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Abstract 

Background: Despite recent development of vaccines and monoclonal antibodies to 

prevent SARS-CoV-2 infection, treatment of critically ill COVID-19 patients remains 

an important goal. In principle, genome-wide association studies (GWAS) could 

shortcut the clinical evidence needed to repurpose drugs - the use of an existing 

drug for a new indication. However, it has been shown that the genes found in GWA 

studies usually do not encode an established drug target and the causal role for 

disease, a key requirement for drug efficacy, is unclear. We report here an 

alternative method for finding and testing causal target candidates for drug 

repurposing. 

Methods: Rather than focusing on the genetics of the disease, we looked for 

disease-causing traits by searching for significant differences in 33 blood cell types, 

30 blood biochemistries, and body mass index between an infectious disease 

phenotype and healthy controls. We then matched critically ill COVID-19 cases with 

controls that exhibited mild or no symptoms after SARS-CoV-2 infection in order to 

identify disease-causing traits by applying causal inference methods. 

Results: We found high neutrophil cell count as a causal trait for the immune 

overreaction in critical illness due to COVID-19. Based on these findings, we 

identified the enzyme CDK6 as a potential drug target to prevent the immune 

overreaction in critical illness due to COVID-19.  

Conclusions: The genetics of disease-causing traits turns out to be a rich reservoir 

for the identification of known drug targets. This is due to the usually larger datasets 

of traits, as they also cover healthy ones. A clinical trial testing CDK6 inhibitor 

palbociclib in critically ill COVID-19 patients is currently ongoing (ClinicalTrials.gov 

Identifier: NCT05371275). 
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Introduction 

The phenotype of critically ill coronavirus disease 2019 (COVID-19) status 

substantially differs from mild or moderate disease, even among hospitalized cases, 

by an uncontrolled overreaction of the host’s immune system1–3 – a so-called virus-

induced immunopathology4 – resulting in acute respiratory distress syndrome 

(ARDS). The molecular mechanism leading to critical illness due to COVID-19 is still 

unclear. Identifying causal risk factors is central for prevention and treatment. 

Nonetheless, there is evidence that susceptibility and overreaction of the immune 

system to respiratory infections are both strongly heritable.5,6 A series of genome-

wide association (GWA) studies have been conducted to investigate disease 

pathogenesis in order to find mechanistic targets for therapeutic development or 

drug repurposing.7–10 Treating the disease remains a top priority despite the recent 

development of vaccines preventing severe acute respiratory syndrome coronavirus 

2 (SARS-CoV-2) infection due to the threat of new vaccine-resistant variants. 

The results of 46 GWA studies comprising 46,562 COVID-19 patients from 19 

countries have been combined in three meta-analyses by the COVID-19 Host 

Genetics Initiative.10 Overall, 15 independent genome-wide significant loci 

associations were reported for COVID-19 infection in general, of which six were 

found to be associated with critical illness due to COVID-19: 3p21.31 close to 

CXCR6, which plays a role in chemokine signaling, and LZTFL1, which has been 

implicated in lung cancer; 12q24.13 in a gene cluster that encodes antiviral 

restriction enzyme activators; 17q21.31, containing  the KANSL1 gene, which has 

been previously reported for reduced lung function; 19p13.3 within the gene that 

encodes dipeptidyl peptidase 9 (DPP9); 19p13.2 encoding tyrosine kinase 2 (TYK2); 

and 21q22.11 encoding the interferon receptor gene IFNAR2. The functions of the 
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genes associated with these six loci are either related to host antiviral defense 

mechanisms or are mediators of inflammatory organ damage. 

Nonetheless, using GWA data for drug development has several general drawbacks, 

which are particularly evident here with COVID-19. First, none of the reported genes 

encodes an established drug target. Rather, the exact function of the gene variants 

found in patients with critical illness due to COVID-19 is unclear. Therefore, it is 

questionable whether the gene product can be manipulated in function by a drug at 

all. Second, GWA studies only correlate genes with the disease. A causal 

relationship, which is important for drug development, cannot be deduced from this. 

Third, due to the currently limited sample size of GWA study datasets (<5,000 

individuals), biologically relevant rare variants with small effect sizes cannot be 

detected.   

Here, we present an approach for drug development or repurposing that is based on 

the genetics of disease-causing traits rather than the genetics of disease (Fig. 1). 

Using data from the UK Biobank11, critically ill COVID-19 patients were matched with 

a control group of  COVID-19 patients with mild illness. Traits that differed 

significantly in cases and controls were further examined for causality with respect to 

critical illness in COVID-19 (Fig. 2). The genetics of these traits were further 

investigated to identify and test established target genes for drug repurposing. 

Focusing on the genetics of disease-causing traits reveals three advantages: First, 

disease-causing traits can more likely be manipulated with a drug via largely known 

druggable targets such as enzymes or receptors. Second, unlike a disease-

associated gene, the function and, from there, causality of a gene for a trait is easier 

to verify. Third, the sample size of trait datasets is far greater than that of datasets 

specifically for COVID-19. For example, datasets on traits such as blood 
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biochemistry often include >500,000 cases. Therefore, biologically relevant rare 

variants with small effect sizes can be detected.   

