

dermatologic 0.69 < 10−4 0.80 < 10−4

digestive 0.75 < 10−4 0.85 < 10−4

endocrine/metabolic 0.65 < 10−4 0.71 < 10−4

genitourinary 0.73 < 10−4 0.82 < 10−4

hematopoietic 0.58 0.0368 0.88 0.01
infectious diseases 0.64 0.2176 1.00 1
injuries & poisonings 0.81 0.3920 1.00 1
mental disorders 0.89 < 10−4 0.95 < 10−4

musculoskeletal 0.70 < 10−4 0.77 < 10−4

neoplasms 0.79 < 10−4 0.88 < 10−4

neurological 0.90 0.0208 0.93 0.01
respiratory 0.72 0.0752 0.76 < 10−4

sense organs 0.88 < 10−4 0.94 < 10−4

symptoms 0.54 1 0.57 1

In total, these results strongly support that most of the H-scores in the PheNet

are higher than expected, i.e. most of the disease in the PheNet are more connected

to diseases of the same category than what to be expected if they were located in

a random network. Also, diseases with low H-scores, such as Chronic hepatitis and

Arthropathy, could be interesting diseases to consider for further investigation of

common genetic effects to other diseases.

Inspecting the linkage between disease categories

Next, we consider the amount of overlap between categories to investigate if some of

the categories are more linked than expected by chance. For this, we calculate the Z-

score of the number of links connecting two categories, which is standardized against

104 random simulated networks. As already concluded from the H-score analysis,

Fig. 4 shows that most of the categories have a significant overlap with itself. In

addition, the circulatory system category has significant overlap with the congenital

anomalies and endocrine/metabolic categories, and the infectious diseases category

has significant overlap with the dermatological and endocrine/metabolic diseases

categories.

Congenital anomalies are represented by five diseases in the PheNet, where two

of them, cardiac and great vessels congenital anomalies, are linked to several circu-

latory system diseases in module 4. This results supports that diseases related to
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the cardiovascular system tend to be inherited [31, 32]. The endocrine/metabolic

disease category (colored light purple in Fig. 2) is present in module 2, 3, 4 and 5,

and dominates the linking between these modules. This category includes several

diseases for Type I and Type II diabetes, which are known to be associated to sev-

eral diseases, among them Myocardial infarction and Ischemic heart disease [36, 37]

which we also observe in the PheNet. Module 2 holds two of the five infectious dis-

eases, Chronic and viral hepatitis, and they are highly linked to the dermatologic

and endocrine/metabolic diseases in this module.

The HUNT sub-PheNet holds the same network properties as the PheNet

Now that we have studied the PheNet of genetically linked diseases based on

UKBB study participants and its properties, we seek to investigate if these net-

work properties are maintained when considering only disease pairs that show

strong co-occurrence in the HUNT study population. Extracting the sub-network of

the PheNet where disease pairs hold a Bonferroni adjusted significant φ-score, the

HUNT sub-PheNet shown in Fig. 5 consists of 359 diseases with 503 links between

them. This number of links is far more than expected based on simulated random

networks holding the same network properties, where the mean number of signifi-

cant co-occurrences is approx. 100, as shown in Fig. 6A). The HUNT sub-PheNet

is hence a network showing genetically linked diseases that also show strong co-

occurrences in a different study population, where the network is far denser than

expected by chance.

Also for the HUNT sub-PheNet, all disease categories except for pregnancy com-

plications are represented, where the neoplasms and circulatory system categories

are still the disease categories with the largest representation in the network, and

congenital anomalies and infectious diseases are the categories that are the least

represented in the network, as shown in Tab. 1. In general, it seems that the num-

ber of diseases represented from each category has been somewhat equally reduced

prior to their presence in the PheNet, indicating that none of the disease categories

stand out in terms of lacking co-occurring diseases. As a consequence of the reduced

network, the mean degrees within disease categories has also been reduced. Apart

from congenital anomalies with only one disease in the HUNT sub-network, who

has the highest degree sharing links with 10 diseases, the circulatory system and

endocrine/metabolic are still the disease categories with the highest mean degrees

(5.4 and 4.2 respectably).