 

Methods 

Recruitment of cases and controls 

We downloaded the rich information made available by the UK Biobank project on 

October 25, 2021. COVID-19 test results up until 18th October 2021 were collected, 

and cases were defined as reported previously.8  

Briefly, 1,505 severe cases were defined as patients who died or were hospitalized 

due to COVID-19 (cause of death or diagnosis containing ICD10 codes U07.1 or 

U07.2) or were ventilated (operation codes E85.*) in 2020 or 2021 and tested 

positive for SARS-CoV-2 infection. Individuals that were tested positive for SARS-

CoV-2, but did not die or were critical due to COVID-19 and were not ventilated, 

were defined as potential mild COVID-19 controls. 

The infectious disease phenotype was created based on UK Biobank data for 

respiratory infections, acute respiratory distress syndrome (ARDS), influenza, and 

pneumonia with hospitalization or death as a result. We aggregated hospital in-

patient and death register data for ICD codes corresponding to J00-J06 (“Acute 

upper respiratory infections”), J09-J18 (“Influenza and pneumonia”), J20-J22 (“Other 

acute lower respiratory infections”), and J80 (ARDS), yielding 42,065 cases. The 

remaining individuals from the UK Biobank were defined as potential healthy 

controls. 

For both cohorts, cases and controls were filtered for European ancestry (“British”, 

“Irish”, and “Any other white background”), and individuals with missing age and sex 
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information were discarded. For both cohorts, controls were then matched to the 

same number of cases based on age and sex. 

Variants reported by Pairo-Castineira et al.8 and Ellinghaus et al.7 as well as variants 

reported by the ClinVar database12 for the genes reported by the papers were 

included in the dataset. 

 

Screening for significant traits 

The UK Biobank contains data on biological samples taken years before potential 

infection upon registration of individuals to the program, including 33 blood cell 

counts and 30 blood biochemistry measurements, and body mass index. In order to 

identify traits that are significantly different between the infectious disease cohort and 

healthy controls, we performed either independent two-sample t-test or Wilcox rank 

sum test from the R package stats 

(https://www.rdocumentation.org/packages/stats/versions/3.6.2), depending if the 

trait follows a normal distribution or not. We applied a Bonferroni-corrected p-value 

threshold of p < α/n = 0.05/64. In five instances, the p-values were too small to be 

represented properly, and were instead set to 1.0E-297. 

  

Regression modeling 

Logistic regression models were fitted using the glm function in R (www.R-

project.org). 

 

Collinearity testing 

We applied a collinearity threshold of 0.5 and subset from the data the trait pairs 

where the absolute collinearity estimate is greater or equal to the collinearity 
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threshold. We then iteratively removed the trait with the lower regression coefficient 

of that pair. 

 

Drop-one analysis 

A drop-one model comparison procedure was performed using the drop1() function 

in R (www.R-project.org) in order to determine whether each of a set of traits 

accounts for unique variance in critically ill COVID-19 disease status. The formula of 

BMI + high light scatter reticulocyte count + erythrocyte distribution width + neutrophil 

count + lymphocyte count + alkaline phosphatase + apolipoprotein A + C-reactive 

protein + cystatin C + gamma glutamyltransferase + glucose + SHBG + triglycerides 

+ vitamin D was used to predict critical illness due to COVID-19. Single terms were 

deleted and the F value is calculated to perform an F-test to derive the Pr(>F) value, 

where low values indicate that a model that does not include this term is significantly 

different from the full model. 

  

Propensity score analysis 

Using the method of Imai and Van Dyk13, individuals are split into deciles who have a 

similar propensity for a treatment (neutrophil count) given the covariates (the risk 

factors age, sex, BMI, C-reactive protein, cystatin C (as a proxy for cardiovascular 

disease), alanine aminotransferase (as a proxy for chronic liver disease), and 

creatinine (as a proxy for chronic kidney disease)). We then estimated the effect of 

treatment on severe COVID-19 within each of the groups. The effect across these 

groups is examined and the average effect of treatment is calculated over the groups 

to give an estimate of effect of treatment independent of the covariates.  
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GWA analysis 

Prior to genome-wide association analysis, we took steps to remove biases by 

submitting  UK Biobank genotypes to a series of quality control steps using PLINK 

2.014. First, we extracted variants on autosomal chromosomes. Then, we filtered 

samples for European ancestry, and we further dropped all samples with missing 

data for the phenotype of interest (neutrophil cell count) or for any of the following 

covariates: age, sex, BMI, and genetic principal components.  These initial filtering 

steps left us with 444,114samples and 784,256 variants. Next, we filtered variants for 

minor allele frequency (MAF) using a threshold of 0.01 for the aggregate frequency 

and count of non-major alleles, since extremely rare alleles may indicate genotyping 

errors and furthermore are cases where power for detecting variant-to-phenotype 

associations is lacking.  We then filtered variants based on missingness in the 

dataset with a threshold of 0.1, excluding variants where genotyping information is 

unavailable or of poor quality for more than 10 percent of subjects. Next, as an 

additional guard against genotyping errors, variants deviating from Hardy-Weinberg 

equilibrium were removed where exact test p-values fell below the threshold of 1e-

15. We then filtered samples with a missingness threshold of 0.1, excluding samples 

where genotyping information is unavailable or of poor quality for more than 10 

percent of variants. This yielded a final dataset with a total of 444,109 samples and 

of 509,485 quality controlled variants. Finally, a genome-wide association analysis 

was performed in two steps with REGENIE15. In the first step, a whole genome 

regression model was fitted using ridge regression, and in the second step, variants 

were tested for association with the continuous neutrophil cell count phenotype 

conditioned on the prediction of the model from the prior step using the “leave one 
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chromosome out” scheme (LOCO) to avoid proximal contamination. In both steps, 

the first four genetic principal components were included as covariates. 

 

Statistical power calculation 

The calculation of the effect size required to achieve a certain statistical power based 

on a fixed p-value threshold is based on 

https://www.mv.helsinki.fi/home/mjxpirin/GWAS_course/material/GWAS3.html. Due 

to the high computational cost, a random slice of 10% of the variants from the GWAs 

was used in these calculations. 

 

Mendelian randomization 

We used independent GWAS summary data for neutrophil cell count (exposure) 

published by Vuckovic et al.16 (GCST90002398 downloaded January 15th 2021) and 

summary data for critically ill COVID-19 status (outcome) published by the COVID-

19 Host Genetics Initiative (https://www.covid19hg.org/results - COVID19hg GWAS 

meta-analyses round 5 release date January 18th 2021). Two-sample MR analyses 

were done as previously described.10 

  

Results 

Screening for traits associated with infectious disease 

Using UK Biobank data11, we identified 42,065 individuals with respiratory infections, 

acute respiratory distress syndrome (ARDS), influenza and pneumonia, which serve 

as our infectious disease cohort. In order to explore how the infectious disease 

cohort differs from healthy controls, we screened 64 candidate predictive traits that 

had been measured years before the individuals were affected. We observed 
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Bonferroni-corrected statistically significant differences (p < �/� = 0.05/64)17 in 51 

traits confirmed by independent two-sample t-test and two-sided Wilcox rank sum 

test (Fig. 2 and SI Fig. 1). 

 

Regression modeling 

Furthermore, we identified 1,505 patients who were hospitalized due to SARS-CoV-2 

infection and who required respiratory support and/or died due to infection.18 These 

patients were defined as cases and matched to controls that were infected with 

SARS-CoV-2, but showed no and only mild symptoms. Carrying over the 51 traits 

identified in the previous step, we used regression modeling to investigate the effect 

of these traits on critically ill COVID-19 status. Out of the 51 traits, 21 traits were 

significant predictors of critical illness due to COVID-19 with a Bonferroni-corrected 

significance threshold of p < �/� = 0.05/51 (Fig. 2 and SI Tab. 1). 

 

Collinearity analysis 

Collinearity is the correlation between predictor variables in a regression model. 

Therefore, collinearity between traits would impact the results of the drop-one 

analysis. We first identified traits to remove in order to solve this issue. Seven traits 

were thus excluded from further analysis: Leukocyte count, reticulocyte count, 

reticulocyte percentage, high light scatter reticulocyte percentage, immature 

reticulocyte fraction, HDL cholesterol, and glycated hemoglobin (HbA1c) (Fig. 2 and 

SI Tab. 2). 
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Drop-one analysis 

The drop-one analysis compares all possible models that can be constructed by 

dropping a single model term and evaluating its impact on the regression model. The 

drop-one analysis revealed that only neutrophil count explains unique variance in 

critically ill COVID-19 status to a Bonferroni-corrected significance threshold of p < 

�/� = 0.05/14 (Fig. 2 and SI Tab. 3). 

 

Propensity score analysis 

Propensity score analysis is a technique for estimating the effect of a treatment on 

an outcome independent of covariates. We employed propensity score stratification 

using the propensity function of Imai and van Dyk13 in order to estimate the effect of 

the treatment on critical illness in COVID-19 independent of the known risk factors 

for critical illness in COVID-19: age, sex, BMI, C-reactive protein (as a proxy for 

autoimmune disease), cystatin C (as a proxy for cardiovascular disease), alanine 

aminotransferase (as a proxy for chronic liver disease), and creatinine (as a proxy for 

chronic kidney disease) . Neutrophil count has in fact a significant effect on critical 

illness in COVID-19 (p = 1.8228E-06, estimated effect = 0.13177±0.028456) (Fig. 2 

and SI Tab. 4). 

 

Trait genetics analysis 

We next focused on the genetics of neutrophil cell number. We performed a GWA 

analysis on neutrophil cell count using the entire UK Biobank (471,532 participants) 

(SI Fig. 2). We compared our results with previously published statistics from the 

NHGRI-EBI GWAS catalog19 and were able to confirm them. Subsequently, gene 

variants were analyzed for agents associating the ChEMBL database20 with the 
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associated genes with a significance of -log p = 80 or better (SI Tab. 5). Since no 

clear drug-to-gene assignment was possible for the gene variants of the HLA 

haplotype on chromosome 6, we focused on all other significant gene variants in the 

following. The most significant gene variants were found in the PSMD3 gene and are 

associated with bortezomib and carfilzomib according to the ChEMBL database. This 

is followed by gene variants in the CDK6 gene, that is associated with the drugs 

palbociclib, ribociclib, fulvestrant, abemaciclib, trilaciclib, apremilast and 

dexamethasone. Furthermore, gene variants and associated drugs were found in the 

genes NR1D1 (lithium), THRA (levothyroxine, liothyronine, aspirin, and lithium), 

CXCR2 (clotrimazole, acetylcysteine, and ibuprofen), as well as PLAUR (filgrastim 

and ruxolitinib). Bortezomib and carfilzomib are proteasome inhibitors approved for 

cancer therapy, whereas PSMD3 encodes one of the non-ATPase subunits of the 

19S regulatory lid. Therefore, bortezomib and carfilzomib do not bind directly to the 

protein of the PSMD3 gene. In contrast, the drugs already approved for breast 

cancer abemaciclib, ribociclib, trilaciclib, and palbociclib bind directly to the protein 

encoded by the CDK6 gene, cyclin-dependent kinase 6 (CDK6). Because of the high 

significance and direct binding of the drugs to CDK6, we considered this to be the 

best potential target for lowering neutrophil counts, and thus, preventing immune 

system overreaction in critical illness due to COVID-19 in high-risk individuals with 

high neutrophil counts.  