Even though the HUNT sub-PheNet is more sparse than the PheNet, the general

structure of the network still holds when considering only pairs of diseases with

strong co-occurrences. Using the φ-scores as link weights, the Louvain’s clustering

method identifies 10 modules in the HUNT sub-PheNet, displaying a great overlap

with the 12 modules identified in the PheNet (see Additional file 1, Fig. S2). The

smallest modules from the PheNet, modules 3, 9, 11, and 12, have lost some of their

links and are not included among the modules consisting of more than 5 diseases in

the HUNT sub-PheNet. Modules 2 and 4 from the PheNet have been split into two

separate modules in the HUNT sub-PheNet, where the group of neoplasms diseases

from module 2 and the group of mental disorders from module 4 are clustered into

a separate modules, named module 2a and 4b in the HUNT sub-PheNet.
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Interestingly, for module 7 in the PheNet, the groups of Colon cancer and cancer of

brain are no longer connected to a module in the HUNT sub-PheNet, showing that

even though these diseases are genetically linked to the other diseases of module

7 in the PheNet, they do not show significant comorbidity in a different study

population. The same goes for Sicca syndrome in module 2, which in the PheNet

are linked to several diseases of many different categories. In the HUNT sub-PheNet,

most of these links show no significant comorbidity with Sicca syndrome. Among the

links that show significant comorbidity, we find that the links between Obesity and

Essential hypertension is still present across modules, and Essential hypertension

and Ischemic heart disease within module 4b.

Performing similar H-score analysis on the HUNT sub-PheNet, we find that the

mean H-score within all modules and the mean H-score within most categories are

significantly larger than expected, see Tab. 2, Tab. 3 and Additional file 1, Fig.

S3. In fact, three of the four non-significant categories from the PheNet are also

non-significant in the HUNT sub-PheNet, while the respiratory category seems to

be less diverse in the HUNT sub-PheNet than in the PheNet. In total, these results

indicating that also in the HUNT sub-PheNet based on strong co-occurrences of

diseases, the diseases that are kept tend to link to diseases of the same category.

The Z-score analysis for the HUNT sub-PheNet (see Additional file 1, Fig. S4)

shows that the only off-diagonal significant positive Z-score is the overlap be-

tween the circulatory system and congenital anomalies categories, as was found

in the PheNet. While the significant overlap between circulatory system and en-

docrine/metabolic, and infectious diseases with digestive and endocrine/metabolic

categories are no longer significant in the HUNT sub-PheNet, the neoplasms and cir-

culatory system categories seem to have a smaller overlap than expected by chance.

This indicates that there are few cancer diagnoses that are linked to cardiovascu-

lar diseases when considering both the genetics and the observed presence of both

disease types.

Many disease pairs show strong ordering of disease history

In the HUNT study population, we also have information regarding when the

diseases occurred for each individual. Considering the date-ordered pairs of co-

occurring diseases in the HUNT study population, we find that 222 of the PheNet

pairs (considering both directions) show significant comorbidity, which is far more

than expected based on simulations from random networks holding the same prop-

erties, see Fig. 6B). This means that a large fraction of the disease pairs observed in

the PheNet are actually observed in a specific order in the HUNT study population.

Following this finding, we find that 144 disease pairs from the HUNT sub-PheNet

are significantly observed with the specific ordering based on the binomial test

described in the Methods section. Most of these diseases are isolated pairs or smaller

groups of diseases, while 41 of them are clustered in the giant component (see

Fig. 7), wheras the full network is shown in Additional file 1, Fig. S5). From the

hypergeometric test of enrichment among the categories, we find that the circulatory

system is over-represented among the diseases that often appear first in a pair-

sequence, while the neoplasms category are under-represented among the diseases

that often come last (see Additional file 2, Tab. S1).
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The diseases in Fig. 7 represent mostly diabetic and cardiovascular diseases in

distinct groups, where Overweight, obesity and other hyperalimentation connects

the two groups and is more likely to precede the connected diseases. The thickness

of the link represents the median time between the events (thicker means shorter

time), and we observe that the time between Overweight, obesity and other hyper-

alimentation to its following diseases are much larger than the time between the

cardiovascular diseases.