We also conducted GWA analyses with the cases and controls defined earlier and a 

random population of the same size (n = 3,010) (SI Figs. 3 and 4, respectively). In 

both cases, we could not identify variants with genome-wide significance. Statistical 

power analysis shows that this is due to the lack of statistical power in GWA 

analyses with that few individuals (SI Fig. 5). 
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Genetic proxy regression modeling of CDK6 inhibitor treatment 

We then used 58 reported variants in the CDK6 gene to predict neutrophil count in 

all subjects of European ancestry (n = 471,532), the cases and controls defined 

earlier (n = 3,010) and a random population of the same size (n = 3,010) as a 

genetic proxy of a CDK6 inhibitor treatment. While most of the variants had a 

significant effect on neutrophil count in the whole population, none of the variants 

showed a significant effect in the other two sets of individuals (SI Tab. 6). This 

suggests that the case/control data set is too small to detect the effect of CDK6 

variants on neutrophil count. 

 

Mendelian randomization 

Mendelian randomization (MR) is a robust and accessible tool to examine the causal 

relationship between an exposure variable and an outcome from GWAS summary 

statistics.21 We employed two-sample summary data Mendelian randomization to 

further validate causal effects of neutrophil cell count genes on the outcome of 

critical illness due to COVID-19. We used independent GWAS summary data for 

neutrophil cell count (exposure) published by Vuckovic et al.16 and summary data for 

critical illness in COVID-19 (outcome) published by the COVID-19 Host Genetics 

Initiative10. As shown in the Supplementary Information Tab. 4, instrumental variable 

weight (IVW) was significant with a p-value of 0.01199 when we used a lenient 

clumping parameter of r = 0.2 and 1,581 SNPs whereas we observed no significant 

IVW when we used strict clumping parameters of r = 0.01 and 567 SNPs (SI Tab. 7). 
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Discussion 

In classical GWA studies, drug targets are rarely found. That is because GWA hits 

correlate with disease, but their causality, which is compelling for drug development, 

is not proven. Moreover, rare variants with small effect sizes are not found because 

of sample sizes that are drastically limited by the number of patients available for 

study. In contrast, here we describe a method that prioritizes the identification of 

traits with a causal role in disease pathogenesis. Subsequent investigation of the 

genetics of the disease-causing traits enables the discovery of drug targets that 

would not be found in classical GWA studies because of typically small sample 

sizes.    

Our approach was as follows. First, we identified significant differences in 64 

predictive characteristics between a cohort of infectious disease and healthy control 

subjects from the UK Biobank. Using regression models, we examined the effects of 

these characteristics on severely ill COVID-19 cases compared with mild control 

cases. Because highly correlated characteristics would be missed in a drop-one 

analysis, collinear (non-independent) characteristics were first removed. Of the 

remaining characteristics, neutrophil count was identified as a characteristic that had 

a unique impact on critical illness in COVID-19 independent of other characteristics. 

Age, male gender, obesity, type 2 diabetes, cardiovascular disease, chronic liver and 

kidney disease have been previously described as risk factors for the severe course 

of COVID-19.22 Based on the characteristics measured in the UK Biobank, we used 

these risk factors or surrogate factors as confounders in the propensity score 

analysis. Finally, the propensity score analysis confirmed the causal effect of 

neutrophil count on severe COVID-19 independent of these risk factors. 
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The role of neutrophil cell count in COVID-19 can be explained by the previously 

reported disease mechanism.23 Neutrophils are white blood cells and an important 

component of our host defense against invading pathogens. Critical illness in 

COVID-19 is characterized by infiltration of the lungs with macrophages and 

neutrophils that cause diffuse lung alveolar damage, the histological equivalent to 

ARDS (Fig. 23).22,24,25 Neutrophils develop so-called neutrophil extracellular traps 

(NETs), web-like structures of nucleic acids wrapped with histones that detain viral 

particles, through NETosis, a regulated form of neutrophil cell death.26 However, 

ineffective clearance and regulation of NETs result in pathological effects such as 

thromboinflammation.27  

Ultimately, we focused on the genetics of neutrophils and came across the CDK6 

gene. CDK6 encodes cyclin-dependent kinase 6, an enzyme involved in cell division, 

for which three drugs have already been developed and approved for the treatment 

of breast cancer. To better understand the role of CDK6 in neutrophil count, we 

defined the SNP rs445, which is known in the literature, as a genetic proxy for 

treatment with CDK6 inhibitors. To do this, we use regression models with rs445 as 

a variable to predict neutrophil cell count in the three different datasets: the full UK 

Biobank (471,532 cases), our case-control dataset comparing severe COVID-19 

progression versus mild progression (3,010), and a randomly selected cohort from 

the UK Biobank with the same sample size of 3,010 cases. Only in the cohort from 

the entire UK Biobank did we detect an effect of rs445 on neutrophil count. The 

effect size of rs445 on neutrophil cell count is too small for rs445 to show significant 

effects in smaller data sets. That is supported by our statistical power analysis we 

conducted with the three datasets (SI Fig. 5).   
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Cyclin-dependent kinases (CDK) 4 and 6 have been previously described as 

regulators of NETosis. CDK4/6 inhibitors block NETs formation in a dose-responsive 

manner but do not impair oxidative burst, phagocytosis, or degranulation.28 This 

indicates that CDK4/6 inhibition specifically affects NET production rather than 

universally modulating inflammatory pathways (in contrast to immunosuppressants 

such as dexamethasone or interleukin-6 inhibitors). This is supported by Grinshpun 

et al.’s report that COVID-19 progression was halted for a breast cancer patient on 

CDK4/6 inhibitor therapy. Once the drug was withdrawn, the full classic spectrum of 

illness appeared, including oxygen desaturation necessitating a prolonged hospital 

stay for close monitoring of the need for invasive ventilations.29 Selective inhibition of 

NETosis is a particularly attractive treatment because CDK4/6 inhibitors can prevent 

the cytokine storm and, thus, later intensive care. 

In parallel, we performed Mendelian randomization (MR) with neutrophil count as 

exposure and critically ill COVID-19 course as outcome. The literature describes 

either no effect30 or a slightly negative association31 for this scenario. In our 

experiments, we saw the same result depending on how strictly clumping 

parameters were selected according to linkage disequilibrium (LD). If clumping was 

strict, we saw no effect. When we selected more variables due to a less stringent LD 

threshold, we found that a higher number of neutrophil cells seems to protect against 

the critical illness in COVID-19. However, the role of neutrophils as a driver of critical 

illness due to COVID-19 has been clearly described in the literature (see above). 

Why do we get this result in MR that is contrary to clinical observation? The reason 

can be explained by sample size in a manner analogous to the discussion of our 

regression analyses with rs445. As our statistical power analysis has shown, large 

sample sizes are needed to obtain a large number of gene variants with strong effect 
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sizes. MR only works if a sufficient number of gene variants (instrument variables) 

with strong effect sizes for exposure and outcome are available. The summary 

statistics of neutrophil cell count and severe COVID-19 progression underlying MR 

show an imbalance of sample sizes. The here used statistics of the neutrophil cell 

count are based on 408,112 cases, whereas the statistics of critical illness in COVID-

19 are based on only 5,582 cases. Ultimately, this leads to insufficient overlap of 

variables with the necessary effect size to generate a signal in Mendelian 

randomization. The artificial extension of the overlap by a less strict LD threshold 

seems to favor the amplification of false signals. 

In conclusion, identifying drug targets from GWA data is challenging because of 

sample sizes limited by patient numbers and the accompanying high-dimensionality 

of the data structure. In addition, GWA studies only reflect associations and do not 

provide information on causality. In contrast, we have developed a workflow that 

enables the identification of causal drug targets via the identification and 

investigation of disease-causing traits. By focusing on the genetics of disease-

causing traits, we can leverage larger sample sizes to reveal rare gene variants with 

small effect sizes. We applied our workflow to critical illness in COVID-19. We 

identified neutrophils as causal drivers of the disease. In addition, we found CDK6 as 

a drug target to reposition the already approved breast cancer drug palbociclib for 

potential preventive treatment of COVID-19. In the case reported by Grinshpun et 

al.,29 the CDK4/6 inhibitor was administered prior to infection, therefore it was not 

harmful in the early course of the disease (like immunosuppressants32), but 

protected against thromboinflammation and thus prevented the necessity of intensive 

care. Another advantage rendering CDK6 an attractive drug target is that since it is a 

human protein, mutations of the virus do not influence drug action – in stark contrast 
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to vaccines and antivirals. Ultimately, CDK4/6 inhibitors could be used against all 

virus-induced immune pathologies, and thus also contain future pandemics of novel 

viruses. A clinical trial testing a CDK6 inhibitor in critically ill COVID-19 patients is 

currently ongoing. 
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Figures & Tables 

Figure 1 

 
Fig. 1. Disease genetics vs. disease-causing trait genetics for the identification of 

drug targets. Instead of focusing on disease genetics, genetics of disease-causing 

traits has three advantages: First, disease-causing traits are often more likely to be 

manipulated with a drug via largely known druggable targets such as enzymes or 

receptors. Second, unlike a disease-associated gene, the function and, from there, 

causality of a gene for a trait is easier to verify. Third, the sample size of trait 

datasets is far greater than that of datasets specifically for COVID-19. 
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Figure 2 
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Fig. 2. Workflow to identify traits leading to critical illness due to COVID-19. We 

identified significant differences in 64 candidate predictive traits between an 

infectious disease cohort and healthy controls. We used regression models to 

investigate the effect of these traits on critically ill COVID-19 cases compared to 

asymptomatic controls. Because highly dependent traits would not be significant in 

drop1 analysis, we first used collinearity testing to remove correlated traits. Using 

drop-one analysis, we identified neutrophil cell count as a trait that has a unique 

effect on critical illness in COVID-19. 
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Figure 3 

 

Fig. 3. The life cycle of SARS-CoV-2 and the corresponding pathogenesis of 

COVID-19 display two phases: a viral response and a host-response phase. In the 

viral response phase, the virus enters the host cell and viral replication begins. 