The diseases are colored according to their mortality rate based on the Norwegian

Cause of Death registry, and we see that the groups of diabetic disorders show rater

low mortality rates, where Type 1 diabetes, Type 2 diabetes and Diabetes mellitus

are mostly diagnosed before the other related diseases with increasing mortality

rate. It seems that the time between being diagnosed with Type 2 diabetes and

following diseases are shorter than the time between diagnosis of Diabetes mellitus

and the same following diseases. For the cardiovascular diseases, it appears that

Essential hypertension, Ischemic Heart Disease and Angina pectoris are often diag-

nosed first and with low mortality rate. On the other hand, Dementias, Heart failure

NOS, Other chronic ischemic heart disease, unspecified, Atherosclerosis, Myocardial

infarction and Coronary atherosclerosis show high mortality rates and are often

diagnosed last. The last two, Myocardial infarction and Coronary atherosclerosis,

also have many outgoing links, where the time until the following events are rather

short. A possible explanation could be that many patients do not die immediately

after these diagnoses, but instead are unfortunate to pick up some other severe

cardiovascular diseases before death due to those diseases.

Discussion
Human disease networks offer a potential road map for both clinicians and re-

searchers studying various forms of diseases, showing how diseases are related. Pre-

vious studies have successfully created human disease networks of genetically linked

disorders, either based on diseases linked through common genes [7] or genetic infor-

mation [8, 9, 10, 11, 14, 16]. Others have created disease networks entirely based on

EHR-data with co-occurring diseases [26, 38]. Here, we combine the two, creating

a disease network based on genomic linkage and extract the sub network of EHR-

based co-occurring diseases from a different study population. With this, we show

that many of the genomically linked diseases are in fact co-occurring diseases, where

we overcome limitations of small sample sizes, different populations for the genetic

studies, short follow-up of participants, LD-correlation, case/control imbalances and

relatedness.

We are not the first to consider comorbidity among diseases based on geneti-

cally linked disease networks. Menche et. al. [39] created the interactome; genes

found from OMIN and GWAS (genes with GWAS significant SNPs) linked through

molecular interactions, and they showed that diseases with overlapping disease mod-

ules (overlapping genes associated to both diseases) show higher comorbidity than

diseases without overlapping disease modules. However, they point out that the in-

teractome is far from complete, and that it is biased towards much studied diseases.

Park et. al. [40] focus on the overlap between diseases linked though common genes

from the HDN [7] and comorbidities based on EHR-based disease histories from U.S.
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Medicare [26]. They show that diseases linked through common genes show higher

comorbidity, where particularly diseases linked through domain-sharing genes show

higher comorbidity than diseases with non-domain-sharing genes. This indicates

that using SNP-linked diseases rather than gene-linked diseases could be beneficial

for the study of comorbidity. Dong et. al. [14] and Sriram et. al [16] both compared

SNP-based disease interactions with observed comorbidities. However, they are lim-

ited by using the same study population for both genetic testing and overlap with

comorbidities. Menche et. al. [39] and Park et. al. [40] are both biased towards much

studied diseases and limited by noise from translating OMIN diseases to EHR-based

diseases, where the disease annotations have different nomenclatures. Their comor-

bidity data are strong in number of participants, but limited in the time span. The

U.S. Medicare EHR-data covers only four years of disease histories for elderly pa-

tients, likely resulting in many uncovered disease co-occurrences. In our work, we

do not share the strength of roughly 13 million patients, instead the HUNT study is

unique in covering a total of 30 years of EHR-data for 90, 000 adult patients. With

this, we argue that our SNP-based PheNet purely based on EHR data presents an

unbiased and more specific disease network, and when linking to EHR-based HUNT

comorbidities, we catch more of the co-occurring diseases.

Using SNP associations with diseases rather than genes, we do not consider if the

SNP affects a gene that is causal for the disease. Some gene disease associations

might hence be excluded as different mutations in the gene influence the expression

of the gene and cause the disease. As an example, mutations in the BRCA1 and

BRCA2 genes are well known to be associated with increased risk for breast cancer.

However, several mutations exist, and they seem to be population specific [41]. Ac-

cording the the GWAS catalog, no mutations in BRCA1 and only a few mutations

for BRCA2 are found to be GWAS significant. However, basing our PheNet on SNP

associations, we know exactly which change in a genetic position that are associated

with the disease. More than 90% of the trait-associated variants detected though

GWAS are located in non-coding sequences [42], and thus, excluding all variants

not coding for genes or proteins reduces the ability to study genetic causes of dis-

eases. With current methods for functional genome annotations, one can explore

the functional consequences of both coding and non-coding sequence variants de-

tected though GWAS and PheWas [43]. Thus, genomic disease connections found

in the PheNet could be used for targeted studies of functional implications of the

SNPs and convergence to possible meaningful pathways, despite that the SNPs are

located in non-coding regions.