Approximately five days after infection and successful replication, initial mild and 

moderate symptoms such as fever, cough, fatigue, anorexia, myalgia, and diarrhea 

are observed in conjunction with a decrease in lymphocyte cell count (lymphopenia). 

The following host-response phase determines the severity of the disease: in some 

patients, uncontrolled overreaction of the immune system – so-called virus-induced 

immunopathology – requires hospitalization and respiratory support due to acute 

respiratory distress syndrome (ARDS). Thus, severe cases of COVID-19 originate 

from an immune overreaction rather than from the viral infection itself. Currently, 

there are seven drug mechanisms described: ① Passive immunity; ② Entry 
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inhibitors; ③ Protease inhibitors; ④ Polymerase inhibitors; ⑤ JAK inhibitors; ⑥ 

NETosis inhibitors; ⑦ Immunosuppressants. 
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Supplementary information 

SI Figure 1 

 
SI Fig. 1. Bonferroni-corrected statistically significant differences in 64 traits 

identified using independent two-sample t-test and Mann-Whitney U test. Red and 

green columns indicate traits that are significantly increased in infectious disease 

cases or healthy controls, respectively. 

 
 

SI Figure 2 
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SI Fig. 2. Manhattan plot of neutrophil cell count (n = 471,532). The significantly 

associated variants in the CDK6 gene (-log p-values in parentheses) are rs445 

(123.637), rs2282989 (42.226), rs42041 (30,014), rs42030 (20.325), and 

rs78366656 (15.206) on chromosome 7. 
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SI Figure 3 

 
 

SI Fig. 3. Manhattan plot of neutrophil cell count using only cases and controls (n = 

3,010). 
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SI Figure 4 

 
 
SI Fig. 4. Manhattan plot of neutrophil cell count using a random subset of the 

filtered population (n = 3,010). 

 
 
 

SI Figure 5 
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SI Fig. 5. Statistical power calculations. Dots represent variants and their effect size 

(beta, log Odds Ratio) for neutrophil count as determined by the GWAS (n = 

471,532). The lines represent the effect size required to achieve a statistical power 

of 80% at a p-value threshold of 1e-15 in the full GWAS (blue) and the GWAS with a 

random subset of the same size and the cases and controls for severe COVID-19 

(green) (n= 3,010). 
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SI Table 1 

SI Tab. 1.  Critical illness in COVID-19 was regressed on the traits significantly 

different between infectious disease cases and healthy controls. Significance 

thresholds are indicated by asterisks, where three asterisks indicate p-values below 

0.001/51, two indicate p-values below 0.01/51, and one asterisk indicates p-values 

below 0.05/51. 

Trait Estimate SE p-value 

BMI 0.04719 0.007028 1.89163E-11 *** 

Reticulocyte count 7.60919 1.496925 3.71103E-07 *** 

Reticulocyte percentage 0.37954 0.071004 9.02311E-08 *** 

Mean reticulocyte volume 0.00414 0.004666 3.74834E-01 

Immature reticulocyte fraction 3.64822 0.610483 2.28739E-09 *** 

High light scatter reticulocyte count 22.60823 3.765371 1.92216E-09 *** 

High light scatter reticulocyte percentage 1.06815 0.173818 7.98365E-10 *** 

Erythrocyte count -0.01703 0.086263 8.43490E-01 

Erythrocyte distribution width 0.16615 0.039526 2.62767E-05 ** 

Haemoblogin concentration -0.00891 0.029668 7.63919E-01 

Mean corpuscular volume -0.00217 0.008046 7.87806E-01 

Mean corpuscular haemoglobin concentration 0.02570 0.035277 4.66262E-01 

Haematocit percentage -0.00465 0.010271 6.50538E-01 

Thrombocyte count 0.00168 0.000604 5.24684E-03 

Thrombocyte crit 1.72371 0.730985 1.83706E-02 

Mean thrombocyte volume -0.04106 0.034446 2.33295E-01 

Leukocyte count 0.14942 0.019929 6.49568E-14 *** 

Basophil count 2.35277 0.795494 3.10016E-03 

Eosinophil count 0.23842 0.266235 3.70503E-01 

Eosinophil percentage -0.03716 0.020737 7.31587E-02 

Neutrophil count 0.170778 0.025309 1.50164E-11 *** 

Neutrophil percentage 0.00943 0.004216 2.52423E-02 

Monocyte count 0.33506 0.155611 3.13015E-02 

Monocyte percentage -0.01740 0.012125 1.51270E-01 

Lymphocyte count 0.23706 0.055760 2.12451E-05 ** 

Lymphocyte percentage -0.00802 0.004870 9.96131E-02 

Mean sphered cell volume 0.00048 0.006796 9.44011E-01 
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Neutrophil count / Lymphocyte count 0.08736 0.028739 2.36929E-03 