Even though we argue that the networks created in this study are based on more

robust methods than the works cited above, there are also some limitations. First

of all, the genetically linked diseases from UKBB are purely based on white British

participants of European ancestry. Hence, we cannot conclude that the diseases are

genetically linked for persons with different ancestry. This is a general problem for

large population genomic studies, as most are conducted with people of European

ancestry, giving rising concerns about the utility of the health related outcomes

from these genomic studies to patients of other ancestry and geographical locations

[44].

Second, as we aimed at including as many strong disease links as possible from

the PheWas data, we used no threshold for the MAF or number of participants
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diagnosed with the disease. This again limits the utility of the PheNet, as some

diseases are linked due to SNPs that are very rare and might thus just be present

for a few persons. Some diseases might also be linked where the prevalence of one

or both diseases are very low. Additionally, the p-value threshold for inclusion of

SNP disease link from the PheWas is < 10−6, and hence, non-GWAS significant.

This choice potentially links diseases that would not have been linked with a GWAS

significant threshold. However, as the main goal of this work is to identify which

of the genetically linked disorders we can observe to co-occur, we argue that the

questionable links will either be validated or neglected when considering only the

pairs of significantly co-occurring diseases from the HUNT study.

Third, even though the HUNT data are strong in its participants rate and stretch

for a very long time period, the registries used for this work are limited to ∼ 70% of

the phenocodes from the UKBB, and not all of the records span the entire HUNT

study time frame (1987-2017). Apart from this fact, no other population study (to

our knowledge) covers hospital records for up to 30 years, which is a great advantage

of our work.

Fourth, we observe that many of the diseases in our networks are quite similar. As

an example, there are nine diseases corresponding to different types of diabetes. A

better classification system for the diseases than the phenocodes could be beneficial

for a clearer disease network. Also, some phenocodes cover the same ICD-codes,

which potentially links diseases simply because they are observed to be the same

diagnosis code.

Finally, as for any GWAS or PheWas, validation of the results in a separate popu-

lation increases the confidence in the genomic findings. An even more robust disease

network would have been one where the genomically linked diseases are validated in

a separate population or with meta-analyses before extracting strongly co-occurring

links. The co-occurring links could also be validated in yet another population. For

the utility of these disease network in all populations, one should create disease net-

works based on genetic findings for all ancestries and genders, and due to genetic

differences, one could also create ancestral specific disease networks. We believe that

the work presented is a step towards more accurate precision medicine that, with

future studies, might be beneficial for health wellness all around the world.

Conclusions
In this study, we have created a network of genetically linked diseases that also show

strong co-occurrence within a different study population. The methods for creating

the PheNet overcomes limitations from previous studies, and we argue that the

diseases linked in this network are based on more solid methods and datasets, and

hence, being more reliable. We find that the number of overlapping disease pairs is

far larger than expected by chance, and the network properties from the genetically

linked disease network is mostly maintained for the subset of strong co-occurring

diseases. Many diseases are connected in larger components, all disease categories,

except for pregnancy complications, are included in the networks. Most diseases tend

to link to other diseases of the same category, where some categories are more linked

to each other than expected by chance. We have also created a directed network of

consecutively occurring diseases, displaying a giant component consisting of mostly
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diabetic disorders and cardiovascular diseases, where the two groups are linked by

following obesity and overweight. We also find that the mortality rates of these

diseases are different for diseases that tend to be observed first or last.

We argue that the work presented here could be of great benefit to researchers

and clinicians, and used as a resource to study and explain relationships between

diseases. Hopefully, this is a step towards more precise precision medicine and we

hope that further creation of such solid grounded networks for diverse ancestries

could be beneficial to not only the European ancestral populations, but for people

of all ancestries and genders.
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these data. The key identification in the data base is the personal identification number given to all Norwegians at

birth or immigration, whilst de-identified data are sent to researchers upon approval of a research protocol by the

Regional Ethical Committee and HUNT Research Centre. To protect participants? privacy, HUNT Research Centre

aims to limit storage of data outside HUNT databank, and cannot deposit data in open repositories. HUNT

databank has precise information on all data exported to different projects and are able to reproduce these on

request. There are no restrictions regarding data export given approval of applications to HUNT Research Centre.