Alanine aminotransferase 0.00637 0.001440 9.61590E-06 *** 

Albumin -0.00503 0.013993 7.19078E-01 

Alkaline phosphatase 0.00507 0.002474 4.03809E-02 

Apolipoprotein A -0.53989 0.145500 2.06757E-04 * 

Direct bilirubin 0.00907 0.044307 8.37844E-01 

Total bilirubin -0.02864 0.009055 1.56234E-03 

C-reactive protein 0.03173 0.008310 1.34563E-04 ** 

Cholesterol -0.01326 0.031792 6.76677E-01 

Cystatin C 1.09557 0.195222 2.00061E-08 *** 

Gamma glutamyltransferase 0.00315 0.000801 8.30303E-05 ** 

Glucose 0.13716 0.026707 2.80836E-07 *** 

Glycated haemoglobin (HbA1c) 0.03611 0.005021 6.38047E-13 *** 

HDL cholesterol -0.47517 0.106974 8.91739E-06 *** 

IGF-1 -0.01185 0.006495 6.81625E-02 

LDL direct -0.01949 0.042154 6.43797E-01 

Oestradiol -0.00038 0.000409 3.57671E-01 

Phosphate 0.01507 0.231906 9.48200E-01 

Rheumatoid factor 0.00997 0.003762 8.03311E-03 

SHBG -0.00587 0.001616 2.83598E-04 * 

Triglycerides 0.24894 0.037066 1.86505E-11 *** 

Urate 0.00142 0.000451 1.60977E-03 

Urea 0.04115 0.022342 6.54756E-02 

Vitamin D -0.00998 0.001772 1.79162E-08 *** 

 

 

 

 

 

 

SI Table 2 

SI Tab. 2. Collinearity estimates greater than 0.5 between the 21 traits significant in 

regression analysis. The traits with the lower regression estimates are removed. 
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Trait 1 Trait 2 Collinearity 
estimate 

Regression 
estimate trait 1 

Regression 
estimate trait 2 

Trait 
removed 

High light scatter 
reticulocyte 
percentage 

High light scatter 
reticulocyte count 

0.9738 1.0682 22.6082 Trait 1 

Reticulocyte 
percentage 

Reticulocyte count 0.9639 0.3795 7.6092 Trait 1 

Apolipoprotein A HDL cholesterol 0.9181 -0.5399 -0.4752 Trait 2 

Reticulocyte 
percentage 

High light scatter 
reticulocyte 
percentage 

0.8743 0.3795 1.0682 both 

Reticulocyte count High light scatter 
reticulocyte count 

0.8694 7.6092 22.6082 Trait 1 

Reticulocyte 
percentage 

High light scatter 
reticulocyte count 

0.8604 0.3795 22.6082 Trait 1 

Leukocyte count Lymphocyte count 0.8391 0.1494 0.2371 Trait 1 

Reticulocyte count High light scatter 
reticulocyte 
percentage 

0.8244 7.6092 1.0682 both 

Immature 
reticulocyte fraction 

High light scatter 
reticulocyte 
percentage 

0.7328 3.6482 1.0682 Trait 2 

Immature 
reticulocyte fraction 

High light scatter 
reticulocyte count 

0.7106 3.6482 22.6082 Trait 1 

Glucose Glycated 
haemoglobin 
(HbA1c) 

0.6706 0.1372 0.0361 Trait 2 

Leukocyte count Neutrophil count 0.5886 0.1494 0.1708 Trait 1 
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SI Table 3 

SI Tab. 3. F values and their probabilities Pr(>F) values of traits determined in drop-

one analysis. Significance thresholds are indicated by asterisks, where three 

asterisks indicate p-values below 0.001/14, two indicate p-values below 0.01/14, and 

one asterisk indicates p-values below 0.05/14. 

Trait F value Pr(>F) 

BMI 0.741657 0.3892078 

High light scatter reticulocyte count 1.761507 0.1845500 

Erythrocyte distribution width 1.984917 0.1589896 

Neutrophil count 9.562278 0.0020067 * 

Lymphocyte count 7.840082 0.0051467 

Alkaline phosphatase 1.275999 0.2587456 

Apolipoprotein A 2.111558 0.1463078 

C-reactive protein 0.061001 0.8049391 

Cystatin C 3.574881 0.0587677 

Gamma glutamyltransferase 2.696038 0.1007155 

Glucose 7.641474 0.0057432 

SHBG 0.015972 0.8994413 

triglycerides 4.532300 0.0333520 

Vitamin D 8.091378 0.0044815 
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SI Table 4 

SI Tab. 4. Neutrophil cell count [109 cells / liter] across cases and controls in the 

propensity score deciles. 

 1 2 3 4 5 6 7 8 9 10 

ctrls 3.70 3.83 4.18 3.98 4.29 4.48 4.50 4.79 4.88 5.23 

cases 3.98 4.20 4.26 4.57 4.60 4.53 4.70 4.85 4.92 5.55 
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SI Table 5 

SI Tab. 5. Genes and FDA-approved drugs for variants with -log p-values greater 

than 80 for neutrophil cell count. Since no clear drug-to-gene assignment was 

possible for the gene variants of the HLA haplotype on chromosome 6, we focused 

on all other significant gene variants in the following. 