For more information see: http://www.ntnu.edu/hunt/data.

Ethics approval and consent to participate

Participation in the HUNT Study is based on informed consent and the study has been approved by the Data

Inspectorate and the Regional Ethics Committee for Medical Research in Norway (REK: 2014/144).
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Figures

Figure 1 Calculation of link weight for phenotypes sharing common SNPs. The first step
involves calculating the geometric mean of the two effect sizes for SNP i, β̃1,i and β̃2,i from the
UKBB PheWas. In the second step, the n common SNPs-effects are combined into one with a
arithmetic mean resulting in the final link weight, β1,2.

Figure 2 The UKBB based PheNet. The twelve largest modules are marked by circles, the node
size corresponds to the number of SNPs associated to the disease and colored based on the
disease category. The link thickness corresponds to the link weight between the two diseases. A
listing of modules and diseases is given in Additional file 3.

Figure 3 Mean H-score of phenotype network compared to 104 random networks. Mean H
score across the twelve largest modules A) and across the 16 phenotype categories B). The red
x-es shows the results from the PheNet, while the boxes with whiskers and outliers shows the
results from 104 simulated networks.

Additional Files
Additional file 1 — Fig. S1-S5

S1: The full PheNet not reduced to include only diseases observed in the HUNT study. S2: Overlap between diseases

in modules of the PheNet and the HUNT sub-PheNet. The colorbar shows the base-10 exponent of the p-value for

the overlap. S3: Mean H-score of HUNT sub-PheNet compared to 104 random networks. Mean H score across the

ten largest modules A) and across the 16 phenotype categories B). The red x-es shows the results from the HUNT
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Figure 4 Z-score of overlap between categories Entries are colored based on the Z-value, where
Z-values corresponding to a two sided p-value adjusted for multiple testing (136 tests) with
p < 0.05 are colored non-grey, and the two-sided adjusted p-values for these entries are shown.

Figure 5 The HUNT sub-PheNet. The HUNT sub-PheNet is a sub-network of the PheNet where
the only links kept are between diseases with a significant co-occurrence observed in the HUNT
study. The figure features are the same as for the PheNet, and diseases with no links to other
diseases (singletons) have been removed.

Figure 6 Overlap of significant unordered A) and ordered B) comorbidities. Distribution of the
number of disease pairs with Bonferroni adjusted significant φ-scores in the 104 random networks.
The observed number of significant disease pairs from the PheNet are marked with the red arrows.

Figure 7 Network of ordered pairs. The giant component of ordered pairs of diseases where the
arrows show the directions of the disease histories, scaled by the median time between the
diagnosis. The color of the nodes represents the mortality rate of the disease.

sub-PheNet, while the boxes with whiskers and outliers shows the results from 104 simulated networks. S4: Z score

of overlap between categories in the HUNT sub-PheNet. Entries are colored based on the Z-value, where Z-values

corresponding to a two sided p-value adjusted for multiple testing (136 tests) with p < 0.05 are colored non-grey,

and the two-sided adjusted p-values for these entries are shown. S5: The full network of ordered pairs of diseases

where the arrows show the directions of the disease histories, scaled by the median time between the diagnosis. The

color of the nodes represents the mortality rate of the disease.

Additional file 2 — Tab. S1

S1: Number of diseases that are significantly diagnosed first or last from each category. From a total of n such

diseases (first or last), x are observed from each category among the m diseases of that category and N − m

diseases not from that category in the HUNT sub-PheNet of N diseases. A hypergeometric test with variables

x,m,N − m and n are used to test if the observed values are greater than expected, P (X ≥ x), or less than

expected, P (X ≤ x), where the p-values are Bonferroni adjusted with 16 tests, where p-values less than 0.025 are

marked with a star.

Additional file 3 — List of diseases in the PheNet (.txt)

List of diseases in the PheNet with their disease categories and in which module they are located in the PheNet and

in the HUNT sub-PheNet.
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