RS ID Chrom:Pos -log p Gene Drug Chembl ID 

rs57968500 17:38145828 516.737 PSMD3 Bortezomib CHEMBL325041 

 17:38145828 516.737 PSMD3 Carfilzomib CHEMBL451887 

rs56030650 17:38131187 459.752 GSDMA NA NA 

rs3859191 17:38128714 458.236 GSDMA NA NA 

rs8077456 17:38128765 381.308 GSDMA NA NA 

rs34003767 17:38194296 346.912 MED24 NA NA 

rs3902025 17:38119254 254.000 GSDMA NA NA 

rs3894194 17:38121993 243.737 GSDMA NA NA 

rs4795406 17:38100134 238.452 LRRC3C NA NA 

rs4795405 17:38088417 206.491 LRRC3C NA NA 

rs4795399 17:38061439 179.991 GSDMB NA NA 

rs11078928 17:38064469 179.218 GSDMB NA NA 

rs7216389 17:38069949 156.388 GSDMB NA NA 

rs2290400 17:38066240 151.803 GSDMB NA NA 

rs2305479 17:38062217 149.614 GSDMB NA NA 

rs907092 17:37922259 148.403 IKZF3 NA NA 

rs60069701 4:75044689 138.183 MTHFD2L NA NA 

rs870829 17:38068382 136.478 GSDMB NA NA 

rs9303277 17:37976469 134.933 IKZF3 NA NA 

rs921650 17:38069076 134.841 GSDMB NA NA 

rs445 7:92408370 123.637 CDK6 Palbociclib CHEMBL189963 

 7:92408370 123.637 CDK6 Ribociclib CHEMBL3545110 
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 7:92408370 123.637 CDK6 Fulvestrant CHEMBL1358 

 7:92408370 123.637 CDK6 Abemaciclib CHEMBL3301610 

 7:92408370 123.637 CDK6 Trilaciclib CHEMBL3894860 

 7:92408370 123.637 CDK6 Apremilast CHEMBL514800 

 7:92408370 123.637 CDK6 Dexamethaso
ne 

CHEMBL384467 

rs141144358 17:38251385 123.212 NR1D1 Lithium CHEMBL2146126 

rs2102928 17:38253228 115.612 NR1D1 Lithium CHEMBL2146126 

rs9635726 17:38020141 114.486 IKZF3 NA NA 

rs4247366 17:38179374 103.477 MED24 NA NA 

rs11775560 8:61660163 97.198 CHD7 NA NA 

rs939348 17:38231853 91.093 THRA Levothyroxine CHEMBL1624 

 17:38231853 91.093 THRA Liothyronine CHEMBL1544 

 17:38231853 91.093 THRA Aspirin CHEMBL25 

 17:38231853 91.093 THRA Lithium CHEMBL2146126 

rs55799208 2:218999982 89.572 CXCR2 Clotrimazole CHEMBL104 

 2:218999982 89.572 CXCR2 Acetylcysteine CHEMBL600 

 2:218999982 89.572 CXCR2 Ibuprofen CHEMBL521 

rs4760 19:44153100 82.772 PLAUR Filgrastim CHEMBL1201567 

 19:44153100 82.772 PLAUR Ruxolitinib CHEMBL1789941 
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SI Table 6 

SI Tab. 6. Results of the linear regressions of variants in the CDK6 gene for 

neutrophil count. Suffixes indicate whether the variant is present in both alleles (“alt”) 

or just on one allele (“heterozygous”). Significance thresholds are indicated by 

asterisks, where three asterisks indicate p-values below 0.001/14, two indicate p-

values below 0.01/14, and one asterisk indicates p-values below 0.05/14. 

SNP full data set 
n = 471,532 

cases and controls 
n = 3,020 

random subset 
n = 3,020 

rs10230506_alt 0.011373 0.96908 0.18145 

rs10230506_het 0.00016885 ** 0.42074 0.020545 

rs10269774_alt 0.046933 0.32246 0.96736 

rs10269774_het 0.44598 0.4079 0.90967 

rs116940641_alt 0.2866 0.55464 0.014101 

rs116940641_het 0.44001 0.77132 0.76841 

rs11768753_alt 0.0024518 0.15422 0.34265 

rs11768753_het 0.00012338 ** 0.34112 0.66113 

rs11773884_alt 0.47132 0.54692 0.72473 

rs11773884_het 0.30559 0.29811 0.35925 

rs117892745_alt 0.019543 0.20182 0.72034 

rs117892745_het 9.9208e-20 *** 0.84133 0.020716 

rs117977586_alt 0.35552 0.53811 0.24648 

rs117977586_het 2.0133e-06 *** 0.5188 0.3310 

rs12154498_alt 2.6948e-21 *** 0.40154 0.3579 

rs12154498_het 5.9269e-06 *** 0.51464 0.52744 

rs13229771_alt 0.026117 0.63434 0.53106 

rs13229771_het 4.9095e-14 *** 0.089934 0.63444 

rs144023540_alt 0.034918 0.076246 0.020341 

rs144023540_het 0.00027325 * 0.78503 0.61795 

rs17164683_alt 0.00061229 * 0.22644 0.75243 

rs17164683_het 0.015134 0.17755 0.68282 

rs17164894_alt 0.1044 0.2099 0.12429 
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SI Table 7 

SI Tab. 7. The two sample MR analyses here showed that for neutrophil cell count 

as exposure and critically ill COVID-19 status as outcome no significant effect was 

detected while using strict clumping parameters. 

Clumping SNPs beta SE IVW p-value Pleiotropy test 

lenient (r = 0.2) 1,581 -0.11139 0.04433 0.01199* negative 

strict (r = 0.01) 567 0.01135 0.06987 0.87095 negative 
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